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1 Introduction

In this problem problem we are a priori given a set of servers in a metric space. One at
a time an equal number of requests will arrive in locations unknown until arrival. As each
request arrives, it must be irrevocably matched to a server, under the restriction that server
can only be matched to one request. The two different goals we discuss for the problem
are 1) the minimum weight objective, which minimizes the average (or equivalently total)
distance between any request and its paired server and 2) the bottleneck objective, which
minimizes the maximal distance.

When the metric is the line, then this problem is equivalent to the following shoe store
problem: here, the owner has a set of shoes of various sizes and will sell them to to customers
who will arrive sequentially, where each customer finishes their transaction before the next
customer arrives. If the owner tries to minimize the average difference in shoe size between
a shoe and its buyer, then the owner is using the minimum weight objective. If the owner
instead tries to minimize the maximal difference, then the owner is using the bottleneck
objective.

This problem has been studied most for the general metric, however significant work
remains to be done even in the special case of the line metric. Despite the problem having a
very ‘simple’ description, there is still a large gap between the effectiveness of the best known
algorithms and the established lower bound for the effectiveness of any algorithm on this
problem. In fact, Koutsoupias and Nanavati in [8] consider the line-metric to be the most
interesting, citing reasons such as the offline-version being a trivial problem, the relation to
the well-studied cow-path problem, and the applications of this problem in web-markets.

1.1 Formal Definitions

Formally, for any given instance I of the problem we will denote the set of n servers by S ⊂ R
and the sequence of requests by R = (r1, ..., rn). Since I is defined by its servers and requests,
we will consider I to be equivalent to the the tuple (S,R). We will define a completed
matching between the set of servers and the requests to be a bijective function f : R → S.
Hence for the bottleneck objective the goal is to construct a function f such that the cost of
f defined by c(f) = maxi∈{1,...,n} |f(ri)− ri| is minimized, whereas for the minimum weight
objective the the goal is to construct f such that the cost c(f) =

∑n
i=1 |f(ri)−ri| is minimized.

Competitive analysis is conventionally used to determine the effectiveness of algorithms
for online problems. Define A to be the set of all algorithms for the problem and define
I to be the set of all possible instances. Because the method of analysis for deterministic
and randomized algorithms is fundamentally different, we define AD ⊂ A to be the set of
deterministic algorithms. The competitive ratio ρ for a deterministic algorithm A ∈ AD on
an online problem is given by

ρ = max
I∈I

(
A(I)

Opt(I)

)
,

where A(I) and Opt(I) denote the cost of the matching function f the algorithm outputs
and the cost of the optimal offline solution’s matching function respectively. Since we will
be looking at the competitive ratio of randomized algorithms, the competitive ratio will be
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evaluated in expectation; specifically, for any randomized algorithm A ∈ A the competitive
ratio is defined to be

ρ = max
I∈I

(
E

[
A(I)

Opt(I)

])
.

For notational convenience, when we say that an algorithm is h(n)-competitive, then we
mean that the competitive ratio ρ for that algorithm is no better than h(n) on instances
with n servers.

To establish lower bounds for the competitive ratios of these problems, we use Yao’s
minimax principle. Yao’s principle implies that for any probability distributions p over AD
and q over I, where A is some algorithm chosen according to p and I is some instance chosen
according to q, then

max
X∈I

E [A (X)] ≥ min
B∈AD

E [B (I)] .

Hence by defining cpa as the smallest competitive ratio of the algorithm a under the distri-
bution p, Yao’s principle implies that

ρ(A) ≥ min
B∈AD

cpB,

where ρ(A) denotes the competitive ratio of A.

