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Introduction.
Functional analysis is, in short, the study of vector spaces with arbitrary dimension. Developed

in the early twentieth century, it is an extension and amalgamation of the �elds of complex analysis

and linear algebra. David Hilbert, Frigyes and Marcel Riesz, and Stefan Banach were some of

the noteworthy mathematicians who pushed the early frontiers of the subject. Many of the ideas

produced from their seminal work led to powerful ideas and applications in related subjects: operator

theory and ideas of Hilbert spaces were applied to physics in the early part of the twentieth century,

and are now of fundamental importance in the �eld of quantum mechanics, and the theory of

partial di¤erential equations would be nearly impossible without the aid of very general �xed-point

theorems.

The purpose of this paper is threefold. First, we wish to make clear to the reader the structural

similarities and di¤erences between �nite- and in�nite-dimensional vector spaces. In doing so, the

reader with some knowledge of linear algebra and real or complex analysis should be comfortable

with the generalizations and abstractions contained below. Second, we wish to explore in detail

the mathematical ideas and techniques at the foundation of functional analysis. In other words,

we shall develop a context of study and, in doing so, convey to the reader some sense of what one

actually means by functional analysis. The proofs are often elegant, and the techniques used to

solve problems are quite easily applied to other areas of functional analysis. These two points shall

be the topic of the �rst three chapters. Third, we wish to impress upon the reader the power of

functional analysis to solve pure and applied problems in other areas of mathematics. This will be

done especially in Chapter 4, where we apply a very general �xed point theorem to a particular

partial di¤erential equation to establish existence and smoothness of generalized solutions. This

latter work was completed during the author�s NSF-funded internship at Cornell University and

credit should be also attributed to Phillip Whitman, Frances Hammock, and Alexander Meadows.

Any introductory text on linear algebra concerns itself with vector spaces. In the context of
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elementary linear algebra, the vector space is �nite-dimensional, usually Rn or Cn. When we say a

space X is �nite-dimensional, we mean that we can �nd a �nite collection B of linearly independent

vectors in X so that any vector in X can be written as a linear combination of vectors in B. We

call B a basis for X and the number of elements in B de�nes the dimension of X.

Linear maps on �nite dimensional spaces have nice properties. We say a map T : X ! Y is linear

if for all x; y 2 X and for all scalars c we have that T (x+ y) = T (x) + T (y) and T (cx) = cT (x).1

A linear map T : Cn ! Cm can be represented by an m � n matrix with complex-valued entries;

the fact that the range and domain are �nite-dimensional is enough to show that any map which is

either one-to-one or onto is automatically a bijective function with a well-de�ned inverse function

which is also a linear map.

In the context of functional analysis, vector spaces are generally in�nite-dimensional; that is to

say that no �nite basis for the spaces exist. For some special in�nite-dimensional vector spaces,

we will be able to write down countably-in�nite generalizations of bases; many interesting and

important vector spaces have this property, and the existence of such a countable basis provides

enough structure to prove a number of interesting theorems. It is also important to note that linear

maps in this context can be one-to-one without being onto, or vice-versa. As an example, consider

the vector space `1 (C), the space of all bounded complex-valued sequences. The backward-shift

function B : `1 (C) ! `1 (C) takes a sequence (a1; a2; a3; :::) to the sequence (a2; a3; a4; :::), i.e.

it �shifts� the entire sequence to the left, dropping the �rst term. The fact that B is linear and

onto is obvious. However, B maps both (2; 0; 0; 0; 0; 0; :::) and (1; 0; 0; 0; 0; 0; :::) to the sequence of

all zeros, proving that B is not one-to-one. The forward shift F takes a sequence (a1; a2; a3; :::) to

(0; a1; a2; a3; :::); thus F is one-to-one, but not onto. These two examples indicate that linear maps

on in�nite-dimensional vector spaces do not behave as nicely as their �nite-dimensional relatives.

1 It may at �rst seem odd that the second property is not implied by the �rst. However, consider T : C! C such

that T (z) = �z, where �z denotes the complex conjugate of z. T has the property that T (z1 + z2) = �z1 + �z2, but

T (cz) = �c�z 6= c�z as long as c has nonzero imaginary part.
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To give a meaningful discussion of sequences in and functions on vector spaces of arbitrary

dimension, we require some notion of �distance�between two elements of the space. To talk about

the convergence of sequences, we will certainly need some way to know when two vectors are close

to one another. In the context of the space R, we have a function which tells us the �size�of a real

number x: the absolute value function. We then de�ne the distance between two real numbers x

and y as jx� yj. In the context of functional analysis, this distance will be a function k�k, called a

norm, which will map an element of our vector space to a real number.

De�nition 1 Given a vector space X, we shall call a function k�k : X ! R a norm if it satis�es

the following conditions:

1. kxk � 0 for all x 2 X

2. kxk = 0 if and only if x = 0:

3. kx+ yk � kxk+ kyk for all x; y 2 X

4. kcxk = jcj kxk for all x 2 X and scalars c:

Remark. With this de�nition of distance, we are able to de�ne sequential convergence.

De�nition 2 Given a vector space X and norm k�k, we say a sequence fxng in X converges in

norm (or converges with respect to k�k) to x 2 X if, for every positive real number �, there exists

N such that n > N implies kxn � xk < �.

De�nition 3 A sequence fxng is a Cauchy sequence if for every � > 0 there exists N such that

m;n > N implies kxn � xmk < �.

Remark. In the context of the space R, a sequence is Cauchy if and only if it is convergent

(with respect to the norm j�j). The fact that convergent sequences are Cauchy is simple to prove:

Let fxng be a sequence converging to x with respect to a norm k�k. Then for any � > 0, we can
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choose an N0 such that kxn � xk < �
2 whenever n > N0. Now, we apply the triangle inequality:

kxn � xmk = k(xn � x) + (x� xm)k � kxn � xk+ kxm � xk

So, let m;n > N0. Then

kxn � xmk � kxn � xk+ kxm � xk <
�

2
+
�

2
= �

which implies fxng is Cauchy. The converse, that Cauchy sequences are convergent, seems intuitively

clear at �rst, but �as always �we should be cautious of intuition.

Consider, for example, C1 ([�1; 1]), the space of continuously di¤erentiable functions on the

interval [�1; 1] under the norm kf (x)k =
R 1
�1 jf (x)j dx (the fact that this is a norm follows easily

from the de�nition). The function fn (x) = jxj1+
1
n is clearly di¤erentiable away from x = 0. At

x = 0, the derivative is well-de�ned:

lim
x!0�

jxj1+
1
n � 0

x� 0 = lim
x!0�

� (�x)
1
n = 0 = lim

x!0+
x
1
n = lim

x!0+

jxj1+
1
n � 0

x� 0

Assume n > m. Then

jxj1+ 1
n � jxj1+

1
m

 =

1Z
�1

jxj1+
1
n � jxj1+

1
m =

2n

2n+ 1
� 2m

2m+ 1

=
2n (2m+ 1)� 2m (2n+ 1)

(2n+ 1) (2m+ 1)

= 2
n�m

(2n+ 1) (2m+ 1)

which we can make arbitrarily small for su¢ ciently large m;n and so ffng is Cauchy. If we consider,

for the moment, C1 ([�1; 1]) as a subset of C0 ([�1; 1]), the set of continuous functions on [�1; 1]

under the same norm, we see that
n
jxj1+

1
n

o
converges in norm to jxj:Z 1

�1

���jxj1+ 1
n � jxj

��� dx = 1� 2n

2n+ 1

where the right hand side can be made arbitrarily small for su¢ ciently large n. The function jxj is

certainly not di¤erentiable at x = 0 and so
n
jxj1+

1
n

o
could not possibly be convergent in norm in

C1 ([�1; 1]).
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The previous example illustrates that Cauchy sequences are not, in general, convergent. The

Cauchy property is highly desirable, however, and we often restrict ourselves to normed spaces where

all Cauchy sequences are convergent. Spaces where Cauchy sequences are convergent are referred

to as being complete. A normed linear space which is complete is called a Banach space.

It is worth noting here that, since convergence depends on the given norm, we can consider the

same vector space X under two di¤erent norms k�k1 and k�k2, where X is complete under k�k1 but

not complete under k�k2. The following chapter will illuminate this subtle distinction, describe a

number of important Banach spaces, and also describe an important class of Banach spaces.
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Chapter 1.
Consider the set of continuous, real-valued functions on the interval [0; 1], denoted C0 ([a; b]) or

just C ([a; b]). We shall study this space under two di¤erent norms. The �rst, k�k1, is de�ned by

kf (x)k1 = sup fjf (x)j : x 2 [a; b]g and is commonly referred to as the sup-norm. The second norm

will be de�ned as kf (x)k2 =
R b
a
jf (x)j2 dx.

Proposition 4 C ([a; b]) under k�k1 is a complete linear space.

Proof. Using an argument from [4, p. 23], we shall show that C ([a; b]) is complete with respect to

k�k1. Let ffkg be a Cauchy sequence in C ([a; b]). Then given an arbitrary positive number �, we

have that kfn � fmk1 < � for su¢ ciently large m;n. In particular, if we �x any x 2 [a; b], then

jfn (x)� fm (x)j � kfn � fmk1 < �. That is, the sequence of real numbers ffn (x)g is Cauchy. Any

Cauchy sequence of real numbers is convergent. Thus we have pointwise convergence to a function f

where f (x) = lim fn (x). Since each fn is continuous and the uniform limit of continuous functions is

again continuous, to show that ffng converges in norm to f in C ([a; b]), it su¢ ces to show fn ! f

uniformly. Now, suppose we choose N such that m;n > N and jfn (x)� fm (x)j < �
2 . Thus

fn (x) 2
�
fm (x)� �

2 ; fm (x) +
�
2

�
for all x 2 [a; b]. We know that lim fn (x) = f (x) is convergent, so

it is either in or on the boundary of
�
fm (x)� �

2 ; fm (x) +
�
2

�
. Thus f (x) 2

�
fm (x)� �

2 ; fm (x) +
�
2

�
,

and so jf (x)� fm (x)j � �
2 < � and the convergence is uniform, whence C ([a; b]) is complete with

respect to the sup-norm.

Proposition 5 C ([a; b]) under k�k2 is not a complete linear space.

Proof. We will prove that C ([0; 2]) is not a complete with respect to the given norm; the proof

extends in an obvious way to C ([a; b]). Consider the function

fm (x) =

8>><>>:
xn for 0 � x � 1

1 for 1 � x � 2
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Then ffmg is a decreasing sequence (in the sense that fm (x) � fm+1 (x)) of positive, square inte-

grable functions. Assume that n � m. Then

kfm � fnk2

=

Z 1

0

jxm � xnj2 dx+
Z 2

1

(1� 1)2 dx

=

Z 1

0

(xm � xn)2 dx �
Z 1

0

x2mdx

=
1

2m+ 1

which can be made arbitrarily small for large m. Hence ffmg is a Cauchy sequence. If we consider

C ([a; b]) as a subset of the set of bounded functions under the same norm, we see that fm ! f in

norm, where

f (x) =

8>><>>:
0 for 0 � x < 1

1 for 1 � x � 2

Clearly f is not continuous and so under the k�k2 norm, C ([a; b]) is not complete.

Remark. One subtlety has been swept under the carpet in the previous example. When

dealing with the integral (whether it be the standard Riemann integral or the Lebesgue integral),

the careful reader may note that there is a slight problem in relation to the de�nition of norm. In

the set of bounded functions, the element

f (x) =

8>><>>:
1 for x = 0

0 for x 6= 0

is certainly bounded and not identically equal to the zero function. Its norm, however, is zero, and

clearly violates our requirement that kxk = 0 if and only if x = 0 for any norm. Thus when dealing

with the integral, we cannot consider the set of all bounded functions under this norm; instead, we

must somehow construct equivalence classes to circumvent this seemingly innocuous �but ultimately

crippling �predicament.

