
Online Bottleneck Matching

Barbara M. Anthony1 and Christine Chung2

1 Mathematics and Computer Science Department, Southwestern University, Georgetown, TX
anthonyb@southwestern.edu

2 Department of Computer Science, Connecticut College, New London, CT
cchung@conncoll.edu

Abstract. We consider the online bottleneck matching problem, where k server-
vertices lie in a metric space and k request-vertices that arrive over time each
must immediately be permanently assigned to a server-vertex. The goal is to min-
imize the maximum distance between any request and its server. Because no al-
gorithm can have a competitive ratio better thanO(k) for this problem, we use re-
source augmentation analysis to examine the performance of three algorithms: the
naive GREEDY algorithm, PERMUTATION, and BALANCE. We show that while
the competitive ratio of GREEDY improves from exponential (when each server-
vertex has one server) to linear (when each server-vertex has two servers), the
competitive ratio of PERMUTATION remains linear when an extra server is in-
troduced at each server-vertex. The competitive ratio of BALANCE is also linear
with an extra server at each server-vertex, even though it has been shown that an
extra server makes it constant-competitive for the min-weight matching problem.

1 Introduction

We consider the online bottleneck matching problem, where we are given k server-
vertices located in a metric space, and k request-vertices that arrive over time. As each
request-vertex arrives, it must be immediately and permanently matched to a server-
vertex. Our goal is to minimize the maximum distance between any request-vertex and
its assigned server-vertex.

The standard technique for studying algorithms for online problems is competitive
analysis. The competitive ratio of an algorithm is the worst-case ratio of the cost of the
algorithm’s solution to the cost of the optimal offline solution (which knows all request
locations in advance). Kalyansundaram and Pruhs [4] proposed an algorithm, PER-
MUTATION, in the context of the corresponding online min-weight matching problem,
where the goal is to minimize the total (or average) distance between request-vertices
and server-vertices. Without proof, [4] mentioned that PERMUTATION achieves a com-
petitive ratio of 2k − 1 for the online bottleneck matching problem. Idury and Schäffer
[3] then proved that no algorithm can achieve a competitive ratio better than approxi-
mately 1.5k. The basic GREEDY algorithm, which assigns each arriving request to the
nearest available server-vertex, has a competitive ratio that is Ω(2k) (see Section 2).

The prohibitive general lower bound on the problem and the exceedingly poor per-
formance of a simple and natural algorithm like GREEDY motivate us to consider a
benchmark that is less formidable than the optimal solution, in order to attain a more

informative analysis of these algorithms. Specifically, we employ a weak adversary
model of analysis in pursuit of further insight on the performance of these (and related)
algorithms for the bottleneck matching problem. The weak adversary, or resource aug-
mentation, model of analysis has long been used effectively in the study of matching
and scheduling problems (e.g., [5, 6, 8, 1]). Results obtained under this model can be
viewed as “bicriteria” results, which have also become an informative and successful
approach in other sub-fields of algorithms (e.g., [9, 2]).

In our setting with resource augmentation, we ask how well the online algorithm
performs when it has multiple servers (namely two) per server-vertex, while the opti-
mal offline solution only has one; thus the online algorithm can service twice as many
request-vertices with each server-vertex. Following [5], we will use the term halfOPT-
competitive ratio to refer to the competitive ratio of an online algorithm with server-
vertices that have two servers when compared with an optimal offline solution with
each server-vertex having a single server.

Resource augmentation was used to study the corresponding online min-weight
matching problem in [5]. They showed that by having two servers per server-vertex,
the competitive ratio of GREEDY improves from Θ(2k) to a halfOPT-competitive ratio
of Θ(log k). They then proposed an algorithm BALANCE, which is a modified form of
GREEDY that is more judicious in its use of the additional server at each server-vertex.
They show that BALANCE has a halfOPT-competitive ratio of O(1).

Our results for the online bottleneck matching problem for k ≥ 2 are as follows.
(Naturally, when there is a single request-vertex and server-vertex (k = 1) the algo-
rithms all perform optimally.)

1. GREEDY has a competitive ratio of at least 2k−1, and at most k2k−1.
2. PERMUTATION (proposed in [4] and [7]) is (2k − 1)-competitive, and this is tight.

This is comparable to its performance for the min-weight objective, for which it is
also (2k − 1)-competitive. This O(k) upper bound on the ratio is asymptotically
tight with the Ω(k) general lower bound for the problem of [3].

3. GREEDY has a halfOPT-competitive ratio of no more than (k − 1). Note that this
is an exponential improvement in competitive ratio from simply having two servers
available per server-vertex.

4. GREEDY has a halfOPT-competitive ratio of at least (k + 1)/2. Interestingly, this
is still exponentially worse than its performance for the corresponding min-weight
problem, where it has a halfOPT-competitive ratio of 2 log k [5].

5. BALANCE (proposed in [5]), a modified form of GREEDY designed for the setting
of multiple servers per server-vertex, has a halfOPT-competitive ratio of k − 1.