1.2 Previous Results

The natural greedy algorithm, which sends each incoming request to its closest available
server, has been shown to be no better than (2n − 1)-competitive on the line metric for
both the bottleneck and minimum weight objectives [6]. For the minimum weight objec-
tive, Kalyanasundaram and Pruhs in [6] and Khuller, Mitchell, and Vazirani in [7] gave
a (2n − 1)-competitive deterministic algorithm, Permutation. For the general metric,
Meyerson, Nanavati, and Poplawski [9] gave a O(log3 n)-competitive randomized algorithm,
which was improved upon by Bansal, Buchbinder, Gupta, and Naor [2] to give a O(log2 n)-
competitive randomized algorithm, but there still remains a gap to the established lower
bound of Ω(log n). In the case where the metric is specifically the line, the Work Function Al-
gorithm was shown to have competitive ratio O(n) in [8], but this upper bound was improved
by Antoniadis, Barcelo, Nugent, Pruhs, and Scquizzato [1] who gave a o(n)-competitive de-
terministic algorithm on the line - at the moment, this algorithm remains the best established
deterministic algorithm. The best known randomized algorithm, Harmonic, was presented
by Gupta and Lewi and shown to be O(log n)-competitive in [4]. However, only a lower
bound of 9.001 has been established for deterministic algorithms on the line [3] and no lower
bound has been established for the randomized algorithms on the line.

The best known deterministic algorithm for the bottleneck objective is also Permuta-
tion and has been shown to be (2n− 1)-competitive in [6]. The highest known lower bound
for the competitive ratio for deterministic algorithms was presented by Idury and Schaffer to
be approximately 1.5n in [5]. To the best of our knowledge, there is also no established lower
bound for the competitive ratio on the bottleneck objective for randomized algorithms.
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2 Tools

In this section we will present a few useful tools and methods for approaching the analysis of
this problem. The first tool we present allows us to make concrete restrictions on the type
of algorithms we will consider. The second tool was established by Meyerson et al. in [9] and
allows us to reduce the possible set of arrival locations of requests to the set of servers. The
final tool we discuss are ρ-server-sets, which provides a reduction for the type of possible
server sets that we will consider when establishing upper bounds for algorithms.

2.1 Nearest Neighbors Theorem

One way to reduce the problem of constructing lower bounds is to reduce the possible
search pool of algorithms you are evaluating over. Recall that we construct lower bounds by
considering the value of

min
A∈A

(
E

[
A(I)

Opt(I)

])
for any specific instance I. Hence, if you can prove that

min
A∈A

(
E

[
A(I)

Opt(I)

])
= min

A∈AP

(
E

[
A(I)

Opt(I)

])
for some AP ⊂ A, then you are effectively reducing the type of algorithms which you are
minimizing over. Hence we will establish that for any instance of the problem there is
always an optimal matching that assigns each incoming request to either its closest left or
right available server. By doing this, we need not consider algorithms that would match
otherwise.

Theorem 1 (Nearest Neighbors Theorem). Given any instance of the problem for the
minimum weight objective, there exists an optimal min-weight matching function f : R→ S
that satisfies f(rj) ∈ Nf (rj), where Nf (rj) denotes the neighboring unmatched servers of rj
on the line. Formally, by letting

Sj = S \ {f(r1), ..., f(rj−1)},
Lj = max {s|s ∈ Sj, s ≤ rj}, and

Rj = min {s|s ∈ Sj, s ≥ rj},

then Nf (rj) = {Lj, Rj}.

Proof. For the sake of contradiction, we will suppose there does not exist a matching that
matches each request rj to Lj or Rj. Let f denote any optimal matching that satisfies the
above property up to some point. That is, f(ri) ∈ Nf (ri) for all i up to some n ≤ k, but
f(rj) /∈ Nf (rj). We will use the following notation for the rest of the proof:

r = rj, s = f(rj), s′ = Rj, r′ = f−1(s′).

We will also let f̃ denote the matching that sends r to s′ and r′ to s and f̃(rj) = f(rj) for
all other requests rj.
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To see there are only 8 cases which need to be considered, note that we must have that
r < s′, but cannot have that r < s < s′, since both s and s′ must be available at the time
of arrival for the jth request but s′ is defined to be the closest right server. Thus, we have
3 possible cases where r = min{r, s, s′, r′}, 2 cases where r′ = min{r, s, s′, r′}, and 3 cases
where s = min{r, s, s′, r′} (s′ can’t ever be the leftmost due to the restriction r < s′).