Measure theory and Lebesgue integration provide a natural solution to the problem at hand.2

2The reader interested in more detail should consider a reference on the subject such as [1].
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We shall de�ne an equivalence class [f ] to be the set of all functions g such that f � g � 0 almost

everywhere; that is to say we will identify two functions which are identically equal except on some

very small set (a set of measure zero).

This segue provides an excellent opportunity to present one of the most important spaces of

functions: the Lp (X; d�) spaces. The choice of the letter L honors the French mathematician Henri

Lebesgue. We will de�ne the norm kfkp =
�R
jf jp d�

�1=p
, called the p-norm, and we will denote

with Lp (X; d�) the set of all equivalence classes (as discussed above) of integrable functions such

that
R
jf jp d� < 1. We shall here prove that kfkp is a norm and that Lp (X; d�) is, in fact, a

Banach space when 1 < p <1.

Proposition 6 For 1 < p <1, kfkp =
�R
jf jp d�

�1=p
is a norm on X, a set of integrable functions.

Proof. That kfkp � 0 is obvious. That kfk = 0 if and only if f is identically zero is guaranteed

since only the equivalence class including zero could satisfy kfk = 0. That kcfkp = jcj kfkp can be

seen since

kcfkp =

�Z
jcf jp d�

�1=p
=

�Z
jcjp jf jp d�

�1=p
=

�
jcjp

Z
jf jp d�

�1=p
= jcj

�Z
jf jp d�

�1=p
= jcj kfkp

All that remains is to prove that the p-norm satis�es the triangle inequality, which comes from the

following theorem.

Theorem 7 (Hölder�s Inequality). If p; q are positive reals so that 1p +
1
q = 1 and f 2 L

p (X; d�),

g 2 Lq (X; d�), then fg 2 L1 (X; d�) and kfgk1 � kfkp kgkq.

Proof. We shall �ll in more completely an argument found in [3, p. 348]. Consider any positive

numbers a and b and assume without loss of generality that a � b. Note that p and q > 1. Also
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note that if 1p +
1
q = 1, then p+ q = pq so that

(p� 1) (q � 1) = pq � p� q + 1 = 1

If ap�1 < a, then
�
ap�1

�q�1
= a < aq�1. Thus either ap�1 � a or aq�1 � a. Assume without

loss of generality that ap�1 � a, and consider x = h (y) = yq�1. Then y = h�1 (x) = xp�1 since

h
�
h�1 (x)

�
= x(p�1)(q�1) = x. Also,

R a
0
xp�1dx = ap

p and
R b
0
yq�1dy = bq

q . Since the graph of

y = xp�1 is increasing and ap�1 � a � b, we can assume that the graph of y = xp�1 intersects the

line y = b on the interval [0; a]. The graph then looks as follows:

x

y

x

y

Graphs of the equation y = xp�1 and the line y = b on [0; a]

The region in the �gure above bounded above by y = b and below by y = xp�1 has area
R b
0
yq�1dy =

bq

q . The area bounded below y = xp�1 is
R a
0
xp�1dx = ap

p . The sum of the two areas, b
q

q +
ap

p ,

is clearly larger than the area of the area below y = b, which is ab. Thus ab � ap

p +
bq

q for any

positive real numbers a and b. Now, if either f or g is almost everywhere zero, kfgk1 � kfkp kgkq

since both sides of the inequality are zero. Assume now that neither f nor g has norm zero. Let

~f = f
kfkp

and ~g = g
kgkq

. So,
 ~f

p
= k~gkq = 1, and by our work above, for any x, we have that
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��� ~f (x) ~g (x)��� � j ~f(x)jp
p + ~g(x)q

q . Integrating both sides, we haveZ ��� ~f (x) ~g (x)��� � 1

p

Z ��� ~f (x)���p + 1
q

Z
~g (x)

q

=
1

p
+
1

q
= 1

Thus
R ��� f

kfkp
g

kgkq

��� � 1, and so
kfgk1 =

Z
jfgj � kfkp kgkq

which is Hölder�s Inequality.

Corollary 8

kfkp = sup
n
kfgk1 : kgkq = 1

o
Proof. Using Hölder�s Inequality, we now see that if we choose g so that kgkq = 1, we have

kfkp = kfkp kgkq � kfgk1

for any such g in Lq (X; d�). Thus

kfkp � sup
n
kfgk1 : kgkq = 1

o
It turns out that we can explicitly �nd a unit vector g so that equality holds. Consider g (x) =

f(x)p�1

kfkp�1p

. To see that this is, in fact, an element of Lq notice that

"Z  
f (x)

p�1

kfkp�1p

!q
d�

#1=q
=

1

kfkp�1p

�Z
fpq�qd�

�1=q
Since pq � q = p, we have that"Z  

f (x)
p�1

kfkp�1p

!q
d�

#1=q
=

1

kfkp�1p

�Z
fpd�

�1=q

=
kfkp=qp

kfkp�1p

which is �nite, and so f (x)p�1 = kfkp�1p must be in Lq (X; d�). Now consider

kfgk1 =
Z
f
f (x)

p�1

kfkp�1p

d� =
1

kfkp�1p

Z
fpd� =

kfkpp
kfkp�1p

= kfkp
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and so kfkp = sup
n
kfgk1 : kgkq = 1

o
.

We are now prepared to prove that the p-norm satis�es the triangle inequality.

Theorem 9 (Minkowski�s Inequality). Let 1 < p <1. Then kf + gkp � kfkp + kgkp.

Proof. By the above corollary,

kf + gkp = sup
n
k(f + g)hk1 : khkq = 1

o
� sup

n
kfhk1 + kghk1 : khkq = 1

o
by the triangle inequality for k�k1. And by the properties of sup, we have that

kf + gkp � sup
n
kfhk1 : khkq = 1

o
+ sup

n
kghk1 : khkq = 1

o
= kfkp + kgkp

And so our proof that k�kp is a valid norm is �nished.

The only thing holding us back from establishing that Lp (X; d�) is, in fact, a Banach space

under k�kp for 1 < p <1 is the completeness of Lp (X; d�) under k�kp. To do so, we shall need to

come up with an alternate characterization of completeness.

Theorem 10 A normed linear space X with norm k�k is complete if and only if, for a sequence

ffkg1k=1, the sum
1P
k=1

fk converges in X (in norm) whenever
1P
k=1

kfkk converges.

Proof. We will borrow from a proof found in [4, p. 62]. To prove the �rst direction, assume X is

complete and that we have a sequence ffkg1k=1 such that
1P
k=1

kfkk converges. In other words, for

any � > 0 we can choose N such that for n > N we have that
1P
k=N

kfkk < �. Now, let n � m > N :
nX
k=1

fk �
mX
k=1

fk

 =


nX
k=m+1

fk

 �
nX

k=m+1

kfkk �
1X

k=m+1

kfkk < �

Since X is complete and we have shown that
�

nP
k=1

fk

�1
n=1

is a Cauchy sequence, we know that�
nP
k=1

fk

�1
n=1

must converge in X. For the other direction, consider a Cauchy sequence ffkg1k=1 in
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X. Certainly, for each k, we can �nd a number ki such that

kfm � fnk <
1

2k
, for m;n > ki

Then as long as we require ki+1 > ki, the sequence ffkig
1
i=1 is a subsequence of ffkg

1
k=1. Now,

de�ne a sequence as follows; set g1 = fk1 and gi = fki � fki�1 for i � 2. Now, the following

computation holds:

lX
i=1

kgik = kg1k+
lX
i=2

fki � fki�1 < g1 +
lX
i=2

1

2i�1

< g1 +
1X
i=1

1

2i�1
= g1 + 1

Hence
�

lP
i=1

kgik
�
is a bounded, increasing sequence of real numbers, so it must converge, and so we

know that
�

lP
i=1

gi

�
must converge in norm by our hypothesis. Since

nP
i=1

gi = fkn , let f denote the

limit of the subsequence ffkig
1
i=1. We know that ffkg

1
k=1 is Cauchy, so for any � > 0, we can �nd

an N such that

kfm � fnk <
�

2
whenever m;n > N

and also so that

kfki � fk <
�

2
whenever ki > N

Choose such an N , and note that

kfk � fk � kfk � fkik+ kf � fkik <
�

2
+
�

2
= �

Whence ffkg1k=1 is convergent, and our proof is done.

This previous proof provides us with the tools to prove the following theorem.

Theorem 11 (Riesz�Fisher). Lp (X; d�) under k�kp is a Banach space.

Proof. By our previous work, we need only show that Lp (X; d�) is complete under k�kp. The

details of the proof depend heavily on the previous theorem, but involve a number of important
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theorems from Lebesgue measure theory (Fatou�s Lemma and Lebesgue�s Dominated Convergence

Theorem, in particular), of which the author has carefully avoided discussion. The interested reader

should refer to [4, p. 63] for a complete proof.

Remark. To the case p = 1, that is for the space L1 (X; d�) under the norm kfk1 =
R
jf j d�,

the above theorems can be extended using the above techniques and the triangle inequality for the

j�j function. We denote by L1 (X; d�) the set of bounded integrable functions under the sup-norm

kfk1 = sup fjf (x)j : x 2 Xg. To this space, the above theorems also extend.

Remark. The Lp (X; d�) spaces for 1 � p � 1 are interesting spaces to study. Spaces of

integrable functions provide su¢ cient varieties of objects to study without being so general that

one cannot prove interesting theorems. It is also worth noting that many di¤erential equations,

in which there is enormous practical interest, can be related to integral equations. These inte-

gral equations can sometimes be represented as linear operators on integrable functions and the

Lp (X; d�), or subsets thereof, are often the best spaces in which to look for solutions. It is also

the case that when we consider our space to be X = N (although X could be any discrete space)

and the counting measure on X (that is if A � X, then m (A) = jAj if A is �nite and 1 otherwise),

then
R
N f =

P1
n=0 jf (n)j. We denote by `p the set of sequences ff (n)g which are p-summable (i.e.P1

n=0 jf (n)j
p
< 1). There is signi�cant di¢ culty in �nding the actual sum of of a series, and so,

by using the Lebesgue integral, any properties we can obtain from general Lp spaces can often be

used to study in�nite series.

Remark. It is important to note here that the character of the Lp spaces depends greatly upon

the �avor of the space X and the measure. The following four examples will illustrate this point.

Example 1. Let p < q. Our goal is to give an example of a measure space (X; d�) such that

Lp (X;�) � Lq (X;�), where the containment is proper. Take the measure space to consist of the

set of positive integers N, along with the counting measure. The integral of the function f , in this

case, is then simply the sum of f ranging over N, i.e.
R
fd� =

1P
n=1

jf (n)j. The spaces Lp (N; �)

13



and Lq (N; �) consist of all functions such that
1P
n=1

jf (n)jp and
1P
n=1

jf (n)jq, respectively, are �nite.

Since p < q, it follows that q
p > 1. Thus if we let f 2 L

p (X;�), we see that
1P
n=1

jf (n)jp is �nite.

Lemma 12 Let f 2 Lp (N; �) . Then the sequence fjf (n)jpg11 contains only �nitely many values

greater than or equal to one.

Proof. Assume that this claim does not hold. Then jf (n)jp � 1 for in�nitely many values of n,

whence the sum
1P
n=1

jf (n)jp could not possibly be �nite.

Claim 13 If
1P
n=1

jf (n)jp is �nite and q
p > 1, then

1P
n=1

jf (n)jq is also �nite.