6. BALANCE has a halfOPT-competitive ratio of at least (1c + 1)log(k+1)−1 = Ω(k).
This is in contrast with the fact that BALANCE has a halfOPT-competitive ratio of
O(1) for the corresponding min-weight problem [5].

7. PERMUTATION has a halfOPT-competitive ratio of k and this is tight. (Note that
having two servers per server-vertex does not improve PERMUTATION’s asymptotic
performance guarantee, as it did so dramatically with GREEDY.)

A table summarizing these and related results is shown below.

Table 1. Lower bounds and upper bounds for the various algorithms. All bottleneck objective
results are from the present work, though the PERMUTATION bounds without resource augmen-
tation were hinted at in [4]. The result marked by † is immediate from the corresponding bound
without resource augmentation. BALANCE is only defined in the resource augmentation setting.

Algorithm

Objective Adversary GREEDY PERMUTATION BALANCE

LB UB LB UB LB UB

min-bottleneck
OPT 2k−1 k2k−1 2k − 1 2k − 1 N/A N/A
halfOPT (k + 1)/2 k − 1 k k Ω(k) k − 1

min-weight
OPT [4] 2k − 1 2k − 1 2k − 1 2k − 1 N/A N/A
halfOPT Θ(log k) [5] O(1) 2k − 1† Θ(1) [5]

While resource augmentation has the potential to improve the competitive ratio,
these results suggest that in some sense the bottleneck objective is more difficult than
the total distance objective. Resource augmentation greatly helps GREEDY for the min-
imum weight objective, but none of the three algorithms break the Ω(k) barrier for
the bottleneck objective. Perhaps this can be explained by noting that for the minimum
weight objective, any sub-optimal assignment is mitigated by the total cost, whereas
with the bottleneck objective, a poor assignment can dominate, even with resource aug-
mentation. Our results suggest that GREEDY can be a reasonable choice of algorithm
for the bottleneck objective with resource augmentation, due to its relative simplicity,
and comparable performance to BALANCE and PERMUTATION, despite its decay in
performance as its adversary gets stronger.

Section 2 provides some results for the algorithms without resource augmentation.
We then consider three algorithms with resource augmentation: GREEDY (Section 3),
BALANCE (Section 4), and PERMUTATION (Section 5).

2 Preliminaries

Formally, the online bottleneck matching problem is as follows: Given a collection
S = {s1, s2, . . . , sk} of server-vertices in a metric space M , the online algorithm A
sees over time a sequence of request-vertices R = {r1, r2, . . . , rk} also in M . When
request-vertex ri arrives, algorithm A must assign a server-vertex sσ(i) to service that
request, with cost equaling the distance d(ri, sσ(i)) (we use the terms cost and distance
interchangeably). Once an assignment is made, it cannot be changed. While A does
not know the sequence of requests in advance, its goal is to minimize the bottleneck
distance of the overall assignment, that is minimize maxi d(ri, sσ(i)). We refer to the
assignment (or “matching”) that optimizes this objective as OPT. As is typical of online
problems, we use competitive analysis, and seek to minimize the worst-case ratio of
the online bottleneck cost to the optimal (offline) bottleneck cost. An online algorithm
is α-competitive if this ratio is at most α for all possible instances. We use cost(·) to
represent the bottleneck weight of a particular assignment, e.g. cost(OPT). Throughout

the paper, ε > 0 represents an arbitrarily small constant, typically used to break ties
when assigning requests to servers.

We now prove a few basic results about the online bottleneck matching problem
without resource augmentation that have been hinted at in the existing literature (e.g.,
see the Conclusion of [4]). We consider both the standard GREEDY algorithm, as well
as PERMUTATION, introduced by Kalyanasundaram and Pruhs (a similar algorithm was
also studied by [7]). Note that the algorithm BALANCE is only defined when there are
multiple servers per server-vertex.

2.1 Analysis of GREEDY

As its name suggests, GREEDY assigns the nearest available server at a server-vertex
to each request-vertex as it arrives. While this algorithm can perform well on some
instances, GREEDY is exponentially bad against OPT. In fact, this can be exhibited by
the same instance of [4] that demonstrates GREEDY is exponentially bad against OPT
for the corresponding objective of minimizing total weight.

Theorem 1. The competitive ratio of GREEDY is at least 2k−1 for the bottleneck match-
ing problem.

Proof. Let M be a subspace of the real line, with the standard distance metric. Set
s1 = −1 − ε and si = 2i−1 − 1 for 2 ≤ i ≤ k. Let ri = 2i−1 − 1 for 1 ≤ i ≤ k.
GREEDY assigns request ri to si+1 for i < k (as the request-vertices and server-vertices
are collocated), and then must assign rk to s1, for a bottleneck cost of 2k−1 + ε. OPT,
however, matches each ri to the corresponding si, giving cost(OPT) = 1 + ε.

Theorem 2. The competitive ratio of GREEDY is at most k2k−1 for the bottleneck
matching problem.