This gives us the following 8 possible cases (note that the figures are not drawn to scale,
they are just to display ordering):

r s′ s r′
Case 1

r s′ r′ s

Case 2

r r′ s′ s

Case 3

r′ r s′ s

Case 4

r′ s r s′
Case 5

s r′ r s′
Case 6

s r s′ r′
Case 7

s r r′ s′
Case 8

In case 1, case 2, case 5, and case 6, the cost of f̃ will actually be less than the cost of f ,
since |r− f(r)| > |r− f̃(r)| and |r′− f(r′)| > |r′− f̃(r′)|. In cases 3 and 4, the cost of f̃ will
be equal to the cost of f . Finally, in cases 7 and 8, we see that the cost of f̃ will actually be
bigger than the cost of f . But this is not a problem – first, if s = Lj (if s is r’s closest left
available server), then we have a contradiction because we originally supposed that r was
not matched with either of its left or right neighboring servers. Thus, letting sL denote Lj,
we must have the following order:

s sL r

Case 7 & 8

But now, we can see that the mirror of either case 1, 2, 3, or 4 must apply, since these
are the cases where r < s′ < s, and thus we know that constructing a new matching f̃ ′ such
that f̃ ′(r) = sL and f̃ ′−1(s) = f̃ ′−1(sL) (where all other requests correspond to f) will satisfy
that the total cost of f̃ ′ will be less than or equal to the total cost of f .

In all of these cases, we have constructed a new matching whose total cost is less than or
equal to f where r is matched to one of its closest available neighbors. This is a contradiction
with respect to the construction of f and completes the proof.

Hence, when analyzing the lower bound of the competitive ratio on a specific instance,
we can restrict our search space to algorithms which always match to either the left or right
closest servers.
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Unfortunately, Theorem 1 doesn’t hold for the bottleneck objective. To see this, consider
an instance of just two servers:

20 1

r1

−1

r2

−2

Now, if Theorem 1 were also true for the bottleneck objective, then we would obtain an
optimal matching by assigning r1 to 1 and r2 to 2. However, this will result in a maximal
distance of 2−r2 = 4. But if instead we match r1 to 2 and r2 to 1, then the maximal distance
is instead 3. This is a contradiction to the optimality of the first matching, confirming that
Theorem 1 does not hold for the bottleneck objective.

2.2 Request Collocation

In [9], Meyerson et al. mentioned the following powerful result:

Lemma 2 (Meyerson et al.). The requests can be assumed to be collocated with servers.
Specifically, there exists a constant c such that for any deterministic algorithm A and instance
I with request sequence R = (r1, ..., rn) and servers S, the following holds: consider the
sequence of requests R̃ = (r̃1, ..., r̃n) where each request r̃i is the closest server to ri and let
ρ(A) be the competitive ratio of A on the original instance and ρ̃(A) be the competitive

ratio of A on the new instance. Then ρ̃(A)
ρ(A)
≤ c.

The power of the statement lies in its ability to significantly reduce the ‘search space’
of instances when we prove upper bounds for the competitive ratios for algorithms. Instead
of considering all possible instances, where requests could potentially land anywhere on the
real line, we only need to consider requests which land in the set of servers. In particular,
when considering one specific set of servers, we can assume there are only a finite number of
places the requests can land. This will prove very useful when constructing our Minimax
Matching algorithm later.

2.3 ρ Server Sets

When constructing lower bounds for the competitive ratio of specific algorithms or for the
problem as a whole, one specific choice of servers can be found that no algorithm can perform
well against in the worst case. In this section, we formalize this principle and provide some
basic new results.

Definition. We call a set S ⊆ R a symmetric server set if there exists some x ∈ R such
that 2s− x ∈ S for all s ∈ S.

This really just means that for every server s ∈ S there is another server reflected about
x. That is, S is symmetric about x. For example, the set {−2,−1, 1, 2} is a symmetric
server set, since it is symmetric about x = 0, whereas there is no x which the set {1, 2, 4, 8}
is symmetric about.
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Definition. We call a set S ⊆ R a ρ server set if for every algorithm A there exists an
instance IA = (S,RA) such that A(IA)

Opt(IA)
≥ ρ.

