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Abstract 

Exoplanets, or planets orbiting stars other than our Sun, are difficult to detect. It is 

even more difficult to determine their properties. In this thesis I focus on HAT-P-1b, 

which is a ―hot Jupiter‖ – a gas giant, extremely close to its parent star. It is important for 

this thesis that HAT-P-1b is also a transiting exoplanet, i.e., it periodically passes directly 

in front of, or behind, its parent star, which gives scientists unique opportunities to 

determine its physical properties, to measure its temperature and to study its atmosphere’s 

chemical properties.  

The purpose of this thesis is to measure the brightness temperature of the 

transiting exoplanet HAT-P-1b. The observations used were made with the Spitzer Space 

Telescope through a filter with center wavelength of 8.0μm, which covered a secondary 

eclipse of the planetary system, i.e., when the planet is behind its parent star, ADS 

16402B. We created a light curve for the system, detected the eclipse and fitted a model 

eclipse curve in the data. From the eclipse depth I determined HAT-P-1b’s flux. Knowing 

the planet’s distance from ADS 16402B and the masses and radii of the star and the 

planet, I estimated the brightness temperature of the planet. My calculated result is 

1300±170K. Future research will involve similar measurements in three additional 

wavebands, which will provide information about the chemical and thermal structure of 

HAT-P-1b’s atmosphere.  
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Chapter 1: Introduction 

 

Section 1.1: Introduction to Exoplanets  

Exoplanets, or extrasolar planets, is a term referring to all planets that orbit stars 

other than our own Sun. Most exoplanets so far have been discovered by a method called 

Doppler spectroscopy, although there are other ways to detect extrasolar planets, which 

can often be more fruitful. Exoplanets are fundamentally interesting to astronomers since 

they provide them with deeper insight on issues such as understanding planetary system 

formation and behavior with time, the likelihood of planets with sizes comparable to 

Earth’s, and the likelihood of planets on which liquid water exists. The discovered-so-far 

exoplanets have varying orbital periods, but tend to have sizes comparable to that of 

Jupiter. This study is interested in a common class of large and massive exoplanets with 

periods on the order of a couple of days that are very close to their suns, in other words, 

conditions very different from Earth’s. Such planets are often called ―hot Jupiters‖ due to 

their size and expected (because of their proximity to the star) high temperature. It is 

thought that the relatively high frequency of occurrence of ―hot Jupiters‖
1
 may be due to 

bias in the detection techniques that are in use nowadays. Planets with Earth-like 

conditions are deemed extremely important, because of their potential for life, but so far 

only one planet has been discovered that is Earth-sized and at the right distance from the 

star to ensure the possibility of liquid water (Udry et al. 2007).  

The first discovery of exoplanets in the early 1990s has significantly changed our 

perspective on the Solar System. The first two extrasolar planets were discovered in 1992 

                                                 
1
 72 out of 277 (Schneider 2008) 
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in orbit around a neutron star – the pulsar B1257+12 (Wolszczan 1994). Such a harsh 

parent star cannot possibly have planets hosting life as we know it. The first exoplanet 

orbiting a main sequence star, 51 Pegasi b, was discovered in 1995 by M. Mayor and D. 

Queloz (Mayor and Queloz 1995). Since then, up to this day, at least 277 planets have 

been found orbiting around stars other than the Sun (Schneider 2008) and the study of 

extrasolar planets is a rapidly growing area of research.   

 

Section 1.2: Several Methods of Discovery and Observation of Exoplanets 

 There are a number of ways to detect an extrasolar planet, the most important of 

which are described below. But first, if we want to discover or to study a stellar system 

containing an exoplanet, we need to consider the relative position of the system and the 

Earth. We can define an angle, i, to be the inclination angle of the planetary system to the 

plane of the sky from Earth’s point of view (see Figure 1.1).  

 Now, we can define the proper motion of the star to be the component of 

the star’s velocity parallel to the plane of the sky, and the radial velocity of the star to be 

the component of its velocity perpendicular to the plane of the sky. Let us also define a 

coordinate system – let the x-axis be parallel to the semimajor axis of the orbit, the y-axis 

be parallel to the semiminor axis of the orbit and the z-axis be perpendicular to the plane 

of the orbit. 

The most common detection method is called Doppler spectroscopy. It relies on 

the fact that the star and the planet are orbiting around a common center of gravity, close 

to, but not coinciding with, the center of the star. The orbit of the star around the common 

center of gravity of the system is seen from Earth as periodic changes in the star’s radial  
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Figure 1.1: The inclination angle, i, is defined as the angle between the plane of the exoplanet’s orbit and 

the plane of the sky (Zeilik and Gregory 1998, 236). 

 

velocity – as it moves along its orbit, sometimes the star is going away from Earth and 

sometimes it is moving towards Earth. The periodic shifts of the star’s location (which we 

cannot observe directly) and the periodic changes in its radial velocity (which we can 

detect) caused by the gravitational pull from an unseen companion are often referred to as 

―wobble.‖ If the angle i is larger than 0°, i.e., the orbital plane of the planet is not parallel 

to the plane of the sky, we can see a periodic change in the radial velocity of the star; this 

is detected by Doppler shift measurements
1
. From these observations we can find the 

period of the planet’s orbit, which is equal to the period of the star’s orbit around the 

common center of gravity and hence to the period of the Doppler shifts. If we know the 

                                                 
1
 Note that if the plane of the system is parallel to plane of the sky from Earth’s point of view, i.e. i = 0°, 

then we would only ―see‖ a change in the proper motion of the star (if the system was close enough and the 

planet massive enough to induce angular changes in the position of the star sufficiently large to be 

observable from Earth). There will be no Doppler shifts at all in this case, so we would not see any 

evidence for a planet in the spectrum of such a system.    
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star’s spectral class we can obtain an estimate of the star’s mass, and then we can draw 

conclusions about the planet’s semimajor axis using Newton’s revision of Kepler’s Third 

Law (Butler et al. 2006):  

)mM(G

a4
P

p*

3
p

2

2




  .                                                    [1.1] 

Here, P is the period of rotation in seconds, *M  is the mass of the star in kilograms, mp is 

the mass of the planet in kilograms, ap is the semimajor axis of the planet in meters and G 

is the universal constant of gravity in meters cubed per kilogram per second squared. For 

simplicity we assume that the eccentricity of the planet’s orbit is essentially zero. It is 

also reasonable to assume that M  >> mp, so that M  ≈ M  + mp. Then, we can solve for 

ap to get an estimate of the semimajor axis of the planet’s orbit:  

3/1

2

2

p
4

GMP
a 










  .                                                    [1.2] 

This is done assuming that the center of the star is the center of gravity of the system; 

however, this is a reasonable approximation for our purposes, since if M  >> mp, then ap 

will be much bigger than the star’s semimajor axis, a , so we can neglect a  for the 

moment. We can now make an estimate of the semimajor axis of the star’s orbit around 

the common center of gravity. Here we assume that the inclination angle, i, is 90°, and 

that the semimajor axis of the orbit points toward Earth. This makes the radial velocity 

(which is a function of time), Vr(t), equivalent to Vx(t), the component of the orbital 

velocity along the x-axis of the orbit, if we define the semimajor axis of the star’s orbit to 

be the x-axis of our coordinate system. We also assume that the motion of the star-planet 

system through space has been removed from the star’s radial velocity. We can only 
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observe the radial component of the star’s velocity (the planet is too faint), and we can 

ignore the star’s proper motion component of its total velocity. Additionally, it takes ½ of 

the period for the star to come from the farthest position in its orbit with respect to Earth 

to its closest position (i.e. radial distance of twice its semimajor axis), and therefore it 

needs ¼ of the period to cover a radial distance equivalent to its semimajor axis. Then,  

dtVa
4

P

0

x ,                                                    [1.3] 

where dt is the change in time in seconds, a  is the semimajor axis of the star in meters, 

and Vx is equal to the radial velocity of the star in meters per second, which we get from 

measurements of the Doppler shifts. This is just an approximation, but it holds as long as 

the eccentricity of the star’s orbit is not large, so that the major axis is not much bigger 

than any other axis. We can now use the following equation to solve for the mass of the 

planet (Carroll and Ostlie 1996):  

0
mM

amaM

p

pp









.                                            [1.4] 

Or, after we solve for mp, 

p

p
a

aM
m  .                                                    [1.5] 

Notice, that this is only a minimum limit for the mass of the planet, because we assumed 

that the orbital plane is perpendicular to the sky. If it is not, then we can correct the 

velocity Vx by dividing Vr by sin(i), if i is known: 

)isin(

V
V r

x  .                                                   [1.6] 
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This correction can make Vx significantly bigger and thus make the semimajor axis of the 

star in Equation [1.3] much larger. A bigger value for a  in turn results in a larger value 

for mp. Therefore, we cannot normally put an upper limit to the mass using the Doppler 

shift method, since, we usually do not have a way to determine i.  