Proof. Let Ni be the partial matching constructed by GREEDY after i requests have
been revealed. Let wi be the cost of the bottleneck edge in Ni. (Ties do not matter, as
the concern is the cost, not the particular bottleneck edge.) Let bi be the cost of the
bottleneck edge in Mi. We can assume, without loss of generality, by renumbering the
vertices that GREEDY services ri with si. We prove inductively that wi ≤ i2i−1bi. For
i = 1, M1 = N1 and the result follows. Now assume that the result holds for i− 1, and
we verify that it holds for i.

If the weight of the edge (ri, si) selected by GREEDY to service ri is at most wi−1,
then we are done. By [4], the weight of (ri, si) is at most the sum of the weights of
the edges in Mi and the edges in Ni−1, and the sum of the weights in Ni−1 is at most
2i−1 − 1 times the sum of the weights in Mi−1. Thus wi is at most 2i−1 times the
sum of the weights in Mi, as the minimum weight matching can only increase with an
additional request. Noting that the sum of the weights in Mi is at most the number of
edges in Mi times the weight of the most expensive (i.e. bottleneck) edge gives that
wi ≤ i2i−1bi. Since this holds for all i, and bk = OPT , the result holds.

2.2 Analysis of PERMUTATION

Informally, PERMUTATION assigns requests as follows. Note that the assignment of
request-vertices to server-vertices is a matching. To choose a server for request ri, con-
sider the optimal matching of the first i requests, and the optimal matching of the first
i − 1 requests. There is exactly one server that is matched in the former scenario and
not in the latter. PERMUTATION matches that server to the current request ri. Observe
that PERMUTATION guarantees that if a request arrives at an unused server-vertex, it is
matched to the server at that server-vertex.

More formally, as defined in [4], let Ri ⊂ R be the first i request-vertices. A partial
matching ofRi is a perfect matching ofRi with a subset of the servers of S. LetM0 and
P0 be empty. Define Mi to be the edges that form a minimal weight partial matching
on Ri where the number of edges in Mi −Mi−1 is minimized, choosing arbitrarily if
multiple such matchings exist. Let Si ⊂ S be the server-vertices incident to an edge
in Mi. Let Pi denote the partial matching constructed by PERMUTATION after the first
i requests. PERMUTATION constructs Pi+1 by computing Mi+1, assigning ri+1 to the
unique server-vertex s ∈ Si+1 − Si, and adding that edge to the matching Pi.

We now show that PERMUTATION is (2k−1)-competitive, which was stated without
proof in the Conclusion of the preliminary version of [4]. The proof is similar to the
proof in [4] which shows that PERMUTATION is (2k − 1)-competitive for the online
minimum-weight matching problem.

Theorem 3. PERMUTATION is (2k− 1)-competitive for the bottleneck matching prob-
lem.

Proof. We prove inductively that cost(Pi) is at most 2i−1 times the cost(Mi). Clearly,
P1 =M1, and the inequality holds. Assume that the inductive hypothesis holds for i−1,
that is, cost(Pi−1) ≤ (2(i− 1)− 1) · cost(Mi−1).

Assume PERMUTATION services request ri with server-vertex sj . Consider the bot-
tleneck distance of Pi. By construction, Pi = Pi−1 ∪ risj . Thus, cost(Pi) is the maxi-
mum of cost(Pi−1) and d(ri, sj). Note also that cost(Mi−1) is at most cost(Mi). Thus,
if the cost(Pi) is cost(Pi−1), then by induction it is at most (2(i−1)−1) ·cost(Mi−1),
which is at most (2i− 1) · cost(Mi). Otherwise, the cost(Pi) is d(ri, sj).

Let M ′ be the union of the matching Mi−1 and the edge risj . Let H be Mi ⊕M ′.
I.e., let H be the set of all edges that are in exactly one of Mi and M ′. Intuitively,
H captures the cascading effect of reassignments upon the arrival of the latest request
ri. (H appears again in Section 5, where it is discussed further.) H consists of one
alternating cycle (possibly empty). By the triangle inequality, we have that d(ri, sj) is
at most the total cost of the edges in H , less itself. Thus, d(ri, sj) is at most the weight
of Mi−1 (defined as the sum of the costs of the edges in Mi−1) plus the weight of
Mi. Recall that cost(Mi−1) ≤ cost(Mi). Furthermore, since the bottleneck distance is
the largest edge in the matching, the sum of the weights of the edges in the matching
is at most the number of edges times the bottleneck weight. Thus, d(ri, sj) is at most
(2i− 1) · cost(Mi), completing the proof.

Theorem 4. The competitive ratio of PERMUTATION is at least 2k − 1 for the bottle-
neck matching problem.

Proof. Let M be a subspace of the real line, with the standard distance metric. Set
si = i for 1 ≤ i ≤ k. Let ri = i + .5 + ε for 1 ≤ i ≤ k. PERMUTATION matches
ri to si+1 when it exists, and matches the final request, rk, to s1, for a bottleneck cost
of k − .5 + ε. OPT assigns ri to si, so all edges have a cost of .5 + ε, which is thus
cost(OPT). Thus, the performance on this instance is (2k − 1 + 2ε)/(1 + 2ε), which
approaches 2k − 1. (The ε could be removed if ties can be broken arbitrarily.)