Of course, the costs ofA(I) and Opt(I) will depend on what objective is being considered,
which we have purposefully left vague in the definition along with whether the algorithm
is deterministic or randomized so that the definition can be used with reference to either.
Note that the existence of any ρ server set necessarily implies a lower bound of ρ on the
competitive ratio of all algorithms.

The following lemma establishes the strength of symmetric server sets:

Lemma 3. If S is a ρ server set, then there exists a symmetric ρ server set S̃ under either
objective.

Proof. Let S = {s1, ..., sn} with s1 ≤ ... ≤ sn and x = 2s1 − sn < s1 ∈ R. Then by defining
S̃ = {x − sn, ..., x − s1, s1, ..., sn}, we have that S̃ is a symmetric server set. Hence for any

algorithm A we know that there exists some IA = (S,RA) such that A(IA)
Opt(IA)

≥ ρ. For any

algorithm A, let Ã be the algorithm that A becomes having matched the start of a request
sequence (x − s1, ..., x − sn) into S̃. Then we know that Ã has a corresponding request
sequence RÃ = (rA1 , ..., r

A
n ) on which its competitive ratio with the server set S is at least ρ.

We now want to show that regardless of the objective A still has a competitive ratio no less
than ρ on S̃. To do this, consider the request sequence R̃A = (x− s1, ..., x− sn, rA1 , ..., rAn ).

1. Minimum Weight: By the Nearest Neighbors Theorem, we know that the cost of A
matching R̃A into S̃ is then at least the cost of matching the first n requests to their
collocated servers and then the cost Ã had on RA, meaning that the competitive ratio
of A with the server set S̃ is at least ρ.

2. Bottleneck: By the choice of x, we know that if any of the first n requests are
matched to the positive servers the bottleneck distance will be strictly greater than
the bottleneck distance of A on IA. Thus after the first n requests we can assume that
the only servers left are S. But then we know that the bottleneck edge of A on R̃A

must be at least the bottleneck edge of Ã on RÃ and hence the competitive ratio of A
with the server set S̃ is at least ρ.

This lemma tells us two useful things: 1) that when we are constructing upper bounds for
a specific algorithm, we only need to consider how our algorithm performs on symmetric
servers, and 2) that when we are coming up with instances for lower bounds, we can really
just stick to symmetric instances. In fact, we conjecture that you only need to consider
symmetric server sets where the sequence of requests are expanding, where a request sequence
R = (r1, ..., rn) is called expanding if there is never a i < j < k satisfying ri < rk < rj or
rj < rk < ri. If such a claim were proven, this would be a powerful limit to the types of
instances one would need to consider when establishing the competitive ratio of an algorithm.
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3 Minimum Weight Objective

In this section we will discuss the problem under the minimum weight objective. We will
first construct our lower bounds for the competitive ratio of deterministic and randomized
algorithms, 4 and 2 respectively. We will then move on to deterministic algorithms, where
we will establish that the Permutation algorithm is strictly linearly competitive. We will
then show our analysis of the algorithm presented in [1] and discuss our Minimax Match-
ing algorithm. To wrap up the minimum weight objective we will discuss the Harmonic
randomized algorithm.

3.1 Lower Bounds – Deterministic

First we will consider the lower bounds of deterministic and randomized algorithms under
the minimum weight objective. In [3], Fuchs et al. establish a lower bound of 9.001 for all
deterministic algorithms in an admittedly complicated proof via an adversarial strategy for
the related Cow Path Problem. We present a relatively simple lower bound of 4 via a singular
instance of the Minimum Weight Objective and show that no deterministic algorithm can
achieve a better ratio than 4.

Theorem 4. No deterministic algorithm for the minimum weight objective has a lower
competitive ratio than 4.

Proof. Consider the following instance:

x1 + x20 x1−x1−(x1 + x2)

The servers are located at {−(x1 +x2),−x1, 0, x1, x1 +x2} for some 0 < x1, x2 ∈ R. The first
two requests will be located at 0 (hence r1 = r2 = 0). We can assume that by the Nearest
Neighbors Theorem that r1 will be matched to 0, and r2 will be matched to either x1 or −x1.
Without loss of generality, let’s assume that r2 will be matched to x1. Then we will place
our next request r3 at x1 and we will be left with two cases.