Proof. By Lemma 12, there is someN such that jf (n)jp < 1 for n > N . Then consider the sequence

fjf (n)jpg1N . Since p
q > 1, it follows that jf (n)jp > (jf (n)jp)q=p = jf (n)jq. Thus

1P
n=N

jf (n)jq <
1P
n=N

jf (n)jp and, since
1P
n=N

jf (n)jp converges and is �nite,
1P
n=N

jf (n)jq is also convergent and �nite

by the comparison test. Thus
1P
n=1

jf (n)jq =
N�1P
n=1

jf (n)jq +
1P
n=N

jf (n)jq is �nite. Hence Lp (N; �) �

Lq (N; �). To show the containment is proper, consider 1
n1=p

. We know by the power test thatP
1

nq=p
is �nite since q=p > 1. Thus 1

n1=p
2 Lq (X;�). However,

P
1

np=p
=
P

1
n is in�nite and

hence 1
n1=p

62 Lp (N; �).

Example 2. We wish to �nd a measure space such that Lq � Lp if p < q, where the containment

is proper. Consider the unit interval with Lebesgue measure. In this space, the integral is simply

the Riemann integral. Now, let f 2 Lq. Let E be the subset of [0; 1] such that f (x) > 1 for

every element x in E. Since p < q, it follows that fp < fq for values of x in E and henceR
E
jf jp d� �

R
E
jf jq d�. We know the function g (x) = 1 has �nite integral over [0; 1] and hence has

�nite integral over [0; 1]�E. Since fp � 1 on E�[0; 1], we see that
R

[0;1]�E
jf jp d� �

R
[0;1]�E

1d� <1.

Thus Z
[0;1]

jf jp d� =
Z
E

jf jp d�+
Z

[0;1]�E

jf jp d� �
Z
E

jf jq d�+
Z

[0;1]�E

1d� <1

14



and so f 2 Lp, whence Lq � Lp. To show the containment is proper, consider the function

f (x) = 1
x1=q

. Since p
q < 1, we see that

1R
0

�
1

x1=q

�p
dx =

1R
0

1
xp=q

dx <1 by the power test. However,

1R
0

�
1

x1=q

�q
dx =

1R
0

1
xdx is not �nite.

Example 3. We now demonstrate a measure space such that Lp 6� Lq and Lq 6� Lp when

p < q. Consider R � R� with the Borel measure. As stated above, the integral for this measure

space is identical to the Riemann integral. Consider the functions f (x) =

8>><>>:
0 if x < 1

1
x1=p

if x � 1

9>>=>>;. The
integral is then

1Z
0

jf (x)jq dx =
1Z
1

1

xq=p
dx =

0@ 1�
1� q

p

�
x
q
p�1

1A1

1

=
1

q
p � 1

<1

since q
p > 1. However,

1R
0

jf (x)jp dx =
1R
1

1
xdx which is not �nite. Thus Lq 6� Lp. Conversely,

consider f (x) =

8>><>>:
1

x1=q
if x < 1

0 if x � 1

9>>=>>;. Then
1Z
0

jf (x)jp dx =
1Z
0

1

xp=q
dx =

1

1� p=q <1

but
1R
0

jf (x)jp dx =
1R
0

1
xdx is not �nite. Thus L

p 6� Lq.

Example 4. Lastly, we will give an example where Lp = Lq for all p and q. Consider the

set f1; 2; 3g with the counting measure. The integral is now the sum over f1; 2; 3g. Since Let f

be any function from f1; 2; 3g to R which takes on �nite values. Then f (1)x ; f (2)x ; and; f (3)x

are �nite for all x > 0. Thus f (1)x + f (2)
x
+ f (3)

x is �nite for all x > 0 and we have that if

f (1)
p
+f (2)

p
+f (3)

p each element of the sum is �nite, each element of the sum to the q=p power is

�nite and, �nally, f (1)q + f (2)
q
+ f (3)

q is �nite. Thus Lp � Lq. A similar argument proves that

Lq � Lp, and hence Lp = Lq.

15



Chapter 2.
Having discussed Banach spaces, a highly general class of spaces, we will focus our attention on

a more specialized class of spaces, which turn out to have particularly desirable qualities and �in a

number of contexts �provide answers to a variety of fairly old problems.

De�nition 14 A vector space X is called an inner product space if there is a function (�; �) :

X �X ! C with the following properties for all f; g; h in X and � in C

1. (f; f) � 0 and (f; f) = 0 if and only if f = 0:

2. (f + g; h) = (f; h) + (g; h)

3. (�f; g) = � (f; g)

4. (f; g) = (g; f)

We call such a function an inner product.3

Example. Consider C [a; b], the space of complex valued functions on the interval [a; b], and

de�ne our inner product to be, for f; g 2 C [a; b]:

(f; g) =

Z b

a

f (x) g (x)dx

Properties 2,3, and 4 of the inner product are immediately satis�ed. Property 1 is satis�ed since

f (x) f (x) = jf (x)j2 � 0, and so

(f; f) =

Z b

a

f (x) f (x)dx =

Z b

a

jf (x)j2 dx �
Z b

a

0 dx = 0

To see that Z b

a

jf (x)j2 dx = 0 if and only if f (x) � 0

3 It is important to note that, while there is general agreement in the mathematical community that (�f; g) =

� (f; g), physicists would say (�f; g) = �� (f; g) and instead that (f; �g) = � (f; g). In quantum mechanics, a long-

standing notation is
�
 �;  �

�
=
R b
a  

�
� �dx, so the conjugated function is the �rst function, not the second. This

can lead only to minor confusion, but it is an important distinction to be aware of.
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consider A� =
n
x 2 [a; b] : jf (x)j2 > �

o
. If f 6= 0 then, for some �0, the set A�0 must not be

measure zero, or else f = 0 almost everywhere and f = 0. Since the integral is additive,

Z b

a

jf (x)j2 dx =

Z
A�0

jf (x)j2 dx+
Z
[a;b]�A�0

jf (x)j2 dx

�
Z
A�0

jf (x)j2 dx+ 0

> �20m (A�0) > 0

So, if
R b
a
jf (x)j2 dx = 0 then f = 0 (almost everywhere). If f = 0, then

R b
a
jf (x)j2 dx is obviously

zero and so
R b
a
f (x) g (x)dx is a well-de�ned inner product. One should notice something about this

inner product:

(f; f) =

Z
f (x) f (x)dx =

Z
jf (x)j2 dx = kfk22

Thus L2 (X; d�) is an inner product space. Anyone who has studied the standard dot product in

Rn should not be too surprised that
p
(f; f) tells us the �size�of f .

Theorem 15 kfk =
p
(f; f) is a norm.

Proof. By de�nition, (f; f) � 0, so kfk � 0 and kfk = 0 if and only if f = 0. For any �,

k�fk2 = (�f; �f) = � (f; �f) = ��� (f; f) = j�j2 (f; f) and so k�fk = j�j kfk. To show that

kf + gk � kfk+ kgk, consider

kf + gk2 = (f + g; f + g) = (f; f + g) + (g; f + g)

= (f; f) + (f; g) + (g; f) + (g; g)

= (f; f) + (g; g) + (f; g) + (f; g)
�

= (f; f) + (g; g) + 2Re (f; g)

� (f; f) + (g; g) + 2 j(f; g)j

17



So long as j(f; g)j � kfk kgk =
p
(f; f)

p
(g; g), a result we shall prove below, we have that

kf + gk2 � (f; f) + (g; g) + 2 j(f; g)j

� (f; f) + (g; g) + 2
p
(f; f)

p
(g; g)

=
�p

(f; f) +
p
(g; g)

�2
and so

kf + gk � kfk+ kgk

Thus
p
(f; f) is indeed a norm.

De�nition 16 We call two vectors f; g orthogonal if (f; g) = 0. We call a set of vectors fxng an

orthonormal set if (xm; xn) = �mn, where � denotes the Kronecker delta function.

Theorem 17 (Pythagorean Theorem). Let ffngNn=1 be an orthonormal set in our vector space X.

For all f in X, the following equality holds:

(f; f) =
NX
n=1

j(f; fn)j2 +
 
f �

NX
n=1

(f; fn) fn; f �
NX
n=1

(fn; f) fn

!

Proof. (from [3, p. 37]). First, we write f =
PN

n=1 (f; fn) fn +
�
f �

PN
n=1 (f; fn) fn

�
. Now, 

f �
NX
n=1

(f; fn) fn;
NX
n=1

(f; fn) fn

!

=
NX
n=1

(f; fn) (f; fn)�
 

NX
n=1

(f; fn) fn;
NX
n=1

(f; fn) fn

!
In the second term, all cross terms go to zero since (fm; fn) = 0 when m 6= n. Thus 

f �
NX
n=1

(f; fn) fn;
NX
n=1

(f; fn) fn

!

=
NX
n=1

(f; fn) (f; fn)�
 

NX
n=1

(f; fn) fn;

NX
n=1

(f; fn) fn

!

=
NX
n=1

(f; fn) (f; fn)�
NX
n=1

(f; fn)
2
(fn; fn)

=
NX
n=1

(f; fn) (f; fn)�
NX
n=1

(f; fn)
2

= 0

18



since (fn; fn) = 1. Now,

(f; f) =

 
NX
n=1

(f; fn) fn +

 
f �

NX
n=1

(f; fn) fn

!
;
NX
n=1

(f; fn) fn +

 
f �

NX
n=1

(f; fn) fn

!!

=

  
f �

NX
n=1

(f; fn) fn

!
;

 
f �

NX
n=1

(f; fn) fn

!!

+

  
f �

NX
n=1

(f; fn) fn

!
;

NX
n=1

(f; fn) fn

!

+

 
NX
n=1

(f; fn) fn;

 
f �

NX
n=1

(f; fn) fn

!!

+

 
NX
n=1

(f; fn) fn;
NX
n=1

(f; fn) fn

!

The second and third inner products are zero by our computation above. Also, 
NX
n=1

(f; fn) fn;
NX
n=1

(f; fn) fn

!
=

NX
m=1

"
(f; fm)

 
fm;

NX
n=1

(f; fn) fn

!#

=
NX
m=1

[(f; fm) (fm; (f; fm) fm)] =
NX
m=1

(f; fm) (f; fm) (fm; fm)

=
NX
m=1

(f; fm) (f; fm) =

NX
m=1

j(f; fm)j2

Consequently,

(f; f) =

 
NX
n=1

(f; fn) fn;
NX
n=1

(f; fn) fn

!
+

  
f �

NX
n=1

(f; fn) fn

!
;

 
f �

NX
n=1

(f; fn) fn

!!

=
NX
n=1

j(f; fn)j2 +
  

f �
NX
n=1

(f; fn) fn

!
;

 
f �

NX
n=1

(f; fn) fn

!!

which completes the proof.

Corollary 18 (Bessel�s Inequality). Let ffngNn=1 be an orthonormal set in our vector space X.

Then

(f; f) �
NX
n=1

j(f; fn)j2

Proof. Since (x; x) � 0,
��
f �

PN
n=1 (f; fn) fn

�
;
�
f �

PN
n=1 (f; fn) fn

��
� 0 and the above in-

equality follows immediately.
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Corollary 19 (Schwarz�s Inequality). Let ffngNn=1 be as de�ned in Corollary 18. Then

j(f; g)j �
p
(f; f)

p
(g; g)

Proof. The case where f = 0 is trivial, so assume f 6= 0. The set
�

fp
(f;f)

�
is, then, an orthonormal

set (albeit trivially). So,

(g; g) �
�����
 

fp
(f; f)

; g

!�����
2

=
1

(f; f)
j(f; g)j2

and so j(f; g)j2 � (g; g) (f; f) :

Remark. What we have just shown is that any inner product space is automatically a normed

vector space with the norm

k�k =
p
(�; �)

We call k�k the norm induced by (�; �).

De�nition 20 We will call any complete inner product space which is complete under the induced

norm a Hilbert space.