Resource augmentation was used in [5] to show that, for the min-weight objective,
GREEDY has a halfOPT-competitive ratio of O(log k), in contrast with its Ω(2k) com-
petitive ratio without resource augmentation. Motivated in part by these results, we turn
to a resource augmentation setting for the bottleneck objective.

3 Bicriteria analysis of Greedy

Noting that “the poor competitive ratio of an intuitive greedy algorithm may not reflect
the fact that it may perform reasonably well on ‘normal’ inputs”, [5] adopts a weak
adversary model, in which the adversary has fewer resources than the online algorithm.
Their work address the online transportation problem, which is a generalization of the
min-weight matching problem. We perform a similar analysis for the bottleneck match-
ing problem, and show that the improvement for GREEDY is more limited for our ob-
jective.

While each server-vertex in OPT can service exactly one request, the online algo-
rithm can assign requests to two servers at each server-vertex. Thus, as in [5] we say
that the halfOPT-competitive ratio of an online algorithm A is the supremum over all
instances I with at most k requests ofA(I)/OPT (I) whereA has two servers available
at each server-vertex, while OPT only has one.

We now show that the halfOPT-competitive ratio for GREEDY is linear in the num-
ber of requests. Since each server-vertex si has two servers in the online setting, we
denote them by s1i and s2i as needed. Without loss of generality, we assume that s2i is
not used unless s1i is already in use. The adversary has only s1i available to it. We first
prove a lemma about the response graphG, defined in [5] to beG = (S∪R,E), where
E is the set of edges that includes the online edge (ri, sσ(i)) and adversary edge (ri, si)
for each request ri.

Lemma 1. Each connected component of G contains exactly one cycle.

Proof. By Lemma 1 of [5], there is at most one cycle in each connected component
of the response graph G. So it remains to show that there is at least one cycle in each
connected component of G. To do this, we will show that a connected component C of
G cannot be a tree. Since a tree must have one more vertex than edges, it suffices to show
that C has an equal number of edges and vertices. We first observe that, because OPT
is a perfect bipartite matching between server-vertices and request-vertices in G, any
connected component of G must have an equal number of server-vertices and request-
vertices. (Otherwise, some connected component would have one fewer server than
request, and OPT would not be able to match that extra request to any server.) Hence
the number of vertices in C is 2 · RC , where RC is the number of request vertices in

C. Next we observe that C must also have 2 · RC edges since each request-vertex in
G must have exactly two incident edges (one from the online algorithm and one from
OPT). We have now shown that C has an equal number of vertices and edges.

Theorem 5. The halfOPT-competitive ratio of GREEDY for the bottleneck matching
problem is at most k − 1 for k ≥ 2 server-vertices.

Proof. Let (ri, sj) be the online bottleneck edge in the response graph, G. (If there
are multiple edges with the maximum bottleneck cost, pick one arbitrarily.) Let (ri, si)
be the edge in OPT that serves request ri. If si = sj then we’re done. So we only
consider the case that si 6= sj . Now consider the connected component containing ri.
By Lemma 1 this connected component has exactly one cycle. Note that this cycle may
have trees joined to it at the vertices on the cycle. Observe that all such junctions must
represent a server-vertex, since each request can have at most two incident edges in
the response graph, one for the online edge and one for the optimal edge. Consider
separately the cases when ri lies on the cycle, and when it does not.

If ri is a vertex on the cycle, then since only server-vertices can be junctions, both
the online and offline edges incident on ri must lie on the cycle. Removing the on-
line edge (ri, sj) from the cycle yields a tree which can be rooted at ri. Since there
are k request-vertices and k server-vertices, there are at most 2k vertices in the tree.
Furthermore, the tree contains alternating levels of server-vertices and request-vertices.
Each request-vertex has one child (the server-vertex chosen for it by OPT), and each
server-vertex can have up to two children (the online edges).

si

ri

Greedy

OPT

rb re

sb se
ra

sa

rc

sc

rd

sd

Fig. 1. An example response graph.

To upper bound the cost of the edge (ri, sj), it suffices to upper bound the distance
of the shortest path from ri to some server-vertex sa with s2a unused, since GREEDY
picked sj instead of sa. Since ri is the root of the tree, it suffices to find the cost of a
path requiring the minimum number of edges that must be traversed to arrive at a leaf.
Consider a version of the tree where the edges from a request to its child are contracted,
thus resulting in a binary tree T with at most k vertices. Let kT ≤ k refer to the number
of vertices in the contracted tree. Since a full binary tree would have log(kT) levels,
a leaf of T , which may or may not be full, is reachable in at most log(kT) edges.
Uncontracting the edges (at most one per server-vertex) indicates that in the original

graph, there are at most log(kT) optimal and log(kT)−1 online edges between the root
and some leaf, call it sa.