1. If r3 is matched to x1 + x2, then we place r4 at x1 + x2. By our Nearest Neighbors
Theorem, we can assume that r4 will then match to −x1. Then we place our final
request r5 at −(x1 + x2) which will be collocated with the only remaining server. The
sum of all the matches made will be 0 + x1 + x2 + (x1 + x2 + x1) + 0 = 3x1 + 2x2. In
this case, the optimal cost will be just x1, so the ratio of the online cost to the offline
will be 3 + 2x2

x1
.

2. If r3 is instead matched to −x1, then we place r4 at −x1. If r4 is matched back up
to x1 + x2, then by placing our final request r5 at x1 + x2 we will have a total cost
of x1 + (x1 + x1) + (x1 + x1 + x2) + 2(x1 + x2) = 7x1 + 3x2 whereas the optimal
cost would have been x1 + x2. This gives a ratio of 7x1+3x2

x1+x2
. On the other hand, if

r4 were matched to −(x1 + x2), then by placing r5 at −(x1 + x2) we have the total
x1 + x1 + x1 + x2 + 2(x1 + x2) = 5x1 + 3x2 whereas the optimal cost would be x1 + x2,
giving a ratio of 5x1+3x2

x1+x2
. Since this ratio is strictly less than 7x1+3x2

x1+x2
, we will ignore the

case where r4 is matched up to x1 + x2.
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Hence the lower bound for any deterministic algorithm is the minimum of {3 + 2x2
x1
, 5x1+3x2
x1+x2

}.
This is maximized where x2 =

√
5−1
2
x1 at which point the ratio is 2 +

√
5 > 4.

This lower bound is only for 5 servers, however. A higher lower bound would likely exist
by analyzing these types of symmetric sets of servers for larger n, since by the symmetric-
server-set theorems from above we see that any competitive ratio by a single server set can
be replicated by a symmetric server set. Coming up with a lower bound for general n for
these types of server-sets would likely be very powerful.

3.2 Lower Bounds – Randomized

Next, we will present a simple lower bound of 2 for the competitive ratio of any randomized
algorithm on the minimum weight objective.

Theorem 5. The lower bound of any randomized algorithm on the Min-Weight objective
is 2.

Proof. To achieve this, we only need 2 servers:

-1 0 1

In this instance, the first request will arrive at 0 and the second request will arrive at either
−1 or 1 with uniform probability. Hence, the optimal offline assignment will be to match the
second request with whichever server it lands on and the first request with the other. This
makes the optimal total weight a constant 1. However, any algorithm will have a 50% chance
to match the first request with the server at the location of the second request. This means
that any algorithm will have an expected cost of 1

2
(1) + 1

2
(3) = 2. Hence, the competitive

ratio of any randomized algorithm must be at least 2.

This lower bound unfortunately does not increase easily. It can be shown that increasing
the number of servers while still maintaining the same format of the instance does not
increase the lower bound. See the full version of this work for details.

3.3 Algorithms – Deterministic

Now we will discuss the current ‘state of the art’ deterministic algorithms for the minimum
weight objective. The first algorithm we present is Permutation, discovered by [6] and [7].
The main crux of the algorithms relies on an interesting fact about the sequence of optimal
partial matchings.

Lemma 6. Let R = (r1, ..., rn) be a sequence of requests and S a set of servers. Let Si ⊂ S
be a set of servers that minimizes the cost of matching only the first i requests (r1, ..., ri).
Then there is a set of servers Ti+1 ⊆ S that minimizes the cost of matching only the first
i+ 1 requests (r1, ..., ri+1) and satisfies |Ti+1 − Si| = 1.
For the proof see [6].
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The pseudo code for the algorithm is as follows:

1: procedure Permutation(R, S)
2: for all requests ri do
3: Calculate the optimal partial matching of the first i requests into S.
4: Let {s} = Ti − Si−1 be the new server used via lemma 6.
5: Match ri to s.
6: end for
7: end procedure

This algorithm achieves a (2n−1)-competitive ratio. It should also be noted that each request
can be matched in polynomial time via this algorithm, as the optimal partial matchings can
be calculated via the Hungarian algorithm or other algorithms designed for the assignment
problem.