Remark. The space l2 (R) is a Hilbert space under the inner product

(fxng ; fyng) =
1X
n=0

xnyn

We already know that l2 (R) is complete, so we need only verify that it is an inner product space

under the above inner product. Note that

(fxng ; fxng) =
1X
n=0

x2n � 0

and that we have equality only in the case where xn = 0 for all n.
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Clearly, (�xn; yn) = � (xn; yn), and property 4 is satis�ed trivially. The �nal property is true,

since

(fxn + yng ; fzng) =
1X
n=0

(xn + yz) zn

=

1X
n=0

xnzn +

1X
n=0

ynzn

= (fxng ; fzng) + (fyng ; fzng)

where we are allowed to split up the addition since eventually xnzn is convergent by (xn + zn)
2
=

x2n+2xnzn+ z
2
n, which converges since fxn + zng, fxng, and fzng are all in `2 and are thus square-

summable. So, xnzn has a convergent upper bound, namely
n
(xn + zn)

2 � x2n � y2n
o
and must be

convergent. Hence `2 (R) is a Hilbert space. We could, in fact, replace the space R with C to make

l2 (C), the set of complex-valued square-summable sequences, and replace the inner product with

(fxng ; fyng) =
P1

n=0 xnyn; under this inner product, l
2 (C) is a Hilbert space.

By similar reasoning, we can also show that L2 (X; d�) is a Hilbert space. It turns out, though,

that this is the only Lp space which is a Hilbert space. To see why this is true, we prove the

following theorem.

Theorem 21 (Parallelogram Law). On a vector space V , a norm k�k is induced by an inner product

(�; �) if and only if for all u; v in V ,

2 kuk2 + 2 kvk2 = ku+ vk2 + ku� vk2

Proof. Assume our norm is induced by an inner product. Then

2 kuk2 + 2 kvk2 = 2 (u; u) + 2 (v; v)
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and

ku+ vk2 + ku� vk2 = (u+ v; u+ v) + (u� v; u� v)

= (u; u) + (u; v) + (v; u) + (v; v)

+ (u; u) + (u;�v) + (�v; u) + (�v;�v)

= 2 (u; u) + 2 (v; v) + (u; v � v) + (v � v; u)

= 2 (u; u) + 2 (v; v)

Thus

2 kuk2 + 2 kvk2 = ku+ vk2 + ku� vk2

Now assume that the parallelogram equality holds for all x; y. We de�ne our inner product by

(x; y) =
1

4

h
kx+ yk2 � kx� yk2 � i

�
kx+ iyk2 � kx� iyk2

�i
Now,

(x; x) =
1

4

h
kx+ xk2 � kx� xk2 � i kx+ ixk2 + i kx� ixk2

i
=

1

4

h
4 kxk2 � i j1 + ij kxk2 + i j(1� i)j kxk2

i
=

1

4

h
4 kxk2 + i

p
2 kxk2 � i

p
2 kxk2

i
= kxk2 � 0

with equality if and only if x = 0 by the properties of the norm. To see that (y; x) = (x; y), notice

that

(x; y) =
1

4

h
kx+ yk2 � kx� yk2 � i

�
kx+ iyk2 � kx� iyk2

�i
(y; x) =

1

4

h
ky + xk2 � ky � xk2 � i

�
kx+ iyk2 � kx� iyk2

�i
=

1

4

h
kx+ yk2 � kx� yk2 � i ki (�iy + x)k2 + i ki (�iy � x)k2

i
=

1

4

h
kx+ yk2 � kx� yk2 + i kx� iyk2 � i k�iy � xk2

i
22



=
1

4

h
kx+ yk2 � kx� yk2 � i

�
kx� iyk2 � kx+ iyk2

�i
= (x; y)

To show that

(�x; y) =
1

4

h
k�x+ yk2 � k�x� yk2 � i

�
k�x+ iyk2 � k�x� iyk2

�i
= � (x; y)

is actually fairly di¢ cult. First, one must prove that the relation holds for integers by using

induction. To see that the relation holds for � = 2, note that

k2x+ yk2 = kx+ (x+ y)k2

= 2 kxk2 + 2 k(x+ y)k2 � kyk2

and

k2x� yk2 = kx+ (x� y)k2

= 2 kxk2 + 2 k(x� y)k2 � kyk2

So,

4Re (2x; y) = k2x+ yk2 � k2x� yk2

= 2 kxk2 + 2 k(x+ y)k2 � kyk2 �
�
2 kxk2 + 2 k(x� y)k2 � kyk2

�
= 2 k(x+ y)k2 � 2 k(x� y)k2 = 4Re [2 (x; y)]

and likewise,

�i k2x+ iyk2 + i k2x� iyk2 = 2i kx+ iyk2 � 2i kx� iyk2

so that

(2x; y) = 2 (x; y)
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The induction step, then, is

((n+ 1)x; y) = (nx; y) + (x; y)

= n (x; y) + (x; y)

= (n+ 1) (x; y)

where ((n+ 1)x; y) = (nx; y) + (x; y) will be proved later. So the relation indeed holds for any

integer. To see that it holds for any rational, notice that

n

�
1

n
x; y

�
=

��
n � 1

n

�
x; y

�
= (x; y)

So, dividing by n yields �
1

n
x; y

�
=
1

n
(x; y)

Hence �m
n
x; y
�
= m

�
1

n
x; y

�
=
m

n
(x; y)

and we have proven the relation holds for the the rationals as well. Now, we merely use the density

of the rationals in the reals4 . Let � be any real number and let �n be a sequence of rationals which

converges to �. Then

� (x; y) = (lim�n) (x; y) = lim [�n (x; y)] = lim (�nx; y) = (�x; y)

Now, proving that the relation holds for all complex numbers simply relies on this result, the linearity

of the inner product, and the fact that a complex number z can be written as a+ bi where a and b

are real. To see that (x+ z; y) = (x; y) + (z; y), note the following by applying the parallelogram

4The proof that the reals are dense in the rationals follows directly from either from the Archimedean Principle

(which implies that between any two real numbers there is a rational number) or the existence of decimal expansions

for every real number.
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law

4Re (x+ z; y) = kx+ z + yk2 � kx+ z � yk2

4Re [(x; y) + (z; y)] = kx+ yk2 + kz + yk2 �
�
kx� yk2 + kz � yk2

�
=

1

2

h
kx+ y + z + yk2 + kx+ y � (z + y)k2

i
�1
2

h
kx� y + z � yk2 + kx� y � (z � y)k2

i
=

1

2

h
kx+ 2y + zk2 + kx� zk2

i
�1
2

h
kx+ z � 2yk2 + kx� zk2

i
=

1

2

h
kx+ 2y + zk2 � kx+ z � 2yk2

i
Using a manipulation similar to the one we used in showing (nx; y) = n (x; y), we have that

4Re [(x; y) + (z; y)] =
1

2

h
kx+ 2y + zk2 � kx+ z � 2yk2

i
=

1

2

h
2 kx+ z + yk2 � 2 kx+ z � yk2

i
= kx+ z + yk2 � kx+ z � yk2

= 4Re (x+ z; y)

A similar result holds for the imaginary part of (x+ z; y) and so we have that

(x+ z; y) = (x; y) + (z; y)

and we have proven that the above formula is indeed an inner product whenever the parallelogram

law applies.

We are now prepared to show that the only Lp space which is a Hilbert space is L2.

Proposition 22 Of the Lp spaces, only L2 is a Hilbert space (except when the measure space is

trivial).

Proof. We shall prove this for Lp ([0; 2] ; dx); the proof of the general result is almost the same.

We know that the Parallelogram Law must hold for any norm which is induced by an inner product.
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In particular, it must hold for

u =

8>><>>:
A if x 2 [0; 1]

B if x 2 [1; 2]

and

v =

8>><>>:
A if x 2 [0; 1]

B if x 2 [1; 2]

where A and B are positive real numbers. So,

2 kuk2 + 2 kvk2 = ku+ vk2 + ku� vk2

2

0@ 2Z
0

jujp dx

1A2=p

+ 2

0@ 2Z
0

jvjp dx

1A2=p

=

0@ 2Z
0

ju+ vjp dx

1A2=p

+

0@ 2Z
0

ju� vjp dx

1A2=p

The left-hand side becomes

2

0@ 2Z
0

jujp dx

1A2=p

+ 2

0@ 2Z
0

jvjp dx

1A2=p

= 2

0@ 1Z
0

jujp dx+
2Z
1

jujp dx

1A2=p

+ 2

0@ 1Z
0

jvjp dx+
2Z
1

jvjp dx

1A2=p

= 2 (Ap +Bp)
2=p
+ 2 (Ap +Bp)

2=p
= 4 (Ap +Bp)

2=p

and the right-hand side is 0@ 2Z
0

ju+ vjp dx

1A2=p

+

0@ 2Z
0

ju� vjp dx

1A2=p

=

0@ 2Z
0

jA+Bjp dx

1A2=p

+

0@ 2Z
0

jA�Bjp dx

1A2=p

= (2 jA+Bjp)2=p + (2 jA�Bjp)2=p

= 22=p jA+Bj2 + 22=p jA�Bj2

= 2 � 22=p
�
A2 +B2

�
So, for equality to take place,

4 (Ap +Bp)
2=p

= 2 � 22=p
�
A2 +B2

�
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or, if Ap +Bp 6= 0

2 (Ap +Bp)
2=p

= 22=p
�
A2 +B2

�
Ap +Bp

A2 +B2
= 2

2
p�1

and so

ln

�
Ap +Bp

A2 +B2

�
=

�
2

p
� 1
�
ln 2

If A and B are greater than 1 and p > 2, then Ap+Bp

A2+B2 > 1. The logarithm of a number greater than

one is always positive, so the left-hand side is positive in this case. On the right-hand side, though,�
2
p � 1

�
ln 2 is negative whenever p > 2. So, p > 2 is impossible. If A and B are greater than 1

and p < 2, then 0 < Ap+Bp

A2+B2 < 1 and the logarithm of a number less than one is always negative so

the left-hand side is negative. The right-hand side, however, is
�
2
p � 1

�
ln 2 > 0. Thus p < 2 is

also impossible. The only possible case left is p = 2. This yields 0 = 0, as we expect, since the

inner product

(f; g) =

Z 2

0

f (x) g (x)dx

indeed induces k�k2.

Remark. The above work shows that many norms are not easy to induce by an inner product.

The Lp spaces are fairly nice, but the fact that Lp is a Hilbert space for only p = 2 often makes L2

the most attractive of the Lp spaces in which to work.

We move away from the previous discussion to generalize two results from �nite-dimensional

vector spaces. In �nite-dimensional vector spaces, we can always decompose any vector into a

sum of two vectors which are perpendicular to one another. This tool is often used to compute

distance formulas in R3. To compute the distance between two parallel planes, one takes the vector

projection of any vector between the two planes onto a unit normal to the planes. This property

hides the subtle fact that any vector between the two planes has two components: one along the

plane and one perpendicular to it. The second property of �nite-dimensional vector spaces which
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we should like to generalize is that of a basis. In Rn, a basis is a set of n linearly independent

vectors which span Rn. In in�nite-dimensional spaces, we require in�nitely many vectors to span

the space and so the notion of basis must be generalized somewhat. The fact that we can extend

the notion of basis to Hilbert spaces is one of the most powerful tools in functional analysis.

Consider a Hilbert space H and a closed subspace M of H. We can de�ne another subspace

M? to be the set of all vectors x 2 H such that (x; y) = 0 whenever y 2 M. To see that M? is

a subspace, one must simply apply the basic properties of the inner product. Without too much

trouble, one can see that
�
M?�? = M. (If we consider x 2 M?, then (x; y) = 0 for y in M,

so
�
M?�? � M. If x 2 M, then (x; y) = 0 whenever x 2 M? and so M �

�
M?�?, hence�

M?�? = M.) It turns out that the spaces M and M? de�ne our space H. The following

theorems explain why. Proofs can be found in [3, p. 42].

Theorem 23 If M is a closed subspace of a Hilbert space H and x 2 H, then there is a unique

y 2M such that kx� yk � kx� zk for all z inM.

Theorem 24 IfM and H are as in the previous theorem, then any x in H can be written uniquely

as x = y + z, where y 2M and z 2M?.