Although Doppler spectroscopy is the most often used method, and most planets 

are discovered using it, all the information it normally supplies is the semimajor axis of 

the planet, its period and a lower limit on the planet’s mass. Also, since it is easier to 

detect stars with large Vx, and therefore small pa and large mp, this method favors the 

discovery of planets that are relatively close to their stars and that are very massive, i.e., 

hot Jupiters. Such planets would produce a more noticeable wobble in the motion of their 

stars.  

The astrometry method, which uses astrometric observations of the wobble of the 

star, is mathematically similar to the Doppler shift method. From very precise astrometric 

observations, the slight periodic unevenness in the proper motion of the star over time is 

detected, and from it one can draw conclusions about the period of the planet and the 

radius of the star’s orbit, if we know the distance to the star. Similar to the Doppler shift 

method, astrometry can give us the semimajor axis of the planet’s orbit (from the period) 

and a minimum estimate of its mass, but unless we know the inclination angle, i, we 

cannot say more. At this time we are not aware of any planets discovered using 

astrometry, but it is interesting to note that attempts have been made to detect a planet 

around Barnard’s star using this method in 1963 by Peter van de Kamp. The attempt was 

initially thought successful (van de Kamp claimed to have discovered a planet with mass 
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1.6 Jupiter masses and a period of 24 years), but it was later proved to be a false positive 

(Van de Kamp, P. 1963).  

The most interesting method, for many people, is the direct imaging method. 

Direct images of an exoplanet orbiting its parent star would be a great success for current 

technology and would carry substantial amounts of information, which is otherwise very 

difficult to obtain. Unfortunately, such images of exoplanets are not yet practical in many 

cases, due to the small angular separation between any planet and its host star, and the 

enormous difference in their brightness – the planets are extremely faint compared to the 

stars. Even so, this method is promising and in 2004 the first image of a possible 

exoplanet was captured by G. Chauvin et al. (Chauvin et al. 2004). Later, in August 2005, 

the same group confirmed that the image was indeed that of a companion orbiting a 

brown dwarf star and not a background object (Chauvin et al. 2005).  

Another method for detecting exoplanets is gravitational microlensing (PLANET 

Collaboration 2007). It uses the fact that if two distant stars happen to align briefly with 

Earth, the light coming from the background star will be enhanced, as if by a lens, by the 

gravity of the foreground star. If the foreground star has a planet, the planet’s own weak 

gravitational field will have an effect on the light coming from the background star. 

OGLE (Optical Gravitational Lensing Experiment) is a project that detects exoplanets in 

this fashion. A disadvantage of this method is that once the stars are no longer aligned, 

which happens relatively quickly, it is almost impossible to do a follow-up observation 

using this method, because it is very unlikely that the foreground star will align with 

another star from the background in the foreseeable future. There have been four planets 

detected using this method so far (Beaulieu et al. 2006; Burgdorf et al. 2007; Gould et al. 
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2006; Bond et al. 2004; Schneider 2006); the first one of these four was discovered in 

2004 by Bond et al.  

 

Section 1.3: Eclipsing Systems and Transiting Exoplanets  

This study is concerned with transiting extra-solar planets. Occasionally, the 

orbits of the star-planet system are so perfectly edge-on from Earth’s point of view that 

the planet can be seen transiting or ―eclipsing‖ the star. The frequency of these eclipses 

determines the period of the orbit, and from Newton’s revision of Kepler’s Third Law 

(knowing the mass of the star from the Hertzsprung-Russell diagram) we can find the 

semimajor axis of the planet (see Equation [1.2]). Since we know that the system is edge 

on, or nearly so, we know that the mass of the planet, which we get from Doppler shift 

measurements of the star’s radial velocity, is the exact mass (within error), not a lower 

mass limit (in Equation [1.6], sin(i) becomes  sin(i) ≈ 1).  

There are two types of eclipses or transits and each of them occurs once during 

every orbital period. Primary transits happen when the planet crosses the face of the star 

and blocks part of its light, while a secondary transit is defined as the time when the 

planet is behind the star from Earth’s point of view, and so the planet’s light is blocked. 

Hence, during every eclipse the light output of the system will drop. The decrease of 

brightness of the system is more significant during primary eclipse, but it can often be 

measured during secondary eclipse as well.   

An important property that can be measured using the fact that the planet transits 

the face of the star during primary transit is the radius of the planet. First, from the 

spectral class of the star and the Hertzsprung-Russell diagram, we can estimate the radius 
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of the star, R . Let the radius of the planet be Rp and the distance between the Earth and 

the star be x. Then the distance between the Earth and the exoplanet during primary 

eclipse is x-dx, where dx is the distance between the planet and the star during primary 

eclipse. Note that dx << x. Let us also assume that the star’s brightness does not vary 

across its disk, i.e., there is no limb darkening nor are there any major stellar spots. Also, 

we neglect the flux from the planet (which is very small and will not have a significant 

effect). Look at the ratio between the star’s brightness outside eclipse, I , and its 

brightness during primary transit, Iec, 





 









ppec 1
I

I
,                                      [1.7] 

where ф is the flux density of the star in W/m
2
∙sterrad (watts per meter squared per 

sterradian),   is the solid angle in sterrad (sterradians) subtended by the star from 

Earth’s point of view and Ωp is the solid angle subtended by the planet from Earth’s point 

of view when the planet is closest to Earth (Böhm-Vitense 1991). Note that from the 

definition of solid angle (Zeilik and Gregory 1998, 158) we know that  

2

2

x

R



 ,                                                     [1.8] 

and also 
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                                                  [1.9] 

Then, we can look at the ratio of the solid angles of the star and the planet 
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Since the Earth-star distance, x, is so much greater than the exoplanet-star distance, dx, 

we can approximate 2dx/x ≈ 0 and (dx/x)
2
 ≈ 0. Hence,  

2
p

22
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2

R

R

x

dx

x
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R
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Equation [1.10] then becomes  

p
2
p

2

R

R




  .                                                   [1.12] 

Therefore, the ratio between the solid angles of the planet and the star is only dependent 

on the radii of the two objects, and if we take the reciprocal of Equation [1.12] we get,  

2

2
pp
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
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.                                                   [1.13] 

Substituting the last result in Equation [1.7] we obtain:  

2

2
pec

R
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I
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

  .                                               [1.14] 

Since we know the radius of the star, R , from the H-R diagram, and we can 

measure the ratio of the intensities by direct photometric observation, we can solve for 

the planet’s radius: 














 R

I

I
1R

2/1

ec
p  .                                         [1.15] 

We often define the expression )I/I1( ec   to be the ―depth of the eclipse‖ 

(Deming 2007). The presented method is a simplified version of the method used by 

Brown et al. (Brown et al. 2001). We assume no limb darkening of the star and that no 

stellar spots occur, and we don’t take into account the planet’s possible atmosphere or 
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satellites, yet this method shows the essential steps that need to be taken to determine the 

planetary radius. 

Another interesting consequence of the transit method is the fact that some of the 

star’s light filters through the planet’s atmosphere during primary eclipse. Then, if we 

measure the spectrum of the star during primary eclipse, we could observe that some very 

weak spectral lines have appeared that are not normally present in the star’s spectrum. If 

we subtract the usual spectrum of the star from its spectrum during eclipse, it is possible 

to see the remaining absorption spectrum of the upper layers of the planet’s atmosphere. 

This was done for the first time by Charbonneau et al., who detected sodium absorption 

in the atmosphere of HD 209458b (Charbonneau et al. 2002). Also, recent observations 

analyzed by M.R. Swain, G. Vasisht and G. Tinetti found methane in the atmosphere of 

HD189733b (Swain, Vasisht, and Tinetti 2008). 

In this study we are concerned with information that can be extracted from 

observations of secondary eclipses of transiting planets. The known transiting exoplanets 

are close to their stars – the semimajor axes are mostly between 0.02AU and 0.07AU and 

the typical periods are about 1 to 5 days (although HD17156b has a period of about 20 

days) (Schneider 2007). Due to their proximity to the parent star, we can safely assume 

that such planets will be relatively hot and so they will have relatively strong thermal 

infrared emission, which we can hope to detect. When the star-planet system is not in 

eclipse we observe light from both the star and the planet and it is impossible to resolve 

the two objects, so photometry of the planet is impossible. However, during secondary 

eclipse the planet is behind the star, and we are no longer able to see the light coming 

from it. Even in the infrared, where the light coming from the planet is strongest, the 
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object’s brightness is still extremely small compared to that of the star. Still, it is possible 

to detect the tiny drop of brightness of the system that occurs during secondary transit. 