Now consider the cost of the path in the tree from ri to server-vertex sa. By defini-
tion, any edge used in OPT must have cost at most cost(OPT). Since all leaves of the
tree are incident only with one edge, an OPT edge, the edge (ra, sa) is an edge in OPT,
and thus has cost at most cost(OPT). Proceeding from sa to the root, the next edge
on the path is an online edge, call it (ra, sb). GREEDY chose to assign ra to sb rather
than sa which had a server available, and thus has cost at most the cost of the edge
from (ra, sa), which is again at most cost(OPT). The next edge in the path, (rb, sb)
is an edge in OPT, and thus has cost at most cost(OPT). The next edge, the online
edge (rb, sc) again was again chosen by GREEDY over the edge (rb, sa) and thus has
cost at most the distance in the tree from rb to sa, which is bounded by the three edges
previously mentioned in the path, for a total cost of at most 3 ·cost(OPT). This process
continues, with successive edges in OPT having cost at most cost(OPT) and succes-
sive online edges having cost at most (2h − 1) · cost(OPT) where h represents the
height of the request in the tree with the online edges contracted. As the edge incident
to ri in the subtree is an edge in OPT, the final edge in the path from sa to ri has cost at
most cost(OPT). Thus, the total cost of the path is at most cost(OPT) for each of the
log(k) edges in OPT and

∑log(k)−1
h=1 (2h − 1) · cost(OPT) for the online edges, giving∑log(k−1)

h=0 2h ·cost(OPT) = (2log(k)−1)·cost(OPT) = (k−1)·cost(OPT). Hence,
since GREEDY assigned ri to sj instead of sa, the online bottleneck edge cost is at most
(k − 1) · cost(OPT).

Now consider the case where ri does not lie on the cycle. Removing (ri, sj) from
the response graph partitions the original connected component into two connected
components, with ri and the original cycle now in separate connected components.
As the original connected component contained exactly one cycle, the connected com-
ponent rooted at ri is a tree. By the same process, the upper bound on the distance from
ri to some leaf server-vertex sa is at most (k − 1) · cost(OPT), completing the proof.

The example used in [5] to provide a lower bound for GREEDY for the online trans-
portation problem gives a lower bound of k/2 for GREEDY in this setting. We prove a
slightly improved lower bound of (k + 1)/2 in Corollary 1 in Section 4.

4 Bicriteria analysis of BALANCE

In this section we consider the BALANCE algorithm detailed in [5]. We first define some
convenient notation for our resource augmentation model. As in the previous section,
each server-vertex si in S is said to have a primary server s1i and a secondary server s2i .
Thus, while there are k vertices in S, one for each request in R, the online algorithm
effectively has 2k servers to choose from. For BALANCE, the pseudo-distance from
a request ri to a primary server s1j is the actual distance d(ri, sj), while the pseudo-
distance from the same request ri to the secondary server s2j is c·d(ri, sj), for a constant
c > 1. (In [5], a c > 11 was specified.) BALANCE then uses GREEDY to assign arriving
requests to servers, based on their pseudo-distances. (Thus BALANCE with c = 1 is

precisely GREEDY.) Note also that BALANCE only applies in the resource augmentation
setting because it uses primary and secondary servers explicitly.

We begin with a lower bound on the halfOPT-competitive ratio of BALANCE.

Theorem 6. The halfOPT-competitive ratio of BALANCE for the bottleneck matching
problem is at least (1c + 1)log(k+1)−1 = Ω(k), where k is the number of requests and c
is the constant in the definition of BALANCE.

Proof. Consider the following example on the line, where at each location the number
of requests and server-vertices are powers of two. Let L0, L1, L2, . . . , Lm be the m+1
server-vertex locations, where Li has 2m−i server-vertices. Similarly, them+1 request
locations are R0, R1, R2, . . . , Rm where Ri has 2m−i requests. Let L0 = −c, R0 = 0,
and for 1 ≤ i ≤ m, Li = Ri.

We now determine the most extreme placement for the server-vertices so that OPT
will assign requests atRi to servers at Li but that BALANCE will choose not to send any
requests to L0 until the final request. Thus OPT will have a bottleneck cost of c while
BALANCE will pay c plus the location of the final server. Since c is fixed, the ratio will
grow with the location Lm.

We break ties at our convenience. (Alternatively, a small ε > 0 could be used to
perturb the locations slightly to enforce such choices.) L1 must be at 1 so that the
secondary servers at L1 (with a cost of c ·1) are equally desirable as the primary servers
at L0 (cost of c) for the requests at R0. L2 must be chosen so that the requests at
R1 consider the secondary servers at L2 (with cost c · d(L1, L2)) as desirable as the
primary servers at L0 = −c, with cost c + 1. Thus, d(L1, L2) = c+1

c , placing L2 at
2 + 1

c . Repeating this process, Li can be placed at
∑i
j=1

(
i
j

)
1

cj−1 for all 1 ≤ i ≤ m.
We now find a closed form for the location of server Lm.

Lm =

m∑
j=1

(
m

j

)
1

cj−1
= c

m∑
j=1

(
m

j

)
1

cj
= c

 m∑
j=0

(
m

j

)
1

cj

− c(m
0

)
1

c0
.

Using the binomial theorem on the summation gives the expression c(1c+1)m−c. Thus,
if Lm is the rightmost server, the bottleneck distance from L0 to Lm is c(1c + 1)m.