Remark. The previous two theorems provide an example of a property shared by inner products

on �nite-dimensional and in�nite-dimensional vector spaces. In R3, for example, if we take M to

be any line through the origin, then M? is simply a plane through the origin which is normal to

that line; any vector in R3 can then be written as the vector sum of an element from M and an

element fromM?, and this representation is unique. Unlike R3, we generally cannot �nd a set of

�nitely many basis vectors for a Hilbert space. However, the following discussion will generalize the

notion of basis, so that we can often �nd a countably in�nite basis for a Hilbert space.

De�nition 25 We call an orthonormal set fxng in a Hilbert space H an orthonormal basis for H

if is maximal; that is fxng is not contained in any other orthonormal set.
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Remark. We cannot guarantee that every Hilbert space has an orthonormal basis unless we

accept the axiom of choice. It is not di¢ cult to prove the existence of an orthonormal basis using

the axiom of choice.

Theorem 26 (Parseval�s Identity). If H is a Hilbert space and fx�g�2A is an orthonormal basis

for H, then for any x in H,

x =
X
�2A

(x�; x)x�

and

kxk2 =
X
�2A

j(x�; x)j2

Proof. We use an argument from [3, 45]. By Bessel�s Inequality, for any �nite subset A0 of A, we

see that X
�2B

j(x�; x)j2 � kxk2

So, we know j(x�; x)j > 0 for at most a union of �nite subsets of A (or else
P

�2A j(x�; x)j
2 could

not possibly be �nite). This union, at the very worst, is countable. Denote this set as B =

fxk : j(xk; x)j > 0g. Then the sequence
nP

k j(xk; x)j
2
o
is bounded and monotone increasing and

thus converges. If we consider the sequence xn =
Pn

k=1 (xk; x)xk, we see that, assuming m > n

su¢ ciently large,

kxn � xmk2 =


mX

k=n+1

(xk; x)xk


2

=

 
mX

k=n+1

(xk; x)xk;
mX

k=n+1

(xk; x)xk

!

=
mX

k=n+1

j(xk; x)j2 < �

where the last equality uses the fact that fxkg is an orthonormal set and the inequality holds sincenP
k j(xk; x)j

2
o
converges for large enough m and n. Then xn ! x0, by the completeness of our
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Hilbert space. Now,

(x� x0; xm) = lim
n!1

 
x�

nX
k=1

(xk; x)xk; xm

!
= (x� x; xm) = 0

For x� 6= xk for any k, we have that

(x� x0; x�) = lim
n!1

 
x�

nX
k=1

(xk; x)xk; x�

!

= (x; x�)� lim
n!1

nX
k=1

(xk; x) (xk; x�)

= 0

Thus x� x0 is orthogonal to all x�, and so x� x0 = 0. Hence

x = lim
n!1

nX
k=1

(xk; x)xk

and we have that

0 = lim
n!1

x�
nX
k=1

(xk; x)xk


2

= kxk2 �
nX
k=1

j(xk; x)j2

= kxk2 �
X
�2A

j(xk; x)j2

which completes our proof.

De�nition 27 We shall call an orthonormal sequence fxng complete if it is an orthonormal basis.

This de�nition di¤ers subtely from the orthonormal basis, since the sequence is countable.

Theorem 28 (Parseval�s Theorem). Let ffng be an orthonormal sequence in H, a Hilbert space.

Then ffng is complete if and only if for every f in H, we have that

kfk2 =
nX
k=1

j(fk; f)j2

Proof. By our previous theorem, we have the �rst direction already. To see the second direction,

assume

kfk2 =
nX
k=1

j(fk; f)j2
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for all f in H. De�ne sn =
Pn

k=1 (fk; f) fk. Then

ksn � fk2 = j(sn � f; sn � f)j

= (sn; sn)� (f; sn)� (sn; f) + (f; f)

= ksnk2 + kfk2 � ksnk2 � ksnk2

= kfk2 � ksnk2

By de�nition

lim
n!1

ksn � fk2 = lim
n!1

kfk2 � ksnk2

= kfk2 � kfk2 = 0

and so lim sn = f , which implies f is complete.

Remark. It turns out that the representation f =
P1

k=1 (fk; f) fk is unique. That is, if

f =
P1

k=1 ckfk, then ck = (fk; f). The argument to show this is true is similar in nature to the one

we just illustrated and can be found in [4, p. 81].

We shall complete this section by elaborating on an a classic example.

Theorem 29 C ([��; �]) is dense in L2 ([��; �] ; dx)

Proof. We shall prove this theorem by considering the following set

�
cosnxp

�
: n = 1; 2; :::

�
[
�
sinnxp

�
: n = 1; 2; :::

�
[
�

1p
2�

�

This set is clearly a subset of C ([��; �]), and we claim that it is an orthonormal sequence in

L2 ([��; �] ; dx). Consider

�
cosnxp

�
;
cos kxp

�

�
=

1

�

Z �

��
cosnx cos kxdx

=
1

�

Z �

��

1

2
[cos (m+ n)x+ cos (m� n)x] dx
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by adding the trigonometric identities:

cos (a+ b) = cos a cos b� sin a sin b

cos (a� b) = cos a cos b+ sin a sin b

Thus,

if m 6= n, then
�
cosnxp

�
;
cosmxp

�

�
= 0

if m = n, then
�
cosnxp

�
;
cosmxp

�

�
=
1

�

Z �

��

1

2
dx = 1

Similar application of trigonometric identities yield the same result for
�
sinnxp

�
; sinmxp

�

�
and

�
sinnxp

�
; cosmxp

�

�
.

Also,

1p
2�

Z �

��
cosnxdx = 0

1p
2�

Z �

��
sinnxdx = 0Z �

��

1p
2�
dx = 1

and so this set is indeed an orthonormal set. To prove the set is complete is signi�cantly trickier;

an excellent proof can be found in [4, p. 86]. Thus any element of L2 ([��; �] ; dx) can be written

as a countable sum of elements of a proper subset of C ([��; �]), and so C ([��; �]) is dense in

L2 ([��; �] ; dx).

Remark. That
n
cosnxp

�
; sinnxp

�
; 1p

2�
: n = 1; 2; :::

o
is a complete orthonormal basis for L2 is one

of the heralded theorems of applied mathematics. Combined with a number of other orthonormal

sets (the Laguerre and Legendre polynomials, for instance), the physicist is able to solve a number

of di¤erential equations via series solution. In that method, an in�nite linear combination of

orthonormal elements is computed with the coe¢ cients unknown. When a function is expanded

in terms of sinx and cosx, the series that results is called a Fourier series, named after the French

mathematician who developed the entire program discussed above.
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Remark. Fourier series can be used to compute in�nite series. Consider f (x) = x. Then

1

�

Z �

��
x sin kxdx = 0

1p
2�

Z �

��
xdx = 0

since both x and x sin kx are odd functions. Integration by parts yields

1

�

Z �

��
x cos kxdx = �2� 1

�

1

k
cos k�

= 2
1

k
(�1)1+k

Thus

x = 2
1X
k=1

(�1)1+k

k
sin kx

Applying Parseval�s Identity, we have

kxk2 =

2
1X
k=1

(�1)1+k

k
sin kx


2

= 4
1X
k=1

 
(�1)1+k

k
sin kx;

(�1)1+k

k
sin kx

!

= 4
1X
k=1

1

k2
(sin kx; sin kx)

= 4�

1X
k=1

1

k2

Now,

kxk =
Z �

��
x2dx =

2�3

3

So,

2�3

3
= 4�

1X
k=1

1

k2

1X
k=1

1

k2
=

�2

6

A similar method, using f (x) = x2, shows that

1X
k=1

1

k4
=
�4

90

In fact,
P1

k=1
1
k2n can be computed exactly for any natural number n.
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Chapter 3.
We have spent the past two sections de�ning and studying a number of di¤erent classes of spaces.

In this section, we shall de�ne a general class of functions and discuss the properties of mappings

between Banach spaces.

Let X and Y be normed linear spaces. Recall that a function T : X ! Y is a linear transfor-

mation from X to Y if, for all x; y in X and scalars c,

T (x+ y) = T (x) + T (y)

T (cx) = cT (x)

In the special case where Y = C, the function T is called a linear functional.

De�nition 30 Let X and Y be normed linear spaces and let T : X ! Y be a function. Then we

de�ne

kTk = sup
x2X�f0g

kT (x)kY
kxkX

where k�kY denotes the norm on Y and k�kX the norm on X. If T is a linear map and x 6= 0, then

kTk = sup
x2X�f0g

kT (x)kY
kxkX

= sup
x2X�f0g

T � x

kxkX

�
Y

= sup
kxkX=1

kT (x)kY

We say T is bounded if kTk <1. We say T is norm-attaining if there is a unit vector x such that

kT (x)k = kTk.

We have already seen the backward and forward shifts and have observed that they are linear

transformations. We shall compute their norms and produce a pair of other important examples.

Example. Recall that the backward shift B : `2 (C)! `2 (C) is de�ned by

B (a1; a2; a3; :::) = (a2; a3; a4; :::)
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and so

kB (a1; a2; a3; :::)k = k(a2; a3; a4; :::)k

=
1X
k=2

jakj2

�
1X
k=1

jakj2

= k(a1; a2; a3; :::)k

Thus it holds that

kB (a1; a2; a3; :::)k
k(a1; a2; a3; :::)k

� 1

i.e. kBk � 1. If we select the sequence
�
0; 2�1=2; 2�1; 2�3=2; 2�2; :::

�
, then

�0; 2�1=2; 2�1; 2�3=2; 2�2; :::� = 1X
k=1

1

2k
= 1

and B �0; 2�1=2; 2�1; 2�3=2; 2�2; :::� = 1X
k=1

1

2k
= 1

so that B is also norm attaining with kBk = 1.

Example. Recall that the forward shift F : `2 (C)! `2 (C) is de�ned by

F (a1; a2; a3; :::) = (0; a1; a2; a3; :::)

and notice that

k(a1; a2; a3; :::)k = kF (a1; a2; a3; :::)k

and

kF (a1; a2; a3; :::)k
k(a1; a2; a3; :::)k

= 1

as long as (a1; a2; a3; :::) 6= 0. Choosing the same sequence as in the previous example, we see that

kFk = 1 and that F is norm attaining.
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Example. Let X = L1 ([0; 1]). De�ne T (f) =
R 1
0
f (x) dx. By the properties of the integral,

it is clear that T is linear. To compute the norm of T consider a unit vector f : this means that

sup jf (x)j = 1. Then kTk =
R 1
0
1 dx = 1, and we have also shown that T is norm attaining.

Example. Let X = C1 ([0; 1]), the set of continuously di¤erentiable functions on the unit

interval, under k�k1. De�ne T (f) = d
dx (f). By the properties of the derivative, T is linear. For

� > 0, consider the function f� (x) = (1 + �)
�1=2

(x+ �)
1=2. It is easy to see that kf�k1 = 1, but

kT (f�)k1 =
 12 (1 + �)�1=2 (x+ �)�1=21 = 1

2 (1 + �)
�1=2

��1=2 can be made arbitrarily large by

choosing � to be small. Hence T is not a bounded operator, since kTk � 1
2 (1 + �)

�1=2
��1=2 for all

� > 0, and we must have that kTk = 1. We know that T could not possibly be norm-attaining,

as no function f could possibly have a continuous derivative such that f 0 (x0) =1.

To continue our discussion of linear operators, we will discuss some properties of bounded linear

operators.