This measurement was first done in 2005 by D. Deming et al. on the extra-solar planet 

HD 209458b (Deming et al. 2005) and by D. Charbonneau et al. on TrES-1 

(Charbonneau et al. 2005). Both groups used the Spitzer Space Telescope to perform their 

observations.  

A measurement of the brightness drop during secondary eclipse means that we 

know how bright the planet is, and thus we can calculate its brightness temperature – the 

temperature of the planet, assuming it is a blackbody, which is a reasonable 

approximation of its real temperature. This thesis demonstrates how this measurement of 

temperature is made using Spitzer Space Telescope data on the planetary system 

described below. 

 

Section 1.4: Properties and Data on Transiting Exoplanet HAT-P-1b 

Our analysis is focused on HAT-P-1b - a transiting exoplanet discovered in 2006 

by a group led by G. Á. Bakos from the Harvard-Smithsonian Center for Astrophysics 

(CfA) (Bakos et al. 2007). It orbits the fainter one of the stars in the double star pair ADS 

16402, namely ADS 16402B. The distance to the double star system is 139±20pc.  Both 

stars have spectral class G0, and they are about 1550±250AU apart. The period of 

exoplanet HAT-P-1b is 4.46529±0.00009 days, which corresponds to a semimajor axis of 

0.0551±0.0015AU (see Equation [1.2]). Its mass of 0.53 Jupiter masses was determined 

from Doppler shift spectroscopy using the method described in Section 1.2. The planet’s 

radius was calculated using the method from Section 1.3 and is about 1.36±0.10 Jupiter 
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radii. The planet was discovered using the HATNet project, which is a wide-field survey 

monitoring large number of stars in order to detect transiting planet candidates by 

detecting the primary eclipse. The values for the mass, radius and precise period were 

confirmed and refined using follow-up photometric and Doppler shift observations 

(Bakos et al. 2007). 

I have photometric data on HAT-P-1b during secondary eclipse from the IRAC 

(InfraRed Array Camera) instrument on the Spitzer Space Telescope. The purpose of this 

study is to perform photometric measurements of the change in brightness of the HAT-P-

1b system during a secondary eclipse. In this thesis I will determine the brightness 

temperature of the exoplanet by measuring the depth of the secondary eclipse (the method 

for doing this will be described in Chapters 2 and 3).  
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Chapter 2: Data Analysis 

 

Section 2.1: Available Data 

As explained in Section 1.2, during the secondary eclipse the light from the star-

planet system is expected to decrease, because the radiation coming from the planet is 

blocked by the star. This drop of brightness is tiny but it can be detected in the infrared 

part of the spectrum with enough photometric samples. By making frequent photometric 

observations (or samples) for about six hours - before, during and after the secondary 

eclipse - we can produce a light curve, which should feature a tiny drop of brightness 

lasting for the time of the eclipse between contacts 2 and 3
1
.  

My data were taken with the InfraRed Array Camera (IRAC) instrument on board 

the Spitzer Space Telescope. IRAC is an extremely sensitive digital camera with four 

detectors, optimized for infrared observations. The four detectors are designed to detect 

light with center wavelengths of 3.6, 4.5, 5.8 and 8.0μm (often here called ―filters‖; note 

that a separate detector is dedicated to each waveband). These are also referred to as 

channels 1 to 4, respectively. Channels 1 and 2 have InSb (indium antimonide) pixel 

arrays with working temperature of around 15K and channels 3 and 4 have Si:As 

(arsenic-doped silicon) arrays working at around 6K. The field of view for all channels is 

5.2 arcmin on a side, and the pixel size is 1.2 arcsec on a side. All data frames have 

dimensions of 256 by 256 pixels (Fazio et al. 2004; Spitzer Science Center 2006). There 

are only three stars visible in the field – ADS 16402A, B and another one close to the 

                                                 
1
 Contact 1 is defined as the event when the planet first ―touches‖ the limb of the star, contact 2 is the time 

when the planet is seen entirely inside the star, contact 3 is the time when the planet ―touches‖ the limb of 

the star on the way out and starts to exit the eclipse phase and contact 4 is the time when the planet 

completely leaves the eclipse and no longer covers any portion of the star (see Fig. 2.5 and the explanation 

below). 
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edge of the field, which plays no role in this discussion. The data from the 4.5 and 8.0μm 

filters were taken on 12/28/2006, and the data with the 3.6 and 5.8μm filters were taken 

on 12/29/2007. The 4.5μm data (channel 2) consists of 3211 frames (or images) taken at 

regular intervals between 15h20m and 21h19m UT. The effective exposure time per 

frame was 1.2s. In the 8.0μm channel (channel 4), there were 1606 images taken also 

between 15h20m and 21h19m UT. The effective exposure time per frame was 10.4 s.
1
 I 

focused my analysis on the data from the 8.0μm filter, since it is easier to calibrate than 

channel 2, and I still have not had the opportunity to calibrate channels 1 and 3; the 

observations in these channels were made only recently, at the time of this writing.  

 

Section 2.2: Analysis Procedure 

My analysis was performed in IDL (Interactive Data Language) – a scientific 

computer language, written for convenient and reliable analysis and visualization of data 

sets. IDL allows for directly typed commands and for saved routines to be executed. The 

data analysis was done by a series of routines that were written for this specific task. The 

bias, dark current and flat-field corrections were made by the Spitzer team prior to 

making the data available for download, so I did not need to take them into account. The 

star positions in the image were carefully chosen so that no known hot pixels would 

interfere with them, and I noticed no new hot pixels.
2
 

                                                 
1
 For more information on effective exposure time and Spitzer instrumentation in general, please refer to 

the Spitzer Observer’s Manual version 8.0, released by the Spitzer Science Center on 08/15/2007. At the 

time of this writing, it is accessible at http://ssc.spitzer.caltech.edu/documents/som/som8.0.pdf. 
2
 Further information on bias, dark field and flat field subtractions, and bad pixel handling, is available 

again in the Spitzer Observer’s Manual. For a more general reading on astronomical imaging, refer to 

―Handbook on CCD Astronomy‖, Howell, S.B., 2000.  
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I started by cleaning up the cosmic rays in the images. The term ―cosmic rays‖ 

here refers to high energy particles, which when they hit the camera during exposure are 

seen in the image as bright dots or bright narrow streaks (see Figure 2.1). Since the 

cosmic ray is a single particle, it would appear only in one image, but never in multiple 

ones. Cosmic rays are not related to the source, and therefore are an effect on the image,  

 

Figure 2.1: A typical data frame before cleaning the cosmic rays, with some of the more prominent ones 

circled. ADS 16402A and B are shown. Exoplanet HAT-P-1b orbits star B.  

 

which I needed to correct for. Since the frames are arranged chronologically, I was able 

to take a time series for every pixel in the camera, i.e., I noted how its value changed as a 

function of time in all images. Let us consider a pixel with coordinates on the camera 

array (x, y). In general, for any frame, N, where N is the time-ordered index number of 

the frame, I  compared the image pixel (x, y) in N with the pixel (x, y) in frames N-2, N-

1, N+1 and N+2. I took the median of the pixel (x, y) in the five frames, N-2, N-1, N, 

N+1, N+2, and if the value of this pixel in frame N exceeded 1.7 times the median, I 



 17 

assumed that it had been hit by a cosmic ray and set its value to be equal to the median. I 

assumed threshold of 1.7 times the median, since this value results in the best outcome - 

no pixels without definite cosmic ray hits were cleaned, and no obvious hits were missed. 

Of course, in this scenario, pixels from the first two and the last two frames are 

problematic since at least one of the frames N-2, N-1, N+1 and N+2 does not exist for 

them. My solution was to compare the pixel (x, y) from frame 1 with the pixel (x, y) from 

frames 2, 3, 4 and 5 and to compare the second frame’s pixel (x, y) to pixels from frames 

1, 3, 4 and 5. Symmetrically, the last frame’s pixel (x, y) was compared to the previous 

four images’ pixel (x, y), and the pixel (x, y) in the second-to-last frame to the (x, y) pixel 

in the three images before the second-to-last and the last image. This procedure was 

performed for all pixels (x, y) which were going to be included in the photometric 

measurement of the star. The rest were irrelevant, since the background estimation 

method was immune to cosmic rays, as described below. Note that this method allows the 

pixels in the data to change gradually in brightness with time, but detects any sharp peaks 

caused by cosmic rays. On the other hand, if I had taken the median of the values of the 

same pixel through all frames (i.e., over the whole time series), I would have missed 

some cosmic rays - the pixels may gradually increase their brightness (due to reasons to 

be discussed below) and therefore I would have had to set the threshold much higher, in 

order not to ―clean‖ the good pixels that are brighter than the rest, thus allowing some 

cosmic rays to remain undetected in the dimmer pixels.  