However, despite this algorithm’s ‘slick’ structure and strong relationship with the se-
quence of optimal partial assignments, the Permutation algorithm has a linear lower
bound, even in the case of the line metric.

Lemma 7. Permutation has a linear lower bound for its competitive ratio.

Proof. Consider the following instance with n = 2k servers:

−k −k + 1 ... −3 −2 −1 0 1 2 3 ... k − 1 k

r6 r5 r2 r1 r3 r4 r7

In this instance, we will assume that between tiebreakers under the Permutation algorithm
the server that minimizes the distance to the incoming request will be chosen, with the
understanding that even while using a different method of tie-breaking a corresponding
instance with a linear ratio can still be found. Hence when r1 = 0 arrives, it will be matched
to the server at 1. When r2 arrives, the optimal matching for the first n requests will be using
the servers {−1, 1}. Then when r3 arrives, the choice of tiebreaker matches r3 to 2. Then
r4 must be matched to −2, r5 to −3, r6 to 3, and so on, creating a pattern of switching off
between crossing over to the other side of servers and going to the next highest server for every
other request. This means that each odd request r2i+1 has a cost of 1 while each even request
r2i has a cost of 2i. Thus the total cost of the matching is

∑k
i=1 (2i+ 1) = k2+k+k = k2+2k,

while the optimal cost is always just k. Thus Permutation’s competitive ratio is lower
bounded by k2+2k

k
= n

2
+ 2.

While this doesn’t completely close the gap for Permutation on the line, it does show
that it has a strictly linear competitive ratio.

The best established deterministic algorithm was presented by Antoniadis et al. in [1].
This algorithm, here dubbed Branching Greedy, has no established lower bound and [1]
claimed that the algorithm was o(n)-competitive. The pseudo-code for this algorithm is as
follows:

1: procedure Branching Greedy(R, S, ε)
2: for all requests ri do

10



3: Initiate a counter c = 1 and store r = ri.
4: Place a marker on the line at ri.
5: while ri is unmatched do
6: Move the marker to r + (−(1 + ε))c

7: if a server is encountered then
8: if the server is unmatched then
9: Match ri to the server.
10: end if
11: if the server is matched but the request r′ it is matched to is further from

the server than r then
12: Label the server as being matched to r.
13: Now continue with the marker where r′ had left off, hence setting r = r′

and updating c.
14: end if
15: if r was not updated this iteration then
16: c = c+1
17: end if
18: end if
19: end while
20: end for
21: end procedure

This algorithm’s complicated structure is due to its original format being written for a
similar problem known as the k lost cows problem. We present an example of the algorithm’s
run through below:

δ

0

−(1 + ε) r1

r2

Here ε and δ are real numbers with 0 < δ < ε. The 2 servers are at {−(1 + ε), δ}. The
requests are R = (0,−(1 + ε)).

Since as cows each request will start by looking left, the first request r1 will go to the
server just below it (−(1 + ε)). Request r2 will then arrive and ‘knock out’ the first request
that had been matched there. More specifically the second request will then ‘take over’ as
the first request that had been matched there and turn around, moving up to the server at
δ. Hence, the online cost of this matching via the Branching Greedy algorithm will be
2(1 + ε) + δ, whereas the optimal cost would always be δ. Thus the competitive ratio of

Branching Greedy is at least (1+ε)
δ

. But for any c > 0, by letting δ = 1+ε
c

(here assuming
c is large enough to ensure that δ < ε), then the ratio must be at least c. This seems to show
that no upper bound could be placed on the Branching Greedy algorithm. This currently
appears to be a direct counter example to the results of [1], and we are in conversation with
the authors to better understand their algorithm.
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3.4 Minimax Matching