Theorem 31 Let T : X ! Y be a linear map. Then the following statements are equivalent:

1. T is bounded.

2. T is continuous on X.

3. T is continuous at x0 in X.

4. T is Lipschitz continuous on X.

Proof. We show (1) implies (2), (3), and (4). Assume kTk is bounded. Then

1 > kTk = sup
x2X�f0g

kT (x)kY
kxkX

� kT (x)kY
kxkX

as long as x is nonzero. Thus

kT (x)kY � kTk kxkX

Hence we have that

kT (x)� T (y)kY = kT (x� y)kY � kTk kx� ykX
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and so T is Lipschitz continuous. We proceed by showing (3) implies (1). Assume T is continuous

at 0 2 X. Note that

T
�
~0
�
= T

�
0 �~0

�
= 0T

�
~0
�
= 0

Since T is continuous at x = 0, for � > 0, we can �nd a � so that whenever 0 < kxkX � �,

T (x)� T �~0�
Y
= kT (x)kY < �

so, in particular, we can pick a �0 so that kT (x)kY < 1 whenever 0 < kxkX � �0. Fix any nonzero

x 2 X and let y = �0x
kxkX

. Then we have kykX =
�0kxkX
kxkX

= �0. Now,

1 � kT (y)k =
T � �0x

kxkX

� = �0
kxkX

kT (x)k

and so

T (x) � 1

�0
kxkX

So, since 1
� is independent of our choice of x,

sup
x2X�f0g

T (x)

kxkX
� 1

�0

and we have veri�ed that T is bounded since �0 is some �xed positive number. If T is continuous

at an arbitrary point x0, then

kT (x)� T (x0)k = kT (x� x0)� T (0)k

and, letting u = x � x0, the argument from above holds. The same argument shows that (2) and

(4) also impliy (1), which completes the proof.

De�nition 32 We will denote by B (X;Y ) the set of all bounded linear operators from X to Y . If

X = Y , we will abbreviate the notation and use B (X) instead. In the case where Y = C, we will

write B (X;Y ) = X� and call X� the dual space (or simply the dual) of X.
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Remark. While the de�nition of the dual space may at �rst seem trivial, they are actually

more familiar than one might expect. When 1 < p <1, and q such that 1p +
1
q = 1, the dual space

of Lp (X; d�) is Lq (X; d�), and
�
(Lp)

���
= Lp. Also,

�
L1 (X; d�)

��
= L1 (X; d�)5 . As a result,

(`p)
�
= `q and

�
`1
��
= `1. As one might expect, these results depend heavily on measure theory;

the interested reader is referred to [1]. That being said, properties of dual spaces tell us something

about the properties of the Lp spaces.

Theorem 33 B (X;Y ) is a Banach space whenever Y is a Banach space.

Proof. We will not show that B (X;Y ) is a normed linear space since it is quite elementary to do

so; the crux of the matter is the completeness of B (X;Y ), and [4, p. 98] contains a simple argument

which we will present here. Consider a Cauchy sequence fTng1n=1 in B (X;Y ). Then the sequence

fTn (x)g1n=1 = fyng1n=1 is a subset of Y and since Tk is a bounded linear operator, we know that

fyng1n=1 is Cauchy in Y and yn ! y 2 Y . Thus we have established that Tn (x) converges pointwise

in Y , and we can now de�ne

T (x) = limTn (x)

where T is, by the properties of the Tn, a bounded linear operator:

T (�x� �y) = limTn (�x� �y)

= lim [�Tn (x)� �Tn (y)]

= � limTn (x)� � limTn (y)

= �T (x)� �T (y)

Note that T (x) is bounded because any Cauchy sequence has a uniform upper bound, and so

kTnkB(X;Y ) � A kxkX
5However,

��
L1 (X; d�)

���� 6= L1 (X; d�) - it turns out that the dual of L1 (X; d�) is larger than L1 (X; d�).
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implies that

kTk � A kxkX

Since fTng1n=1 is a Cauchy sequence, given any � > 0 we can �nd an N such that m � n > N implies

kTm � TnkB(X;Y ) < � . So, in particular, it must hold for all nonzero x that

Tm� x

kxkX

�
� Tn

�
x

kxkX

�
B(X;Y )

� sup
x2X�f0g

Tm� x

kxkX

�
� Tn

�
x

kxkX

�
B(X;Y )

= kTm � TnkB(X;Y ) < �

and so

kTm (x)� Tn (x)kB(X;Y ) < kxkX �

Notice that this result holds for any m > n, and so it must also hold in the limit, relaxing the strict

inequality:

lim
m!1

kTm (x)� Tn (x)kB(X;Y ) = kT (x)� Tn (x)kB(X;Y ) � kxkX �

and so T � x

kxkX

�
� Tn

�
x

kxkX

�
B(X;Y )

� �

or,

kT (x)� Tn (x)kB(X;Y ) � �

for all kxk = 1. Since this holds for all unit vectors, it must hold for the supremum, and

sup
kxkX=1

kT (x)� Tn (x)kB(X;Y ) = kT � TnkB(X;Y ) � �

which shows that fTng1n=1 converges in norm to T , and hence B (X;Y ) is complete whenever Y is

complete.

Remark. The above theorem is fairly surprising at �rst, since the convergence of a Cauchy

sequence of operators in B (X;Y ) depends only on the completeness of the space Y . After careful

thought, though, the apparent miracle is not all that unlikely: the operators map elements to Y ,
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so much of their character is dependent only on the space Y . That is to say that the operators,

in some sense, �live� in Y . This theorem also establishes an interesting fact about dual spaces:

they are always Banach spaces, since C is complete. On Hilbert spaces, there is an interesting

relationship between H and H�. We shall state the following theorem; the proof is mostly technical

and is available in [3, p. 43].

Theorem 34 (Riesz Lemma). Let H be a Hilbert space. For each T in H� there is a unique yT

in H such that T (x) = (yT ; x) for all x in H. Moreover, kyT kH = kTkH�

Remark. It is of note that this theorem implies that any bounded linear functional on a

Hilbert space is, simply put, the projection in the direction of a particular vector yT composed with

a stretching factor.

De�nition 35 Given a Hilbert space H and T 2 B (H), we de�ne T �, called the adjoint of T , to be

a linear operator such that

(Tx; y) = (x; T �y)

for all x; y 2 H. If T = T �, then we say T is self-adjoint or that T is Hermitian.

Remark. It is not di¢ cult to prove that the operation of taking the adjoint, like the inverse,

is involutive, that is (A�)� = A and (AB)� = B�A�. It is also the case that (A�)�1 =
�
A�1

��
whenever A is invertible. These results follow immediately from the de�nition.

Theorem 36 Given a Hilbert space H and T 2 B (H), the adjoint T � is unique.

Proof. Let A and B satisfy

(Tx; y) = (x;Ay)

(Tx; y) = (x;By)
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for all x and y in H. Then it must be that

(Tx; y)� (Tx; y) = (x;Ay)� (x;By)

0 = (x; (A�B) y)

which means that (A�B) y is normal to every element of H. Thus (A�B) y = 0, which implies

that Ay = By for all y, so A = B.

Proposition 37 If T 2 B (H) then kTk = kT �k = kT �Tk1=2.

Proof. Let h 2 H such that khk � 1. Then

kAhk2 = (Ah;Ah) = (A�Ah; h) � kA�Ahk khk

� kA�Ahk � kA�Ak

Now, for any A;B in B (H) and for any unit vector h in H, we must have that kABhk � kAk kBhk �

kAk kBk. Thus

kAhk2 � kA�Ak � kAk kA�k

and so

kAk2 � kAk kA�k

kAk � kA�k

Applying the same argument, we have that

kA�hk2 = (A�h;A�h) = (A�A��h; h) � kA�A��hk khk

� kA�A��hk � kA�A��k � kA�k kA��k

and so

kA�k2 � kA�k kA��k

kA�k � kA��k = kAk
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Thus

kAk2 � kA�Ak � kAk kA�k = kAk2

and we have that kAk = kA�k and kA�Ak = kAk2.

Remark. This theorem may at �rst seem somewhat unhelpful, but it can be the case that

computing the norm of the adjoint is signi�cantly easier than determining the norm of the actual

operator or, in some cases, kT �Tk is the easiest to calculate of the three.

Proposition 38 If A is a Hermitian operator, then (Ax; x) is always a real number.6

Proof.

(Ax; x) = (x;Ax)

by the properties of inner products, but we also have that

(Ax; x) = (x;Ax)

and thus

(x;Ax) = (x;Ax)

and so (Ax; x) is always a real number.

We shall continue with our discussion of operators by generalizing the notion of eigenvector.

De�nition 39 An algebra is a vector space A together with a multiplicative binary operation that

makes A a ring such that

� (xy) = (�x) y = x (�y)

6Most quantities (particularly dynamic quantities such as momentum) in quantum mechanics are represented as

operators. The momentum operator is p̂ = �i~ @
@x
. On the set of solutions to a Schrödinger Equation, this operator

(and, in fact, all quantum mechanical operators corresponding to observables) is Hermitian and so the expectation

value hp̂i = ( ; p̂ ) =
R
 p̂ d� is a real quantity. While this may not seem to be of such huge mathematical

importance, it is critical physically: the momentum operator must yield real eigenvectors and expectation values or

else it would be physically meaningless
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for all x; y in A and scalars �. A Banach algebra is a space A with the above properties with the

added requirement that

kxyk � kxk kyk

for all x; y in A. If A has an identity, we will denote it as e and we will assume kek = 1.

De�nition 40 We say an operator T is invertible if there exists an operator T�1 such that TT�1 =

T�1T = I where I is the identity operator.7 An eigenvector of an operator T is a nonzero vector

x so that Tx = �x where � is a complex number (� is called the eigenvalue corresponding to x).

De�nition 41 We de�ne the spectrum of T to be � (T ) = ft 2 C : T � t is not invertibleg. The

resolvent set is � (T ) = C n � (T ). If � is an eigenvalue of T , then it is clear that � is in � (T ).

The set of all eigenvalues of T is referred to as the point spectrum of T . The set of all elements of

the spectrum of T which are not eigenvalues is called the residual spectrum of T .

Example. Consider a continuous function f : [0; 1] ! R 2 C ([0; 1]). Then if x0 = f (x) for

some x, it follows that f (x)� x0 has a zero in [0; 1]. Therefore f (x)� x0 is not invertible, and x0

is in � (f). If x0 6= f (x) for any x in [0; 1], then (f (x)� x0)�1 is well de�ned and f is invertible,

so x0 62 � (f). Hence � (f) = f ([0; 1]).

Proposition 42 Let X be a Banach space. Suppose that T 2 B (X) with kTk < 1. Then I � T is

invertible in B (X) and its inverse is given by

(I � T )�1 =
1X
k=0

T k

7 In �nite dimensional vector spaces, the requirement that TT�1 = T�1T = I is redundant because, as one can

show, if T�1T = I then TT�1 = I. However, as the left and right shift operators show on the sequence of square

summable sequences, it is the case that BF = I (since shifting forward and then backward does not change a sequence)

, but FB 6= I in general (since goinf backward and then forward makes the �rst entry zero), and so the requirement

that TT�1 = T�1T is non-trivial in the in�nite-dimensional case.
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Proof. We shall adapt a proof from [4, p. 100]. First, note that

T kx =
T �T k�1x� � kTkT k�1x � kTk2 T k�2x

� ::: � kTkk�1 kTxk � kTkk

and so T k � kTkk
So we have that

1X
k=0

T k � 1X
k=0

kTkk = 1

1� kTk

Recall that in chapter 1, we proved that if X is a complete vector space,
1P
k=1

fk converges in X (in

norm) whenever
1P
k=1

kfkk converges. We proved above that B (X) is complete, so
1P
k=1

T k must be

an element of B (X). Now, we know that T and I � T are bounded linear operators and are thus

continuous, so  
(I � T )

1X
k=0

T k

!
x =

 
(I � T ) lim

n!1

nX
k=0

T k

!
x

=

 
lim
n!1

nX
k=0

(I � T )T k
!
x

= lim
n!1

�
x� Tn+1x

�
where this last step must hold since

nX
k=0

(I � T )T k = I � T + T � T 2 + T 2 � T 3 + :::� Tn + Tn � Tn+1

= I � Tn+1

Continuing, we have  
(I � T )

1X
k=0

T k

!
x = lim

n!1

�
x� Tn+1x

�
= x� lim

n!1
Tn+1x
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By our previous work, kTnxk � kTkn, so since kTk < 1,

lim
n!1

Tn+1x � lim
n!1

Tn+1
= 0

and so lim
n!1

Tn+1x = 0. Thus  
(I � T )

1X
k=0

T k

!
x = x

This analysis holds for   1X
k=0

T k

!
(I � T )

!
x

and so (I � T )�1 =
1P
k=0

T k.