My next step was to perform photometry on the star ADS 16402B – the star 

around which the planet HAT-P-1b orbits. During the course of the observation session 

the position of the star on the pixel array does not change significantly (the drift is about 
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0.2 pixels, measured by the drift of the Gaussian center of the star). For every image I 

determined a 9 by 9 square aperture of pixels, centered on the pixel that appears to be the 

brightest in the image of the star ADS 16402B in many of the frames (see Figure 2.2).  

 

Figure 2.2: This figure shows the 9 by 9 pixel photometric aperture around ADS 16402B. This is a 

magnified view of the same image as Figure 2.1, with the square aperture imposed and cosmic rays 

cleaned.   

 

The size of the 9 by 9 box was chosen so that it includes a maximum amount of 

pixels without overlapping with the point spread function of the neighboring brighter star 

of the pair (the separation between the centers of the two stars was 10 pixels). For every 

frame, I summed all the pixel values in the 9 by 9 pixel box and subtracted the estimated 

background radiation per pixel multiplied by the number of pixels in the aperture, 81. 

This gave me the photometric value of the star. The background radiation per pixel was 

estimated by making a histogram for every frame – I plotted pixel value on the x-axis and 
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the number of pixels with that value on the y-axis. Since the vast majority of pixels in any 

frame are only detecting background radiation, on the histogram there is a very prominent 

peak at this ―background‖ level (see Figure 2.3). Note that this method of determining the 

background radiation levels is not affected by cosmic rays or a small number of stars in 

the field – they just do not cover enough pixels to be prominent features in the histogram. 

The source code of the IDL routine written to clean the cosmic rays and to perform 

photometry is shown in Section A1 in the Appendix. For the background estimation 

function source code see Section A2.  

Figure 2.3: This graph shows the number of pixels versus the pixel value. The actual values are 

represented by dots and the best Gaussian fit is shown as a line. The number of pixels that have value 

bigger than 4 is very small and is not shown on the graph. The size of the binning intervals along the pixel 

value axis is 0.05 MJy/sterrad. From the graph it is clear that the background level is around 1.5 

MJy/sterrad (which is the peak of the Gaussian feature) for this frame.  
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I constructed the initial light curve for the 8μm filter by plotting the brightness of 

the star versus time. The time scale on the x-axis was represented in terms of phase – a 

system where phase 0.00 corresponds to the middle of the primary transit (or eclipse), 

and the other points are fractions of the time passed until the next primary transit. In this 

way, 0.50 is the middle of the secondary eclipse, for a circular orbit. The exact phase for 

the secondary eclipse depends on the eccentricity and inclination of the planet’s orbit 

relative to the line of sight from Earth.  

 

Figure 2.4: This figure represents the photometric data points divided by their average and plotted against 

time in terms of phase. 0.50 is the middle of the calculated secondary transit (using Bakos et al. 2007). The 

brightness is given as a fraction of the average brightness. The baseline is shown as a dark line. 
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Figure 2.5:  This is a schematic representation of my eclipse model. The parameters used in the fitting 

procedure and the important moments of the eclipse are marked. My model is similar to that of Brown et al. 

(Brown et al. 2001) but differs at the bottom of the eclipse curve (the line segment L), which here is flat, 

and not curved, since we are looking at a secondary eclipse and during the time L (or “full eclipse” of the 

planet) we cannot see the planet at all, only the constant flux from the star. 

 

The photometric values of the star are plotted on the y-axis. I divided them by 

their average in order to achieve a unitless quantity – a fractional difference from the 

average flux (see Figure 2.4). I noticed a strong tendency for the star to look brighter as 

the observation session proceeded. This is a known, and expected, phenomenon, 

commonly seen in observations with IRAC and other Spitzer instruments. During the 

course of the observations, the objects would often begin to look brighter in a non-linear 

fashion. The reason for that behavior is not entirely clear, but it is thought that this is due 

to potential wells, or ―electron traps,‖ in the detector pixels, which capture many 
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photoelectrons from the first exposures thus making the star look dimmer early in the 

observing session. However, as the observations proceed, these potential wells are filled 

with electrons and they can no longer capture new ones, and thus more electrons are read 

out by the electronics and the image of the star appears to become brighter. I accounted 

for this effect by fitting a sum of a linear and a logarithmic function to all data (a 

baseline) that was not part of the eclipse (which is noticeable with close scrutiny in 

Figure 2.4 as a slight dip in the data around a phase of 0.50). In order to achieve a flat 

light curve in which the eclipse would be prominent and easy to quantify, I subtracted 

this baseline (shown in Figure 2.4) from the data (Deming 2007). The source code for the 

baseline fit and subtraction is presented in Section A3. 

An eclipse model curve was created to be fitted to the data. The points at which 

the planet is shown in Figure 2.5 are called contact points and are chronologically 

numbered from 1 to 4. The model relied on the following parameters – beginning phase 

of the eclipse (or contact 1), width of the areas where the brightness was increasing or 

decreasing rapidly (i.e., times between contacts 1 and 2 and contacts 3 and 4), length of 

the full eclipse and, most importantly for this survey, depth of the eclipse as a fraction of 

the mean brightness level (B, W, L and D respectively in Figure 2.5). My eclipse model, 

as shown in Figure 2.5, connects with straight lines the intensity of the star-planet system 

at these points, which is a reasonable approximation.   

The depth of the eclipse was determined by χ
2
 (chi-squared) minimization. χ

2
 is 

defined as 

 

 




n

1i
2
i

2

ii2 mx
.                                                     [2.1] 
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In the equation above, xi is the i
th

 measured value, mi is the i
th

 model data point and σi is 

the error for the i
th

 measured point (Taylor 1997). The chi-squared minimization method 

uses the χ
2 

statistic to make an estimate of how well a model fits the data - the smaller χ
2
 

is, the better the fit (Press et al. 1992, 657). Generally, a large number of parameter 

values for the model are tried and the one which achieves smallest χ
2
 is considered the 

best fit. I wrote a routine (see Section A4 in the Appendix) to try one million 

combinations of the parameters B, W and L – i.e., 100 values for B times 100 values for 

W times 100 values for L. Notice that no assumptions were made about the depth of the 

eclipse, D. Again using χ
2
 minimization, the best fit depth of the eclipse was calculated 

separately for each one of the combinations of B, W and L. Thus, a complete model light 

curve (i.e., a set {mi}) was created for every combination of B, W and L values. The 

goodness of fit (or χ
2
) of each set {mi} was compared to the χ

2
s of all other model light 

curves. Finally, the one with the smallest χ
2
 was chosen to be the best fit eclipse curve. 

The smallest χ
2
 determination of D is the result reported in Chapter 3 and is used in all 

calculations presented there.  

 

Section 2.3: Error Analysis 

The error analysis relied on a simulation of possible data sets. Specifically, I used 

a version of the ―bootstrap‖ Monte Carlo method. The bootstrap Monte Carlo method is 

described in Press’s Numerical Recipes in C. The variation used here, in general, consists 

of taking the differences between the measured values in a data set and the corresponding 

best estimate model values, randomly scrambling these differences and adding them back 

to the best estimate model values in their original order. An arbitrary number of ―fake‖ 
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data sets can be simulated in this fashion. This way, new sets of data points are produced. 

For each new set the same analysis that was done on the original data set has to be 

performed.  

The bootstrap method is a powerful technique in cases like the present one, where 

the precise distribution of the errors is not well-known, so synthetic data sets cannot be 

simulated using regular Monte Carlo simulation. Bootstrap Monte Carlo is an accepted 

method and there is enough proof for its reliability (Press et al. 1992, 691-692, and 

references therein). It is important that the points in the original data set are distributed 

independently (i.e., the values of the points do not depend on each other) and identically 

(i.e., the distribution of the points does not change over time, for example from Gaussian 

to Poisson). Additionally, one has to make sure that the points are not rearranged in some 

specific order during the analysis. If any of these conditions is violated, the method will 

likely fail. If these assumptions are not violated, the synthetic results from the generated 

―fake‖ data sets can be used to determine confidence limits for the parameter we are 

interested in (Press et al. 1992, 689-691).  