Note that the total number of requests is k =
∑m
i=0 2

i = 2m+1 − 1. Thus m =
log(k + 1)− 1. Thus the bottleneck cost for BALANCE is c(1c + 1)log(k+1)−1 where k
is the number of servers/requests, and the bottleneck cost for OPT is c. If c is a fixed
constant, then the lower bound on the competitive ratio is (1c + 1)log(k+1)−1.

Corollary 1. The halfOPT-competitive ratio of GREEDY for the bottleneck matching
problem is at least k+1

2 , where k is the number of servers.

Proof. Noting that c = 1 is precisely GREEDY, observe that if c = 1 this gives a
competitive ratio of 2log(k+1)−1 = k+1

2 .

We now show that the upper bound on the halfOPT-competitive ratio of BALANCE
is a matching O(k).

Theorem 7. BALANCE has a halfOPT-competitive ratio of k for the bottleneck match-
ing problem.

Proof. The same argument as for the GREEDY upper bound (Theorem 5) applies. Note
that it holds because the server-vertex sa used in the argument is a leaf of the tree, which
means the online algorithm has not used either of its servers. Thus the pseudo-distance
to that vertex in BALANCE is the same as the original distance in GREEDY.

5 Bicriteria analysis of PERMUTATION

We next consider PERMUTATION with resource augmentation. As before, each server-
vertex si has two servers in the online setting, the primary server s1i and the secondary
server s2i . Without loss of generality, we assume that a secondary server can only be
used if the corresponding primary server is used. Again, we compare PERMUTATION
to OPT which can serve exactly one request per server-vertex.

We now note how the definition of PERMUTATION from Section 2.2 applies to the
resource augmentation setting. Let Saug be the set of 2k servers available to the online
algorithm. Then a partial matching of the first i requests is a perfect matching of these
requests with a subset of Saug . Define Mi to be the set of edges in a minimal weight
partial matching of the first i requests that is “most similar” to Mi−1, in the sense that
the number of edges in Mi −Mi−1 is minimized. Let Si ⊂ Saug be the set of servers
incident to an edge in Mi. By convention, M0 is empty.

Suppose that PERMUTATION services request ri with a server sxj at vertex sj . Then
define M ′ to be the union of Mi−1 with the edge (ri, s

x
j). Let Pi denote the partial

matching constructed by PERMUTATION for the first i requests.
Intuitively, it may seem that PERMUTATION should benefit substantially from re-

source augmentation; the availability of a secondary server seemingly allows the algo-
rithm to ‘correct’ itself if a request arrives and finds that the primary server it would
have used in OPT was already in use. Yet, PERMUTATION has a halfOPT-competitive
ratio of k and this is tight, as illustrated by the following lower bound instance and a
matching upper bound guarantee. This is in comparison with its competitive ratio of
2k − 1 in the absence of resource augmentation.

Theorem 8. PERMUTATION has a halfOPT-competitive ratio of Ω(k) for the bottle-
neck matching problem.

Proof. Fix a small constant ε > 0. Without loss of generality, let k be odd. Consider the
following instance, as depicted in Figure 2 for k = 9. Server vertices and requests si, ri
for 1 ≤ i ≤ k with i odd are placed along the line, in the order s1, r1, s3, r3, . . . , sk, rk
where the distance between si and ri is 1 + ε, and the distance between ri and si+2 is
1. For each i ≥ 3, let request ri−1 be 1 away from si, and let server-vertex si−1 be at a
distance of 1 + 2ε from ri−1. All other distances are additive based on this graph.

Since PERMUTATION assigns requests based on Mi, note that M1 assigns r1 to
s13. Thus, PERMUTATION does the same. In M2, this assignment remains, and r2 is
assigned to s23, and again PERMUTATION behaves identically. In general, Mj for j < k
behaves as follows: if j is odd, rj is assigned to s1j+2 and if j is even, rj is assigned
to s2j+1. PERMUTATION’s assignments are identically Mj for j < k. Naturally, this
pattern cannot continue for request rk; observe that Mk that shares only about half of
its edges with Mk−1. In particular, Mk assigns ri to s1i for i odd, and assigns rj to s2j+1

for j even. Thus, PERMUTATION assigns the final request rk to the only server used in
Mk that was not used in Mk−1, that is, s11. Hence, PERMUTATION assigns rk to s1, for
a bottleneck cost of k + k+1

2 ε (its other assignments all have cost 1).
Observe that OPT matches each ri to its corresponding si, for a bottleneck cost of

1 + 2ε. Hence, PERMUTATION has a halfOPT-competitive ratio of Ω(k).

s1 r1 s3 r3 s5 r5 s7 r7 s9 r9

s2

r2

s4

r4

s6

r6

s8

r8

9 + 5ε

1 + ε 1 + ε 1 + ε 1 + ε 1 + ε1 1 1 1

1 1 1 1

1 + 2ε 1 + 2ε 1 + 2ε 1 + 2ε

M9 Permutation OPT

Fig. 2. Even with resource augmentation, PERMUTATION’s cost can still be k · cost(OPT).