Corollary 43 If S; T are in B (X) where X is a Banach space, T is invertible in B (X), and

kT � Sk < 1
kT�1k , then S is invertible in B (X).

Proof. Again, we appeal to an argument from [4, p. 101]. Since kT � Sk < 1
kT�1k , we have thatT�1 kT � Sk < 1, and so the above theorem holds for I � ST�1 since

(T � S)T�1 � T�1 kT � Sk < 1
Thus I�

�
I � ST�1

�
= ST�1 is invertible. Since the product of two invertible operators is invertible

(the inverse is an involution), we have it that

�
ST�1

�
T = S

is invertible.

Theorem 44 Let X be a Banach space. The spectrum of every T in B (X) is a compact and

nonempty set and is a subset of f� 2 C : j�j � kTkg.

Proof. (from [4, p. 103]). We are not able to prove that � (T ) is non-empty without the use of

some deep theorems from analytic function theory, so this aspect shall remain unproved. To prove
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that � (T ) is compact, we shall prove that it is closed and bounded. To prove that � (T ) is closed,

we show that its resolvent set is open. Suppose � 2 � (T ). Then (�I � T )�1 exists. Now, suppose

that j�� �j <
(�I � T )�1�1. Since

j�� �j = k(�� �) Ik = k(�I � T )� (�I � T )k

the previous theorem implies that �I�T must be invertible and so � is in � (T ). Then any su¢ ciently

small ball around � must be contained in � (T ) and so � (T ) is open. Thus � (T ) must be closed.

If j�j > kTk, then
T
�

 < 1 and �I � T
�

��1
is well-de�ned, and so 1

�

�
I � T

�

��1
= (�I � T )�1 is also

well-de�ned. Hence � 2 � (T ) and � (T ) � f� 2 C : j�j � kTkg. This shows that � (T ) is closed

and bounded. It follows from the Heine�Borel that � (T ) is compact.

De�nition 45 The spectral radius of T 2 B (X) is given by

r (T ) = sup fj�j : � 2 � (T )g

Remark. By our previous work, it is worth noting that r (T ) � kTk. It is also worth noting

that if the largest element (should one exist) of � (T ) is an eigenvalue of T , then there is an x in X

such that T (x) = �x and so T � x

kxk

� � � x

kxk

 = � = r (T )

which implies that kTk � �, by taking the supremum over all x in X. Hence we have that

kTk � r (T ) � kTk, and hence r (T ) = kTk. So, being able to compute the spectral radius can be a

useful tool to compute the norm of an operator in B (X). At the very worst, we are able to provide

a lower bound for kTk.

Theorem 46

r (T ) = lim
n!1

kTnk
1
n

Proof. We cannot give a complete proof without reference to results beyond the scope of this

document, so the interested reader is directed to [4, p. 105].
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Proposition 47 Let H be a Hilbert space and let T be a Hermitian operator in B (H). Then

r (T ) = kHk.

Proof. (from [4, p. 115]). Recall that kTnk � kTkn for all elements of B (H). Also note that

kTxk2 = (Tx; Tx) =
�
T 2x; x

�
�
T 2x kxk � T 2 kxk2

and assuming x 6= 0,
kTxk2

kxk2
�
T 2

By taking the supremum over all x, we have that kTk2 �
T 2 and thus kTk2 = T 2. Likewise,

T kx2 = �T kx; T kx� = �T 2kx; x� � T 2kx kxk2 � T 2k kxk2
and by the same reasoning as above,

T k2 � T 2k. Induction (let k = 2p) can now guarantee

that

kTk2
m

=
T 2m

Now, let 1 � n � 2m. Then

T 2m =
TnT 2m�n

� kTnk
T 2m�n

� kTnk kTk2
m�n

� kTkn kTk2
m�n

= kTk2
m

=
T 2m

and thus

kTnk kTk2
m�n

=
T 2m

and so

kTnk kTk�n = 1

kTnk = kTkn
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Thus

r (T ) = lim
n!1

kTnk
1
n

= lim
n!1

(kTkn)
1
n

= lim
n!1

kTk

= kTk

whence r (T ) = kTk.

This discussion concludes our survey of functional analysis. The following section will provide an

application of functional analysis to the �eld of partial di¤erential equations and give some evidence

as to why functional analysis has become one of the fundamental �elds of modern mathematics.
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Chapter 4.

Theorem 48 (Contraction Mapping Fixed Point Theorem). Let X be a Banach space. Any map

T : X ! X such that for all x; y 2 X we have the condition that kTx� Tyk � C kx� yk where

0 � C < 1 is called a contraction map. (Note that this means T is Lipschitz continuous with

coe¢ cient C < 1.) Any contraction map has a �xed point and this �xed point is unique.

Proof. Let T : X ! X be a contraction mapping on a Banach space X. Fix some vector x0 in X,

and de�ne a sequence fxng1n=0 in X such that xn = T (xn�1) for n � 1. If any xn = xn�1, then

we are done, since T (xn�1) = xn = xn�1. So, assume that xn � xn�1 6= 0 for any n. Since T is a

contraction map,

kxn+1 � xnk = kT (xn)� T (xn�1)k � C kxn � xn�1k

= C kT (xn�1)� T (xn�2)k � C2 kxn�1 � xn�2k

� C3 kxn�2 � xn�3k � ::: � Cn kx1 � x0k

So, making use of the triangle inequality for any norm, if m > n, we have that

kxm � xnk �
mX

k=n+1

kxk � xk�1k �
mX

k=n+1

Ck�1 kx1 � x0k

=
Cn (1� Cm)

1� C kx1 � x0k �
Cn

1� C kx1 � x0k

If, for any � > 0, we choose n large enough that Cn < � 1�C
kx1�x0k , then kxm � xnk < � which proves

fxng1n=0 is Cauchy and, hence, converges by the completeness property of our Banach space. Thus

limxn = x 2 X. Since T is Lipschitz continuous, it is continuous, and so

x = limxn = limT (xn�1) = T (limxn�1) = T (x)

and so x is indeed a �xed point of T . To show that this is the only �xed point, let x and y be �xed

points of T . Then

kx� yk = kT (x)� T (y)k � K kx� yk
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Since K < 1, we must conclude that kx� yk = 0, i.e. that x = y.

De�nition 49 We de�ne a set A to be convex if for every x; y 2 A and every 0 � � � 1, the sum

�x + (1� �) y 2 A. Geometrically, this property guarantees that given any two points in A, every

point on the line segment between them is also in A.

Theorem 50 Theorem (Generalized Brouwer Fixed Point Theorem8). Let C be a compact, convex

subset of Rn and suppose f : C ! C is continuous. Then f has a �xed point.

Proof. See [3, p. 364].

Theorem 51 (Schauder Fixed Point Theorem). If K � B is a compact, convex subset of a Banach

space B, and T : K ! K is continuous, then T has a �xed point.

Proof. Let � > 0 be given. Cover K by B� (x) for all x in K where B� (x) = fy 2 K : ky � xk < �g.

Since K is compact, there exists a �nite subcover and so for some �nite N , we have that K �
NS
j=1

B� (xj). Now, de�ne the function hj (x) = max
n
��kx�xjk

� ; 0
o
. It is clear that hj (x) > 0 for

some j since x has to belong to some B� (xj). De�ne

T� (x) =

NP
j=1

hj (x)T (xj)

NP
j=1

hj (x)

This is a well-de�ned function, since
NP
j=1

hj (x) > 0. Now, T� : K ! C� where C� is the convex

hull of fF (x1) ; :::; F (xN )g, a set which is �nite dimensional. Note that C� is a subset of K. So,

if we restrict the domain to C�, i.e. consider T� : C� ! C�, then we can apply the generalization

of the Brouwer Fixed Point Theorem to convex sets and guarantee ourselves an x� 2 C� such that

T� (x�) = x�. Let �k ! 0 and choose x�k to be a sequence of �xed points in the process we de�ned

8We call this the generalized Brouwer Fixed Point Theorem because the classic theorem is proven only for functions

on the unit ball (see [2]), however the authors in [3] refer to the generalization as the Brouwer Fixed Point Theorem.
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above. K is compact, so x�k ! x0 2 K. Therefore

kT (x0)� x0k � kT (x0)� T (x�k)k+ kT (x�k)� T�k (x�k)k+ kT�k (x�k)� x�kk+ kx�k � x0k

The quantity kT�k (x�k)� x�kk = 0 since x�k is a �xed point of T�k . Also, by choosing �k is very

small, kx�k � x0k < �. Since T is continuous, we can choose �k to be very small and guarantee

kT (x0)� T (x�k)k < �. Now,

kT (x�k)� T�k (x�k)k =

T (x�k)�
NP
j=1

hj (x�k)T (xj)

NP
j=1

hj (x�k)


=


NP
j=1

hj (x�k) [T (x�k)� T (xj)]

NP
j=1

hj (x�k)


Unless x�k is such that kx�k � xjk < �, we have that hj (x�k) = 0. When hj (x�k) 6= 0, we still have

that T (x�k)� T (xj) is very small since T is continuous, and so the entire quantity in the last line

above must be very small, hence kT (x�k)� T�k (x�k)k < �. So,

kT (x0)� x0k � kT (x0)� T (x�k)k+ kT (x�k)� T�k (x�k)k+ kT�k (x�k)� x�kk+ kx�k � x0k

< �+ �+ 0 + � = 3�

Since � is aribitrary, it must be the case that T (x0) = x0 and hence x0 is a �xed point of T .

Remark. These two �xed point theorems are not created equal. Most operators which have

�xed points have more than one, but the contraction maps are a class of operators which do have

unique �xed points � something which could be quite useful in proving other theorems. The

Schauder theorem is highly general and therefore signi�cantly more powerful than the contraction

mapping theorem which is limited to a relatively small class of operators. That being said, �xed

points for contraction maps are very easy to approximate by numerical methods � simply choose

any point in the Banach space and apply the operator enough times that the di¤erence between

iterations is very small. For Schauder�s theorem, there is no general numerical approximation
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algorithm. As we shall see in the following example, these �xed point theorems can be used to solve

partial di¤erential equations. These solutions are of incredible scienti�c interest, and so numerical

solutions are highly desirable.

Consider the following autonomous partial di¤erential equation:

Let u : 
 � Rn ! R have continuous second-order derivatives and let f (u) be continuous in u.

Then, given the boundary data u (x) = ' on @
 we wish to study the PDE

�u = f (u)

There is no general method for solving PDEs directly. There is, however, a systematic approach in

which solutions can be proven to exist. The de�nition of solution is relaxed to what is called a �weak

solution�in such a way that proving existence of these weak solutions is more easily approached and

that if these weak solutions are continuously di¤erentiable they are actual solutions (called �classical

solutions�).

De�nition 52 A function u : 
 � Rn ! R is a weak solution of �u = f (u) on domain 
 � Rn if

for every function � 2 C1c (
), the set of in�nitely di¤erentiable functions with compact support in


, i.e. � and all its derivatives are identically zero on @
, we haveZ



u�� =

Z



f (u) �

Remark. Note that if u 2 C1 (
), then we can integrate by parts to getZ



u�� =

Z
@


ur� � dS �
Z



ru � r�

= �
Z



ru � r�

since r� is zero in @
. By a similar argument, if u 2 C2 (
), thenZ



u�� = �
Z



ru � r� =
Z



��u

and Z



u�� =

Z



��u =

Z



�f (u)
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Since � is essentially arbitrary, it is straightforward from here to deduce that if u is a weak solution

and u has continuous second-order partial derivatives, then �u = f (u). Thus we see that our

de�nition of weak solution is simply a generalized version of a solution to the PDE �u = f (u).