For the data set that we have, consisting of the relative brightness of HAT-P-1b 

over time, it can be safely assumed that the distribution does not change significantly 

over time, and that the points are independent. Also, the analysis performed did not use 

any rearrangements of data points and so it was safe to use bootstrap Monte Carlo 

simulation of synthetic data sets. I took the differences of the real data to the best fit 

eclipse curve. These differences were then randomly scrambled and added to the best fit 

model in order to create a ―fake‖ data set. In this fashion I simulated one thousand ―fake‖ 

data sets, for statistical significance. For each one of them the same procedure described 
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in Section 2.2 was applied (see Section A6 for source code). The average depth of the 

thousand simulated eclipses was calculated and it was found to coincide remarkably well 

with the best fit model depth found using the procedure from Section 2.2. I used the 

standard deviation of this average as a random error estimate for the best estimate eclipse 

depth. While this method of error analysis can be improved - systematic errors need to be 

taken into consideration - the presented procedure gives a good estimate of the 

uncertainties involved.  
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Chapter 3: Results and Conclusion 

 

Section 3.1: Results 

 After fitting the eclipse model to the data, and performing the error analysis as 

described in Chapter 2, I measured an eclipse depth of 0.17±0.03% (or 0.0017±0.0003). 

This value is an expression of how much the brightness of the system decreases during 

secondary eclipse compared to its brightness outside of eclipse. These results are 

illustrated with the light curves and model plots shown in Figures 3.1 and 3.2. Figure 3.1 

is a plot of the relative brightness of the star for all 1606 images taken in the 8.0 μm filter 

of the IRAC instrument the Spitzer Space Telescope. The brightness measurements are 

plotted against phase and no individual error bars have been plotted since they would be 

too big (on the order of 0.002) and make the plot cluttered and hard to interpret. On the 

same figure I have also plotted the best estimate curve, which is shown as a solid line. 

The eclipse curves that have eclipse depths one standard deviation (or 1σ) from the best 

estimate curve are shown with dashed lines below and above the best fit curve. The 1σ 

eclipse depths are 0.0020 and 0.0014. Even though the computer algorithms easily detect 

the eclipse, for the human eye this is difficult to do just by looking at Figure 3.1. To make 

the drop of brightness easier to see, I have plotted the averages of every 20 data points 

from Figure 3.1 in Figure 3.2. The best estimate eclipse curve and the curves designating 

the one standard deviation uncertainties are also shown for comparison with Figure 3.1. 

The IDL code used to generate Figure 3.2 is shown in the Appendix, Section A7. 

 



  

 
Figure 3.1: The figure above shows the brightness of the star-planet system on the y-axis and the phase of the eclipse on the x-axis. The brightness is represented 

as a fraction of the average brightness of the system outside eclipse. The solid black line represents the best fit eclipse curve and the dashed lines represent the 

1σ deviations from the best fit. For the best estimate eclipse the decrease in brightness is 0.17% from the average, and the 1 σ uncertainties are 0.03%. No errors 

for the individual data points are plotted. 



  

 
Figure 3.2: In this graph I have averaged (or binned) the brightness points shown in Figure 3.1. Every 20 points are averaged and the resulting points are 

plotted against the phase of the eclipse. Again, the brightness is expressed as a fraction of the average brightness outside eclipse. The error bars shown are the 

standard deviations of the individual bins. Note that the eclipse is much more easily seen than in Figure 3.1. IDL source code used to bin the data can be found 

in A7. 
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In order to convert the eclipse depth to the brightness temperature of the planet we 

use a method outlined by David Charbonneau et al. and Drake Deming et al. 

(Charbonneau et al. 2005; Deming et al. 2005). Consider the total flux of the planet-star 

system outside eclipse, t , which is equal to the sum of the flux of the planet, p , and the 

flux of the star,  , or   

  BBpppt ,                                       [3.1] 

where p  is the solid angle subtended by the planet in sterrad,   is the solid angle 

subtended by the star in sterrad, pB  is the brightness of the planet in J/m
2
∙s∙sterrad (Joules 

per meter squared per second per sterradian) and B  is the brightness of the star in 

J/m
2
∙s∙sterrad. The flux of the system must drop by ppB  during secondary eclipse (since 

we do not see the planet’s flux at this time) and the total brightness outside the eclipse is 

 BBpp . Therefore, the depth of the eclipse as a fraction of the brightness outside 

the eclipse, D, is  






BB

B
D

pp

pp
.                                            [3.2] 

We already know the depth of the eclipse and we can easily convert it to brightness 

temperature of the planet in the following way. From Planck’s blackbody radiation 

formula we know that 
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and 
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In Equations [3.3] and [3.4], ν is the frequency of light in Hertz (Hz) in which the eclipse 

was observed  (in our case the wavelength is 8μm, which corresponds to ν = 

3.75∙10
13

Hz), Tp is the brightness temperature of the planet in Kelvin (K), T  is the 

brightness temperature of the star in K, h is Planck’s constant in m
2
kg/s (meter squared 

times kilogram per second), k is the Boltzmann constant in J/K (Joules per Kelvin), and c 

is the speed of light in meters per second. We can easily solve Equation [3.4] for Tp to 

obtain:  
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Equation [3.5] is an expression for the brightness temperature of the planet, but we need a 

way to calculate Bp. In order to do that we first take the reciprocal of Equation [3.2]:  

ppB

B
1

D

1




  .                                             [3.6] 

Recall from Equation [1.12] in Section 1.3 that 
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Therefore, we can substitute Equation [3.7] in Equation [3.6] and solve for Bp to obtain 
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We know the value of B  from Equation [3.3], and we have an estimate of R  from the 

Hertzsprung-Russell diagram. Rp was found using the method described in Section 1.3 by 

the team that discovered HAT-P-1b. Equation [3.8] gives an estimate of Bp that can be 
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used to obtain a value for the brightness temperature of the planet, Tp (Equation [3.5]). 

For my temperature estimate I used the planetary and system parameters presented in 

Table 3.1. This table shows all the parameters needed to perform the brightness 

temperature calculation. These values (except the secondary eclipse depth and the 

frequency) were determined by the discovery paper for HAT-P-1b (Bakos et al. 2007).  

 

Parameter Value 

Rp  1.36±0.10 RJ 

R   1.15±0.10 RSun 

T   5975±45 K 

D 0.0017±0.0003 

ν  3.75∙10
13

 Hz 

Table 3.1: The table shows all parameters necessary to determine the brightness temperature of the planet. 

Rp, R  and T  are taken from the discovery paper by Bakos et al. in 2007, and D is my result for the 

depth of the secondary eclipse. The unit RJ stands for Jupiter radii and the unit RSun stands for solar radii.  

 

 If the best estimate values for pR , R , T  and D are used, the calculations 

(Equations [3.5] and [3.8]) yield Tp = 1290K. The uncertainty of Tp had to be estimated, 

so I varied pR , R and D and looked at the resulting brightness temperatures. The 45K 

uncertainty on the brightness temperature of the star has very little effect on the 

calculation, and therefore, for simplicity, the best estimate of 5975K for T  was used in 

all calculations mentioned below. If the minimum value of Rp and the maximum values 

of R and D are used, in order to maximize the result, the calculations return Tp of 

1700K. The minimum result is achieved by calculating the temperature using the lower 
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limit for D and Rp and the upper limit for R . In this case the planet’s temperature is 

990K. I performed the brightness temperature calculations for all combinations of lower, 

upper and best estimate values for the three important parameters, D, R and Rp. The 

resulting 27 brightness temperatures had a mean of 1300K and a standard deviation of 

170K, and thus my final result for the brightness temperature is 1300±170K. This 

approach gives a reasonable estimate of Tp and of the random error in Tp even though it is 

not a complete error analysis. The result needs to be rechecked by continuously 

varying T , and by continuously varying D, R and Rp within the 1σ uncertainties, not by 

just taking the best estimate values and the extreme values.  

 

Section 3.2: Conclusion and Discussion 

In this thesis I calculated the brightness temperature of HAT-P-1b for a 

wavelength band centered on 8.0μm. The calculated value of 1300±170K for the planet’s 

brightness temperature is somewhat expected, since a planet so close to its star it is 

certain to be relatively hot (hence the name of the class of large planets close to their stars 

– ―hot Jupiters‖). The importance of the result can be understood if we remember that 

―brightness temperature‖ is the temperature of an object, calculated from its flux, 

assuming that this object is an ideal blackbody. However, our planet is not an ideal 

blackbody, and therefore, the brightness temperature is a convenient measure of the flux 

output of the planet in a certain band-pass. In addition, even though the physical 

temperature of the planet will deviate from the brightness temperature due to absorption 

and emission features in the spectrum, it is not unreasonable to assume that these two 
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quantities do not differ significantly. Thus, the brightness temperature of the planet is a 

reasonable estimate of its physical temperature.  