We now develop a sequence of lemmas which show that cost(PERMUTATION) is at
mostO(k)·cost(OPT) for any instance. As in [4], letH :=Mi⊕M ′. For convenience,
we say that a server is in H if there is an edge in H incident on the server. Lemma 3,
which says that any given server-vertex appears at most once inH , uses a “displacement
sequence” in its proof which provides some intuition for the choice of H .

Lemma 2. The servers used in M ′ are exactly the servers used in Mi.

Proof. The name PERMUTATION in [4] comes from maintaining the invariant that “for
all i, the vertices in S incident to an edge in Mi are exactly the vertices in S that are
incident to an edge in Pi.” By Lemma 3.2 of [4], Si and Si−1 differ by exactly one
server. Thus, by definition of how PERMUTATION chooses sxj , at each step i, Mi and
Mi−1 ∪ (ri, s

x
j) have used the same servers.

Corollary 2. H is a single alternating cycle.

Proof. As in [4], this follows immediately from server vertices in Mi and M ′ being
identical (Lemma 2).

Lemma 3. If s1` is in H , then s2` is not in H , and if s2` is in H , then s1` is not in H .

Proof. Suppose for the sake of a contradiction that H contains both the primary server
and corresponding secondary server for some s`. By Lemma 2, s1` and s2` must each be
used in bothMi and inM ′. Let requests ra and rb be assigned to s1` and s2` , respectively,
by matching Mi. Let requests r′a and r′b be assigned to s1` and s2` , respectively, in M ′.
To prove the lemma, it suffices to prove the following claim.

Claim: if r′a 6= ra and r′a 6= rb, then r′b = ra or r′b = rb. In other words, at least one
of the two requests matched to a server of s` in Mi must also be matched to a server of

s` in M ′. Assume not. So r′a 6= ra and r′a 6= rb, and r′b 6= ra and r′b 6= rb. Let sj be the
server-vertex assigned to ri in M ′.

Case s` 6= sj . Then, since M ′ = Mi−1 ∪ (ri, sj), in Mi−1 we must also have
r′a → s` and r′b → s`, where “→” means “is assigned to.” So upon the arrival of ri, in
the transition from Mi−1 to Mi, both r′a and r′b were displaced by ra and rb.

Define the displacement sequence of ri to be a sequence of server vertices and
requests affected by the arrival of ri, written as follows:

ri −→ si L99 r1 −→ s1 L99 r2 −→ s2...

where forward-edges are from Mi and backward edges are from Mi−1. Here, r1 is a
request that was “displaced” from si upon the arrival of ri; it was displaced to server-
vertex s1. Then r2 is a request that was displaced from s1 by r1, and s2 is the server-
vertex it was displaced to, and so forth. Note that each server-vertex in this sequence
can only have one incoming backward edge because it only has one incoming forward
edge. Further note that if a server-vertex is not in the displacement sequence of ri, then it
must be matched to the same requests as it was in Mi−1, since otherwise the optimality
of Mi−1 or Mi or the assumption that Mi is the most similar optimal matching to
Mi−1 would be violated. So s` must be in the displacement sequence of ri. Since s`
has two displaced requests, r′a and r′b, then s` must appear twice in the sequence. But
if it appears twice in the sequence, then there is a “cycle” in the sequence. Consider
the displacements just in this cycle. The total cost of the forward edges in the cycle
must be lower than the total cost of the backward edges, otherwise this cycle would not
be present in the displacement sequence of ri, it would just be cut out altogether (by
optimality of Mi). But if the total cost of the forward edges is less than the backward
edges, then Mi−1 was not optimal.

Case s` = sj . Without loss of generality, let us assume that r′a = ri. Thus in Mi−1,
only one request was assigned to s` and it was r′b. So upon arrival of ri, ra was assigned
to s` and r′b was replaced by rb. This means in the displacement sequence of ri, s` again
must appear twice, giving the same contradiction as in the previous case.

Now consider the server-vertices Mi uses exactly once (i.e. only their primary
servers). The next lemma says at most one of these server-vertices can appear in H .

Lemma 4. Let s1i be in H . If an edge of Mi is not incident on s2i , then for all other
servers s1j in H , an edge of Mi must be incident on s2j .

Proof. Note that by assumption, a secondary server cannot be used unless its primary
server is used. Recall that H := Mi ⊕M ′. Consider the arrival of ri, and the change
that occurs between Mi−1 and Mi. If ri is assigned by Mi to a server that was unused
in Mi−1, then by definition of PERMUTATION, sj = si, and hence M ′ = Mi. Thus H
is empty, and no primary servers appear in H .

If in Mi request ri is assigned to a server of vertex si that was used in Mi−1, the
request assigned to that server in Mi−1 must be reassigned, or displaced. Thus, we can
construct a displacement sequence of ri, denoted by a sequence of server-vertices and
requests affected by the arrival of ri, written as follows:

ri −→ si L99 r1 −→ s1 L99 r2 −→ s2 · · · st

where, again, forward edges are from Mi and backward edges are from Mi−1.
Note that by Lemma 2, the servers used in Mi are exactly those used in M ′. Thus,

since M ′ = Mi−1 ∪ (ri, sj), sj is used once more in Mi than it is in Mi−1, and all
other server-vertices are used the same number of times in Mi as in Mi−1.