Weak solutions also allow the study of PDEs in a non-continuous sense. It is not always the

case that we are interested in highly smooth solutions. Indeed, in physical applications one may be

interested in non-di¤erentiable or perhaps even non-continuous solutions: studying the current in a

circuit when turning on a light switch, for example, provides a discontinuous jump in voltage and

the solution to a di¤erential equation modeling such a system will not be di¤erentiable at the time

when the switch is turned on. Likewise, in the study of solid state physics, one of the �rst PDEs

studied is

�	+ V �	 = E �	

where E is the energy of a particular solution and V is a periodic Dirac � function or a square wave.

Clearly, �nding a solution with continuous second-order derivatives to this equation is challenging!

We shall complete this section by studying a particularly simple non-linear di¤erential equation

and applying the Schauder Fixed-Point Theorem to prove the existence of solutions.

During an internship at Cornell University, the author, along with Phillip Whitman, Frances

Hammock, and Alexander Meadows, studied the di¤erential equation discussed below. Much of the

analysis completed below is due in no small part to their e¤orts. Consider the PDE

�u = u��

for 0 < � < 1, where u : B� (0) � Rn ! R. It turns out that for autonomous equations of this form,

as long as the right hand side of the equation is continuous, classical solutions exist. This happens

as long as we require u (x) > 0. So, we shall relax the condition and only require u (x) � 0. We

shall also restrict ourselves to solutions which are radially symmetric, i.e. u (x) is a function of the

modulus of x alone, so that u (0) = 0 and ur (0) = 0. In such a case, the PDE in question reduces
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to the ordinary di¤erential equation

urr +
n� 1
r

ur = u��

Slightly modifying this equation, we see that

u�� = urr +
n� 1
r

ur = r1�n
�
rn�1ur

�
r

Assuming the existence of a solution and by dividing by r1�n and integrating both sides, we see that

rZ
0

tn�1u (t)
��

dt = rn�1ur

Dividing by rn�1 and integrating, we have

rZ
0

s1�n
sZ
0

tn�1u (t)
��

dtds = u

We see now that if we can compute a �xed point of

T (v) (r) =

rZ
0

s1�n
sZ
0

tn�1v (t)
��

dtds

and show it is su¢ ciently di¤erentiable, we have found our desired solution.

Now, let X = C0 ([0; �]) (under the sup norm), and take

K =
n
v 2 X : C1r

2=1+� � v (r) � C2r
2=1+�

o
where 0 < C1 < C2. We have previously shown that X under the sup norm is a Banach space. To

see that K is convex, let v1 and v2 be elements of K. Then for 0 < � < 1,

�v1 + (1� �) v2 � �C2r
2=1+� + (1� �)C2r2=1+�

= C2r
2=1+�

and

�v1 + (1� �) v2 � �C1r
2=1+� + (1� �)C1r2=1+�

= C1r
2=1+�
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which implies that K is convex. To see that K is closed, consider sequence fvn (r)g which is

convergent in X such that vn 2 K for all n. Then

C1r
2=1+� � vn (r) � C2r

2=1+�

and so

C1r
2=1+� � lim vn (r) � C2r

2=1+�

To see thatK is bounded, consider any v inK. Then kvk1 �
C2r2=1+�1 = C2 sup

�
r2=1+� : r 2 [0; �]

	
=

C2�
2=1+�. So, K is closed and bounded, which implies it is compact. Hence all that remains is to

show that T is continuous in v and r. Let v1 and v2 be elements of K. Let � > 0 be arbitrary.

kT (v1) (r1)� T (v2) (r2)k =


r1Z
0

s1�n
sZ
0

tn�1v1 (t)
��

dtds�
r2Z
0

s1�n
sZ
0

tn�1v2 (t)
��

dtds


�


r1Z
0

s1�n
sZ
0

tn�1
h
C1r

2=1+�
i��

dtds�
r2Z
0

s1�n
sZ
0

tn�1
h
C2r

2=1+�
i��

dtds


which is true since r2=1+� is always increasing and we are raising v1 (t) and v2 (t) to a negative

power. Now, 
r1Z
0

s1�n
sZ
0

tn�1
h
C1t

2=1+�
i��

dtds�
r2Z
0

s1�n
sZ
0

tn�1
h
C2t

2=1+�
i��

dtds


=


r1Z
0

s1�n
sZ
0

tn�1
h
C1t

2=1+�
i��

dtds�
r2Z
0

s1�n
sZ
0

tn�1
h
C2t

2=1+�
i��

dtds


=

C��1
r1Z
0

s1�n
sZ
0

tn�1t�2�=1+�dtds� C��2

r2Z
0

s1�n
sZ
0

tn�1t�2�=1+�dtds


=

C��1
r1Z
0

s1�n
sZ
0

tn�1�2�=1+�dtds� C��2

r2Z
0

s1�n
sZ
0

tn�1�2�=1+�dtds


Since � < 1, it must be that 2�

1+� < 1 and so, since n � 1, we see that n� 1�
2�
1+� > �1. Therefore
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the integration can be done via the power rule.C��1
r1Z
0

s1�n
sZ
0

tn�1�2�=1+�dtds� C��2

r2Z
0

s1�n
sZ
0

tn�1�2�=1+�dtds


=

 C��1
n� 2�

1+�

r1Z
0

s1�nsn�2�=1+�ds� C��2
n� 2�

1+�

r2Z
0

s1�nsn�2�=1+�ds


=

 C��1
n� 2�

1+�

r1Z
0

s1�2�=1+�ds� C��2
n� 2�

1+�

r2Z
0

s1�2�=1+�ds


=

 C��1
n� 2�

1+�

r
2�2�=1+�
1

2� 2�
1+�

� C��2
n� 2�

1+�

r
2�2�=1+�
2

2� 2�
1+�


=

(1 + �)
2

2 ((1 + �)n� 2�)

C��1 r
2=1+�
1 � C��2 r

2=1+�
2


Certainly, as long as we require r1 and r2 to be close together, the quantity

C��1 r
2=1+�
1 � C��2 r

2=1+�
2


can be made as small as we should like, whence

kT (v1) (r1)� T (v2) (r2)k < �

for r1 and r2 close. Since T is continuous, the Schauder �xed point theorem guarantees that there

is a u in K such that T (u) = u.

We have now guaranteed the existence of a weak radially symmetric solution to our PDE. In the

following discussion, we shall prove that no solution (radially symmetric or otherwise) is C2 ([0; �]).

De�nition 53 Let 0 � � < 1. We say u 2 Ck;� (
) if u has continuous kth order partial derivatives

and is Hölder continuous with exponent �. By Hölder continuity with exponent �, we mean that

for some positive constant C

ju (x)� u (y)j � C jx� yj� 8x; y 2 


Note that the case where � = 1, i.e.

ju (x)� u (y)j � C jx� yj 8x; y 2 
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the function u is simply Lipschitz continuous.

Remark. The Hölder exponent could be considered a measure of �how di¤erentiable�a function

without continuous derivative is. We call the least upper bound for � the regularity of u provided

u is not di¤erentiable. If a function has maximum Hölder exponent 1
2 , the ratio

ju(x)�u(y)j
jx�yj is

always smaller than C jx� yj�
1
2 and so as x and y get very close together, the restriction on how

large ju(x)�u(y)j
jx�yj could be increases faster than a function with Hölder exponent 2

3 , and so on, until

� goes to one. So, larger values for � are more desirable (provided di¤erentiability is a desirable

property to begin with). For Lipschitz continuous functions, the ratio ju(x)�u(y)j
jx�yj is always bounded;

lim
x!y

ju(x)�u(y)j
jx�yj might still be unde�ned, but it is not diverging to �1, a property which can be quite

useful.

Proposition 54 Let u : 
 � Rn ! R 2 C1;� (B2� (0)) be a weak solution to �u = u�� such that

u � 0 and u (0) = 0.

u 62 C2 (B2� (0)) and � �
1� �
1 + �

Proof. First, for any such function, ru (0) = 0. This comes from the requirement that u � 0. If

ru (0) were not zero, then in some direction the linearization of u at zero in that direction would take

on negative values in an �-ball. Since we are assuming that u � 0, this would be a contradiction.

Now, since u 2 C1;� (B2� (0)), ru 2 C0;� (B2� (0)) and we have that for some C 2 R

jru (x)�ru (0)j = jru (x)j � C jx� 0j� = C jxj�

and we have that

u (x) =

1Z
0

d

dt
(u (tx)) dt =

1Z
0

ru (tx) � xdt �
1Z
0

jru (tx)j jxj dt

� C

1Z
0

(t jxj)� jxj dt = C jxj�+1 1

� + 1
� C jxj�+1
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Construct a function � (x) as follows. De�ne a smooth function  (r) so that  (r) = 1 for 0 � r � 1

and  (r) = 0 for r � 2. For 1 � r � 2 bound the �rst and second derivatives so that
�� 0 (r)�� � C1

and
�� 00 (r)�� � C2. Now set � (x) =  

�
jxj
�

�
. This means jr�j � C1

� and j��j �
���C1�2 + 1

n�1
C2
�2

��� =���C3�2 ��� where C3 = C1 +
C2
n�1 . We now establish two inequalities for

R
u��:

Z
B2�

u�� � C
C2
�2

Z
B2�

jxj�+1 = C
C3
�2
!n � n

2�Z
0

r�+1rn�1dr =
nC � C2!n

(� + 1 + n) �2
(2�)

�+1+n

Z
B2�

u�� =

Z
B2�

u��� �
Z
B�

u��� =

Z
B�

u�� �
Z
B�

�
C jxj�+1

���
= C��

Z
B�

jxj�����

= C��!nn

�Z
0

r�����rn�1dr =
C��!nn

n� �� � ��
n�����

Thus

C � C2 � 2�+1+n
(� + 1 + n)

��+n�1 � C��

n� �� � ��
n�����

Since � can be made very small, we need the power � + n + 1 to be less than n � �� � � or the

inequalities could not possibly be satis�ed. Thus

� + n� 1 � n� �� � �

� + �� � 1� �

� � 1� �
1 + �

and any weak solution of �u = u�� such that u � 0 and u (0) = 0 can be at most C1;
1��
1+� near zero.

Remark. u = C� jxj2=(1+�) is a radially symmetric solution (not weak) to �u = u��, as

long as we avoid any point where u = 0 and choose C� correctly (the computation to derive C� is

elementary and C� depends only on � and n). To show that it is a weak solution at the origin, we
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isolate a ball of radius � from 
 and perform some standard tricks to obtain

Z
u�� =

Z

=B�

u�� +

Z
B�

u��

= �
Z
@B�

ru � r� �
Z
@B�

��u+

Z

=B�

u��� +

Z
B�

u��

The three integrands other than the u��� term are all bounded functions, so as �! 0, their integrals

go to zero and the desired relation is obtained. Hence u = C� jxj2=(1+�) is not a classical solution

to �u = u�� for 0 < � < 1 near u = 0, but it is a classical solution away from u = 0 .

The radially symmetric solution u = C� jxj2=(1+�) is in fact C1;
1��
1+� near zero, so the bound on

the Hölder coe¢ cient we derived is a strong one:

u0 (x) =
du

d jxj =
2C�
1 + �

jxj
2

1+��1 =
2C�
1 + �

jxj
1��
1+�

and thus

ju0 (x)� u0 (y)j = 2C�
1 + �

���jxj 1��1+� � jyj
1��
1+�

��� � 2C�
1 + �

jx� yj
1��
1+�

Thus we have proven that no classical solution could possibly touch u = 0 and have, in the process,

derived a sharp upper bound on the regularity of solutions which do touch u = 0.

This di¤erential equation seems quite simple. Even so, the analysis required to establish existence

and regularity of solutions was far from e¤ortless. For di¤erential equations arising in physical

applications, existence and regularity are generally much more di¢ cult to prove. That being said,

the methodology described above has been successful and has, for the most part, been the only

successful systematic approach to solving PDEs.
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