If the brightness temperature is measured for HAT-P-1b in multiple band-passes, 

we will have flux measurements in a number of different wavelengths. Thus, we can plot 

the brightness temperatures versus the wavelengths in which they were obtained and we 

will essentially have a crude broadband spectrum of the planet. We certainly will not be 

able to distinguish individual spectral lines, but we will be able to see the large-scale 

features of the spectrum. Since the flux of any gas giant planet comes from its 

atmosphere (reflected light from the host star or blackbody radiation from the planet 

itself), this crude spectrum will allow us to draw conclusions about the chemical 

composition of the upper layers of HAT-P-1b’s atmosphere. We will be able to compare 

the measured broadband spectral features with existing theoretical models for the 

spectrum of the planetary atmosphere. Ultimately, our goal is to create such a spectrum 

for HAT-P-1b using the data that we have from Spitzer Space Telescope at center 

wavelengths 3.6, 4.5 and 5.8μm (IRAC channels 1, 2 and 3) and the present result 

coming from data at center wavelength of 8.0μm. The yet-unprocessed data will be 

analyzed as described in Chapter 2 this summer to give us four estimates of the brightness 

temperature of the planet at the four wavelengths mentioned above. We will compare the 

spectrum with theoretical models for the atmosphere of the planet. We hope to be able to 

reject some of them, depending on how well they match with the observed broadband 

spectrum. There is a chance that we will be able to confirm some of these models.  

Additionally, since the atmospheric transparency of the hot Jupiters for different 

wavelengths changes with height, the flux in these wavelengths will predominantly come 
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from different heights above the ―surface‖ (or distances from the center of the planet). In 

this way we will estimate the temperature of the atmosphere of different layers and there 

is a chance that we may find a temperature inversion (lower layers are colder than upper 

layers). A temperature inversion was first found in an extrasolar planet in 2007 (Knutson 

et al. 2008). By continuing this research we will expand our knowledge on the 

temperature structure and the chemical composition of the atmosphere of HAT-P-1b and 

of hot Jupiters in general.  
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Appendix A: IDL Routines Used 

 

In order to perform the analysis described in Chapter 2 I implemented IDL routines (or 

scripts). I wrote seven routines and they are presented in this Appendix. Additionally, I used the 

standard IDL routine library, the IDL Astronomy User’s Library and a scrambling routine by R. 

Sterner. All routines used, except the ones I wrote, are freely available on the web (see A8 for 

URLs).  

The routines written by me could have been part of one large script, but for the purposes 

of debugging it was convenient to separate them into reasonably small sections. The scripts 

presented here form a sort of a pipeline – the first routine reads the data and begins the analysis, 

the intermediate routines perform most of the analysis and the last routine returns the depth of 

the best fit eclipse and its uncertainties. The dependence of the routines is shown in Figure A.1 

below.  

 
Figure A.1: The chart above presents the flow of the data through the routine pipeline. The scripts are 

indicated with their section number in this Appendix, and their routine filename. A short description of the 

tasks of each script is also provided. Scripts A2 and A5 are called from within A1 and A4 respectively, 

while A7 is optional and takes the results from A4 and A6.  
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Section A1: Data Preparation and Photometry Routine 
 

Routine: CH4_COMFLUX.PRO 

Purpose: Prepare the data for analysis, clean the cosmic rays and perform photometry 
 

nfrpos = 1606     ;number of frames per position of the star on the array 

nfrall = 1606     ;number of frames total           

xsz    = 256      ;x size in pixels 

ysz    = 256      ;y size in pixels 

 

xpos1  = 67       ;x position of the "upper star" on the  

                  ;array (dimmer star)HAT1 

ypos1  = 150      ;y position of the "upper star" on the  

                  ;array (dimmer star)HAT1 

xpos2  = 67       ;x position of the "lower star" on the 

                  ;array 

ypos2  = 140      ;y position of the "lower star" on the  

                  ;array 

 

flux1  = make_array(nfrpos,2, /double)  

;flux-in-time array of Star1 

 

flux2  = make_array(nfrpos,2, /double)  

;flux-in-time array of Star2 

 

time0  = make_array(nfrpos, /double) 

timeall= make_array(nfrall, /double) 

 

bg1a   = make_array(nfrpos, /double) 

 

;DATE-OBS is the header keyword needed 

yr = 2006d  ;year 

mn = 12d    ;month 

dy = 28d    ;day 

rjd= 0d     ;reduced JD 

 

x0 = 4.     ;photometry pixel box is 1 + 2*x0 

y0 = 4.     ;no more than 4, else PSFs overlap  

frame= 0 

x    = 0 

y    = 0 

a    = make_array(nfrpos,xsz,ysz) 

otstr= make_array(nfrpos,/string)  

;observation time as a string 

otrjd= make_array(nfrpos,/double)  

;observation time in decimal hours, after midnight on UT 

 

date = make_array(6,  /double) 

fp   = '/---/---/data/HAT-P-1b/bcd' 

farr = file_search(fp,'*bcd.fits') 

 

;*****READ THE FITS FILES INTO A DATA CUBE*****    

 

FOR frame = 0,nfrpos-1 DO begin  

    im           = readfits(farr(frame),head,/silent) 

    otstr[frame] = strmid(head[28],22,12) 
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;the time as a string from the right header keyword 

    hrs          = strsplit(otstr[frame],':',/extract)  

;actually, hrs is[hours min sec] array 

    hh           = double(hrs[0]) 

    mm           = double(hrs[1]) 

    ss           = double(hrs[2]) 

    date         = [yr,mn,dy,hh,mm,ss] 

    juldate, date, rjd    

;reduced julian date =>add 2400000 to get JD  

    rrjd         = rjd - 54050d  

;subtract 54 050 from the reduced Julian date  

;to show more significant digits on the plot 

    otrjd[frame] = rrjd  

    a[frame,*,*] = im[*,*] 

ENDFOR 

 

;*******CLEAN UP COSMIC RAYS****** 

 

frame = 0 

FOR frame = 0,nfrpos-1 do begin 

for  x = xpos1-x0,xpos1+x0 do begin 

   for y = ypos1-y0,ypos1+y0 do begin 

     if (frame eq 0)or(frame eq 1) then begin 

      if a[frame,x,y] gt 1.7*median(a[0:4,x,y]) then begin 

           a[frame,x,y] = median(a[0:4,x,y]) 

      endif 

     endif 

      

     if(frame eq nfrpos-1)or(frame eq nfrpos-2) then begin 

      if a[frame,x,y] gt 1.7*median(a[0:4,x,y]) then begin 

         a[frame,x,y] = median(a[0:4,x,y]) 

      endif 

     endif 

 

     if (frame ge 2) and (frame le nfrpos-3) then begin 

      if a[frame,x,y] gt 1.7*median(a[frame-2:frame+2,x,y]) then begin 

         a[frame,x,y] = median(a[frame-2:frame+2,x,y]) 

      endif 

     endif 

   endfor 

endfor 

ENDFOR     

 

;*****PHOTOMETRY PART***** 

; also, here the time is tagged to each photometry value 

 

time0    = otrjd   ;time is the same for both stars! 

for frame = 0,nfrpos-1 do begin 

    totflux1 = 0.  ;signal value at this image -Star1 

    totflux2 = 0.  ;signal value at this image -Star2 

    bg1      = 0.  ;background is the same for both stars! 

  

    totflux1 = total(a[frame, xpos1-x0:xpos1+x0, ypos1-y0:ypos1+y0]) 

;   totflux2 = total(a[frame, xpos2-x0:xpos2+x0, ypos2-y0:ypos2+y0]) 

     

    ;background correction: 

    dummy = bgrnd(a,frame,bg1)     
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    bg1a[frame]  = bg1 

    flux1[frame,0] = totflux1 - bg1*(n_elements(a[frame, xpos1-$    

                                   x0:xpos1+x0,ypos1-y0:ypos1+y0])) 

    flux1[frame,1] = time0[frame] 

;   flux2[frame,0] = totflux2 - bg1*(n_elements(a[frame, xpos2-$  

                                   x0:xpos2+x0,ypos2-y0:ypos2+y0])) 

;     flux2[frame,1] = time0[frame] 

endfor 

 

;*****PLOT RESULTS***** 

 

plot,flux1[*,1], flux1[*,0] 

  

;*****SAVE VARIABLES***** 

 

save, filename='ch4_comflux.sav' 

 

end 

 

 

 

Section A2: Background estimation function 

Function: BGRND.PRO 

Note: This function is called from inside CH4_COMFLUX.PRO (see Section A1). 

Purpose: Estimate the background of the image using a histogram and Gaussian fit, as 

described in Section 2.2.  
 

function bgrnd, a, frame, avbg 

 

;******background estimation****** 

;based on a histogram graph - the most numerous pixel value 

;represents the average background. 