Only server-vertices that are in the displacement sequence can appear in H; all
others have exactly the same requests assigned to them in Mi and M ′.

Consider an arbitrary server s` in the displacement sequence that has its primary
server but not its secondary server used in Mi. Look at the displacement sequence from
s` to st. Since the secondary server at s` is unused in Mi, rk+1 was not forced to be
displaced from sk to sk+1, but rather could have used said secondary server at s`. Thus,
the forward edges (those fromMi) in the displacement sequence from s` to st must cost
less than the backward edges (those from Mi−1). But this contradicts the optimality
of Mi−1, since the assignments that represent these forward edges could have been
made in Mi−1 as well. Hence, there can be no edges from s` to st, and thus the only
primary server in the displacement sequence that can be used without the corresponding
secondary server being used is the final one, st.

Theorem 9. PERMUTATION has a halfOPT-competitive ratio of O(k) for the bottle-
neck matching problem.

Proof. Let αk be the number of primary servers used by PERMUTATION. (This is the
same as the number of primary servers used by Mk.) Since a secondary server is only
used if its corresponding primary server is used, there are (1−α)k server-vertices with
neither their primary nor secondary server used. Since exactly k requests are served,
there must be (1− α)k secondary servers used. Together these guarantee 1 ≥ α ≥ 1

2 .
Let the bottleneck edge of the final PERMUTATION assignment be (ri, sj). Now

consider the graph of H after the arrival of ri. Recall that by Corollary 2, H is a single
alternating cycle. As in [4], by the triangle inequality, the weight of the newest edge
(ri, sj) is at most the aggregate weight of the edges in H minus its weight d(ri, sj).
Thus, if we can bound the number of edges in H by n, then the bottleneck edge for
PERMUTATION is at most n − 1 times the bottleneck edge in Mi, as the cost of the
bottleneck edge only increases from Mi−1 to Mi.

If for every primary server that is used in Mi, the corresponding secondary server
is also used in Mi, i.e., α = 1

2 , then by Lemmas 3 and 4, H is an alternating cycle with
at most k/2 server vertices (and the same number of requests), for at most k edges. If
instead the number of primary servers used exceeds the number of secondary servers
used, then αk− (1−α)k ≥ 1 which guarantees that α ≥ k+1

2k . By Lemmas 3 and 4, H
contains at most (1−α)k+1 servers, and thus the number of edges in H is maximized
when α is as small as possible. Plugging in the lower bound on α gives k+1

2 servers,
guaranteeing at most k + 1 edges in H . Hence, in either case, PERMUTATION costs at
most k more than the bottleneck edge in Mi; the optimality of Mk and the bottleneck
edge of Mi monotonically non-decreasing as i increases complete the proof.

6 Conclusion

Resource augmentation results in a substantial improvement in the performance of the
GREEDY algorithm for the bottleneck matching problem, from an exponential lower

bound to a guarantee linear in the number of requests. While still exponentially worse
than its performance for the objective of minimizing total distance, it is a natural al-
gorithm that is easy to implement. Two algorithms that perform notably better than
GREEDY for the min-weight objective (PERMUTATION and BALANCE) also have lin-
ear competitive ratios for the bottleneck objective with resource augmentation. These
results suggest that in some sense the bottleneck objective is more difficult than the
total distance objective, as none of the three algorithms break the Ω(k) barrier for the
bottleneck objective. Determining if the lower bound (under resource augmentation) is
in fact Ω(k) remains an open question.

References

1. C. Chung, K. Pruhs, and P. Uthaisombut. The online transportation problem: On the exponen-
tial boost of one extra server. In LATIN, pages 228–239, 2008.

2. J. D. Hartline and T. Roughgarden. Simple versus optimal mechanisms. In ACM Conference
on Electronic Commerce, pages 225–234, 2009.

3. R. Idury and A. Schaffer. A better lower bound for on-line bottleneck matching, manuscript.
1992.

4. B. Kalyanasundaram and K. Pruhs. Online weighted matching. J. Algorithms, 14(3):478–488,
1993. Preliminary version appeared in SODA, pp. 231-240, 1991.

5. B. Kalyanasundaram and K. Pruhs. The online transportation problem. SIAM J. Discrete
Math., 13(3):370–383, 2000. Preliminary version appeared in ESA, pp. 484-493, 1995.

6. B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. J. ACM, 47:617–
643, July 2000. Preliminary version appeared in FOCS, pp. 214-221, 1995.

7. S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algorithms for weighted bipartite
matching and stable marriages. Theor. Comput. Sci., 127:255–267, May 1994.

8. C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via resource
augmentation. Algorithmica, 32(2):163–200, 2002. Preliminary version appeared in STOC,
pp. 140-149, 1997.

9. T. Roughgarden and É. Tardos. How bad is selfish routing? J. ACM, 49(2):236–259, 2002.
Preliminary version appeared in FOCS, pp. 93-102, 2000.