 

 

binsz = 0.05d       ;binsize for the histogram - what difference in  

                             ;value corresponds to 1 division. 

hmin  = -5            ;minimum value to be considered by the histogram 

hmax  =  5           ;maximum value to be considered by the histogram 

 

h = histogram(a[frame,*,*],binsize=binsz, /NAN, min=hmin,max=hmax) 

x_gauss = findgen(2000) 

g=gaussfit(x_gauss[0:n_elements(h)-1],h, a_coeff, nterms=3, chisq=chisq) 

                                                                      

                                                                      ;we 

add 0.5 to the center, because 

avbg     = (a_coeff[1]+0.5)*binsz+hmin    ;the center is only the 

beginning 

                                                                      ;of 

the binsz interval, and 1 is 

                                                                      

;the length of the binsz interval 

;*****NOTE:***** 

;We multiply by binsz because 1 division of the plot corresponds to binsz 

;difference in value. We add hmin, because on the plot, the values 

;start from 0, but our real values start from hmin. 
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;a_coeff[0] is the height of the Gaussian, 

;a_coeff[1] is the center of the Gaussian,  

;a_coeff[2] is the width (the standard deviation) of the Gaussian 

 

;*****Uncomment this (or parts of it) to plot histograms**** 

;if frame eq 500 then begin 

;    plot, x_gauss[0:200]*binsz+hmin, h 

;    oplot,x_gauss[0:200]*binsz+hmin, g 

;endif   

 

end                                      

 

 

 

Section A3: Baseline Fitting Routine 
 

Routine: CH4_DATFIT.PRO 

Purpose: Convert JD time to phase, fit a baseline to the data and subtract it.  
 
;*****RESTORE THE VARIABLES***** 

 

restore, 'idl_save/ch4_comflux.sav' 

 

;*****SOME HOUSE KEEPING***** 

 

f1sz = size(flux1, /dim) 

 

;*****NORMALIZE THE FLUX TO 1****** 

 

flux1[*,0] = flux1[*,0]/(mean(flux1[*,0],/NAN)) 

;flux2[*,0] = flux2[*,0]/(mean(flux2[*,0],/NAN))  

;we only work on star 1 (HAT-P-1b) 

 

;*****JD-->HJD-->ECLIPSE PHASE***** 

 

taxis  = helio_jd(flux1[*,1] + 54050.0d, ten(22,57,46.8)*15, 

ten(38,40,28.0)) 

 

phase = make_array(f1sz[0]) 

phase[*] = (taxis[*] - 53984.397d)/4.46529d 

phase[*] = phase[*] - fix(phase[*]) 

 

;*****FIT A BASE LINE TO THE RAMP***** 

;NOTE: We want to fit the baseline only in non-eclipse data points, so: 

 

use = where((flux1[*,1] le 48.21)or(flux1[*,1] ge 48.34)) 

plot, phase[use], flux1[use,0], title = 'Channel 4, brightness vs time,$ 

outside eclipse', psym = 6, yrange = [0.90,1.10] 

 

rms_best = 1.0d+10 

for itry = 0,1000 do begin 

    del= 0.000000005*(double(itry)) 

    fit= make_array(f1sz) 

    x1 = alog(phase+del-min(phase)) 

    x2 = phase+del 

    x  = [transpose(x1[use]),transpose(x2[use])] 
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    res= regress(x,flux1[use,0],const=z) 

    fit= (res[0]*x1 + res[1]*x2 + z) 

    diffl= (flux1[use,0] - fit[use])/fit[use] 

    rms = sqrt(mean(diffl^2)) 

    if rms lt rms_best then begin 

        rms_best = rms 

        ibest = itry 

        base = make_array(f1sz[0]) 

        base = fit 

    endif 

endfor 

ramparr=base 

 

;*****SUBTRACT THE LINE FROM THE RAMPED RESULTS***** 

 

flux1[*,0] = flux1[*,0]-ramparr[*] + 1 

oneArr = make_array(size(ramparr, /dim))  

oneArr[*] = 1  ;array that has all its elements = 1 

 

;*****PLOT THE RESULTS***** 

plot,phase, flux1[*,0] 

oplot,phase, oneArr 

 

;*****SAVE VARIABLES***** 

 

save, filename='idl_save/ch4_datfit.sav' 

 

end 

 

 

 

Section A4: Eclipse Fitting Routine 
 

Routine: CH4_ECLFIT.PRO 

Purpose: Try 1 000 000 versions of the eclipse model, and calculate their chi-squared 

values.  

Fit the best model to the data again, so we can plot it to the screen 
 

;*****RESTORE THE VARIABLES***** 

 

restore, 'idl_save/ch4_datfit.sav' 

 

;*****TEST MANY SECONDARY ECLIPSE MODEL CURVES**** 

 

chi_best = 9999999. 

i_best = -1.0 

j_best = -1.0 

k_best = -1.0 

start_l  = 0.009 

start_w  = 0.004 

start_ph = 0.485 

for i = 0,100 do begin 

    for j = 0,100 do begin 

        for k = 0,100 do begin 

            model  = ch4_model(f1sz[0],start_w+0.00004*i , 

start_l+0.00011*j,$  
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                               start_ph+0.00005*k, phase) 

            mphi   = [0.2, 0.3, 0.4, phi,   0.6, 0.7, 0.8] 

            minten = [1.0, 1.0, 1.0, model, 1.0, 1.0, 1.0] 

            yinten = model 

 

            ;*****FIT THE ECLIPSE CURVE TO THE DATA***** 

 

            edepth  = linfit(yinten, flux1[*,0]) 

            fitbest = edepth[0]+ edepth[1]*yinten[*] 

            diff = flux1[*,0] - fitbest 

            scat = stddev(diff) 

            scatvec    = make_array(f1sz[0]) 

            scatvec[*] = scat 

            edepth =linfit(yinten, flux1[*,0], measure_errors=scatvec,$ 

                    sigma=sigma) 

            fitbest= edepth[0] + edepth[1]*yinten[*] 

            chisqr =total((diff(*)/scatvec(*))^2) 

            if chisqr lt chi_best then begin 

                chi_best = chisqr 

                i_best = i 

                j_best = j  

                k_best = k 

            endif 

        endfor 

    endfor 

endfor 

;*****FIT BEST MODEL TO DATA***** 

 

model  = ch4_model(f1sz[0],start_w+0.00004*i_best , 

start_l+0.00011*j_best,$ start_ph+0.00005*k_best, phase) 

mphi   = [0.2, 0.3, 0.4, phi,   0.6, 0.7, 0.8] 

minten = [1.0, 1.0, 1.0, model, 1.0, 1.0, 1.0] 

yinten = model 

edepth  = linfit(yinten, flux1[*,0]) 

fitbest = edepth[0]+ edepth[1]*yinten[*] 

diff = flux1[*,0] - fitbest 

scat = stddev(diff) 

scatvec    = make_array(f1sz[0]) 

scatvec[*] = scat 

edepth = linfit(yinten, flux1[*,0], measure_errors=scatvec, sigma=sigma) 

fitbest= edepth[0] + edepth[1]*yinten[*] 

print, 'depth of the eclipse is: ',edepth[1] 

;*****PLOT THE RESULTS***** 

plot,phase,flux1[*,0] 

oplot, phase, fitbest 

save, filename='ch4_fitted_eclipse.sav' 

 

end 

 

Section A5: Model Creation Function  
 

Function: CH4_MODEL.PRO 

Note: Called from within CH4_ECLFIT.PRO (see A4) 

Purpose: Create a model curve point for parameters given so that the eclipse depth can be 

determined by the calling routine. 
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function ch4_model, msz, w, l, x1, phase 

 

;*****THIS FUNCTION MAKES AN ECLIPSE MODEL FOR TRANSITING EXOPLENTS  

;INPUT VARIABLES: 

;W = THE WIDTH OF THE PART WHERE BRIGHTNESS IS ACTUALLY 

;    CHANGING-DECREASING AT FIRST AND LATER INCREASING BACK TO NORMAL 

;L = THE LENGTH OF THE FLAT BOTTOM PART 

;X1= THE STARTING POINT (IN PHASE UNITS) OF THE ECLIPSE, WHEN THE 

;    LIGHT FIRST STARTS TO DECREASE.  

;MSZ= THE SIZE OF THE MODEL ARRAY NEEDED 

 

model    = make_array(msz) 

model[*] = 1.0 

 

model[where(phase[*] gt (x1+w)and(phase[*] lt (x1+w+l)))] = 0 

 

f1 = (-1/w)*phase[*] + (1/w)*(x1+w);f1 is the first slope of the transit     

                                   ;when the brightness is decreasing 

model[where(phase[*]gt(x1)and(phase[*]lt(x1+w)))]=f1[where(phase[*] gt $  

                                            (x1)and(phase[*] lt (x1+w)))] 

 

f2 = (1/w)*phase[*]-(1/w)*(x1+w+l);f2 is the second slope of the transit 

                                  ;when the brightness is increasing 

model[where(phase[*] gt (x1+w+l)and $ 

           (phase[*] lt (x1+2*w+l)))]$ 

  =f2[where(phase[*] gt (x1+w+l)and $ 

           (phase[*] lt (x1+2*w+l)))] 

 

return, model[*] 

 

end 

 
 

Section A6: Random Error Estimation Routine 

 

Routine: CH4_MONTE_CARLO.PRO 

Purpose: Bootstrap Monte Carlo estimation of random error on the eclipse depth.   
 
;*****RESTORE THE VARIABLES***** 

 

restore, 'ch4_fitted_eclipse.sav' 

 

;*****MAKE FAKE DATA***** 

 

nfds  = 1000               ;number of fake data sets 

 

errarr= make_array(nfds, 4);errarr will hold: depth of the fake  

                           ;data set, wings width 

                           ;(w),full eclipse length(l)  

                           ;and starting phase of the  

                           ;eclipse (ph) 

 

devs = flux1[*,0]-fitbest  ;deviations of real data from best fit model 
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;*****BIG LOOP**** 

 

for n = 0,nfds-1 do begin 

    fdata= devs[scramble(f1sz[0])]+fitbest ;fake data array.  

                                           ;We have just randomized the 

                                           ;deviations of the real data  

                                           ;from the best fit and added  

                                           ;them to it. 

 

    ;*****TEST MANY SECONDARY ECLIPSE MODEL CURVES**** 

     

    chi_best_f = 9999999.   ;the _f stands for fake, since 

                            ;this is a "fake data" operation 

    i_best_f   = -1.0 

    j_best_f   = -1.0 

    k_best_f   = -1.0 

    start_l_f  = 0.009 

    start_w_f  = 0.004 

    start_ph_f = 0.485 

    for fi = 0,100 do begin      ;fi, fj and fk = fake i, j and k    

                                 ;from identical indices in 

ch4_eclfit.pro 

        for fj = 0,100 do begin 

            for fk = 0,100 do begin 

                model  = ch4_model(f1sz[0],start_w_f+0.00004*fi , 

start_l_f+0.00011*fj, start_ph_f+0.00005*fk, phase) 

                mphi   = [0.2, 0.3, 0.4, phi,   0.6, 0.7, 0.8] 

                minten = [1.0, 1.0, 1.0, model, 1.0, 1.0, 1.0] 

                yinten = model 

                 

                ;*****FIT THE ECLIPSE CURVE TO THE DATA***** 

                edepth_f  = linfit(yinten, fdata) 

                fitbest_f = edepth[0]+ edepth[1]*yinten[*] 

                diff_f    = fdata - fitbest_f 

                scat_f    = stddev(diff_f) 

                scatvec_f = make_array(f1sz[0]) 

                scatvec_f[*]= scat_f 

                edepth_f = linfit(yinten,fdata,measure_errors=scatvec_f,$ 

                                                        sigma=sigma_f) 

                fitbest_f= edepth_f[0] + edepth_f[1]*yinten[*] 

                chisqr_f = total((diff_f[*]/scatvec_f[*])^2) 

                if chisqr_f lt chi_best_f then begin 

                    chi_best_f = chisqr_f 

                    i_best_f = fi 

                    j_best_f = fj  

                    k_best_f = fk 

                endif 

            endfor 

        endfor 

    endfor 

     

    ;*****FIT BEST MODEL TO DATA***** 

    model  = ch4_model(f1sz[0],start_w_f+0.00004*i_best_f,$ 

                       start_l_f+0.00011*j_best_f, $ 

                       start_ph_f+0.00005*k_best_f, phase) 

    mphi   = [0.2, 0.3, 0.4, phi,   0.6, 0.7, 0.8] 

    minten = [1.0, 1.0, 1.0, model, 1.0, 1.0, 1.0] 
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    yinten = model 

    edepth_f  = linfit(yinten, fdata) 

    fitbest_f = edepth_f[0]+ edepth_f[1]*yinten[*] 

    diff_f    = fdata - fitbest_f 

    scat_f    = stddev(diff_f) 

    scatvec_f    = make_array(f1sz[0]) 

    scatvec_f[*] = scat_f 

    edepth_f     = linfit(yinten, fdata, MEASURE_ERRORS=scatvec_f,$ 

                                                 sigma=sigma_f) 

    fitbest_f    = edepth_f[0] + edepth_f[1]*yinten[*] 

    errarr[n,*]=[edepth_f[1],start_w_f+0.00004*i_best_f ,$ 

                             start_l_f+0.00011*j_best_f, $ 

                             start_ph_f+0.00005*k_best_f] 

endfor  ;END BIG LOOP 

 

save, filename='ch4_monte_carlo_fits.sav' 

 

end 

 

 

 

 

Section A7: Binned Plots Routine 
 

Routine:  CH4_ECLBIN.PRO 

Purpose: Bin the data, so that it can be plotted without cluttering the plot.  

Make the eclipse easily visible.    
 

binsz = 20 

 

restore, 'ch4_fitted_eclipse.sav' 

;variables used from the 'restore': 

;     yinten - values for the model eclipse 

;     fitbest- best fit eclipse curve 

;     f1sz   - dimensions of the phot data array 

;     flux1  - phot data and phase array 

;     phase  - phase array 

 

;***** MAKE THE ARRAYS TO HOLD THE BINS ***** 

if (f1sz[0] mod binsz) eq 0 then begin 

    mbr = make_array(f1sz[0]/binsz) 

    mph = make_array(f1sz[0]/binsz) 

endif else begin 

    mbr = make_array(f1sz[0]/binsz+1) 

    mph = make_array(f1sz[0]/binsz+1) 

endelse 

 

;***** ACTUAL BINNING ***** 

i = 0 

while i+binsz lt f1sz[0] do begin 

    mbr    [i/binsz] = mean(flux1  [i:i+binsz,0]) 

    mph    [i/binsz] = mean(phase  [i:i+binsz  ]) 

    yinten [i/binsz] = mean(yinten [i:i+binsz  ]) 

    fitbest[i/binsz] = mean(fitbest[i:i+binsz  ]) 

    i = i+binsz 
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endwhile 

 

if (f1sz[0] mod binsz) ne 0 then begin 

 mbr[f1sz[0]/binsz]=mean(flux1[f1sz[0]-(f1sz[0]mod binsz):f1sz[0]-1,0]) 

 mph[f1sz[0]/binsz]=mean(phase[f1sz[0]-(f1sz[0]mod binsz):f1sz[0]-1  ]) 

 yinten[f1sz[0]/binsz]=mean(yinten[f1sz[0]-(f1sz[0]mod binsz):f1sz[0]-1]) 

 fitbest[f1sz[0]/binsz]=mean(fitbes[f1sz[0]-(f1sz[0]mod binsz):f1sz[0]-1 ]) 

endif 

 

;the values 0.0020 and 0.0014 are chosen, because at the time I added 

;these lines, I already knew the errors from the Monte Carlo simulations 

fitmaxb = 1.0-0.0020 + 0.0020*yinten[*] 

fitminb = 1.0-0.0014 + 0.0014*yinten[*] 

 

;***** plot the results ***** 

plot, mph, mbr, yrange=[0.99, 1.01] 

  

end 

 

 

 

Section A8: Routines used which are not included in the Standard IDL Library 
 

readfits - Source: readfits.pro. Reads FITS image files to IDL 2-dimensional arrays. Part of 

the IDL Astronomy User’s Library, available at 

http://idlastro.gsfc.nasa.gov/contents.html 

 

juldate – Source: juldate.pro. Converts calendar date to Reduced Julian Date. Part of the 

IDL Astronomy User’s Library, available at http://idlastro.gsfc.nasa.gov/contents.html 

 

helio_jd – Source: helio_jd.pro. Converts geocentric Reduced Julian Date to Heliocentric 

Julian Date. Part of the IDL Astronomy User’s Library, available at 

http://idlastro.gsfc.nasa.gov/contents.html 

 

ten – Source: ten.pro. Converts sexigesimal numbers to decimal e.g. ―hour or 

degree‖:min:sec to decimal hours or degrees. Part of the IDL Astronomy User’s Library, 

available at http://idlastro.gsfc.nasa.gov/contents.html 

 

scramble – Source: scramble.pro is written by R. Sterner. It scrambles randomly the entries 

of an array. Available at http://132.248.1.102/~morisset/idl/pro/juhapl/pro/scramble.pro 
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