The next algorithm we consider is our Minimax Matching algorithm. So far, every algo-
rithm (perhaps aside from Branching Greedy) could be implemented in polytime. Here
our goal is to get the best possible approximation of some optimal solution - not necessar-
ily to do it in some efficient time frame. In fact, it is conceivable that the best possible
deterministic algorithm is only achievable in non-polynomial time. Perhaps it is the case
that there exists some constant-competitive algorithm that runs in exponential time, but the
best polytime algorithm is logarithmically competitive. So with that in mind, we present our
algorithm, simply based on the principles of minimaxing (where we assume via the request
collocation tool that requests arrive in the set of servers):

1: procedure Minimax Matching(R, S)
2: for each request ri
3: for all possible future request sequences (ri, ..., rn)
4: Consider all possible strategies of matching (ri, ..., rn) into the remaining

available servers
5: Choose the strategy that minimizes the maximal competitive ratio a request

sequence could force
6: Assign ri to the corresponding server in this strategy.
7: end procedure

Theorem 8. Up to a constant factor in the competitive ratio, Minimax Matching (Mm)
is the best deterministic algorithm for the minimum weight objective.

Proof. Suppose that there is some better deterministic algorithm A. First, we may assume
by Theorem 2 that all requests arrive in the set of servers. Since we are assuming that A is
a different algorithm, then at some point for a given set of servers S and request sequence
R = (r1, ..., rn) it differs with Mm, say at request ri. That is, A matches ri to a different
server than Mm. But since Mm did not chose to match ri to that server, then there must
be some choices of sequences (all starting with (r1, ..., ri)) of requests that would have forced
any matching to have a ratio no less than Mm on this instance. Hence even if this algorithm
A did achieve a lower ratio than Mm on this sequence of requests then there exists some
sequence of requests R′ corresponding to the choices of sequences which A must have a ratio
at least the value of Mm’s on R.

Now, let T be the instance which Mm maximizes its competitive ratio on. Then every
algorithm A has some corresponding instance TA on which its ratio must be higher than
Mm’s ratio on T - thus Mm is the best deterministic algorithm under competitive analysis
under instances in which all requests land on servers.

Unfortunately, as mentioned earlier, this algorithm does not have an obvious polytime
implementation - as it is written, its implementation would be O(nn), though this could
possibly be reduced by using the Nearest Neighbors Theorem and ideas such as alpha-beta
pruning. This algorithm can also be useful in other ways: by virtue of it necessarily being the
best deterministic algorithm up to a constant factor, any established super constant lower
bound for Mm would effectively establish a superconstant lower bound for all deterministic
algorithms!
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3.5 Algorithms – Randomized

One difficulty in constructing deterministic algorithms is that adversarial request sequences
can be placed knowing exactly how the algorithm will match them. Such an adversary is
difficult to construct against randomized algorithms, where you don’t necessarily know where
a specific algorithm will match a given request. The best randomized algorithm established to
date has been Harmonic, established in [4], which acts like Greedy but with an element of
randomness. After manipulating the server set to ensure that the maximal distance between
any two servers is O(n3), the algorithm is as follows:

1: procedure Harmonic(R, S)
2: for all requests ri do
3: Let s` and sr be the closest available servers on the left and the right respectively.
4: Match to sr with probability ri−s`

sr−s`
, and to s` with probability 1− ri−s`

sr−s`
= sr−ri

sr−s`
.

5: end for
6: end procedure

Gupta and Lewi showed that Harmonic is O(log n)-competitive, making Harmonic the
best previously established algorithm for minimum metric matching on the line under the
minimum weight objective. There is no established lower bound for Harmonic.

Again, however, one could apply the ideas of minimax to randomized algorithms. The
algorithm would be similar in structure to its deterministic version, while now strategies can
be mixed in principle. Since this is now equivalent to calculating mixed Nash equilibria, the
algorithm’s structure would be rather complex, but again its existence could again be used
to construct lower bounds for randomized algorithms in a similar way.

4 Bottleneck Objective

In this section we will move away from the minimum weight objective and now consider the
bottleneck objective. Much less research has been done previously for this objective, but we
will discuss the known lower bounds for deterministic and randomized algorithms. In doing
so, we will show that up to a constant factor difference in competitive ratio that Permuta-
tion is the best randomized algorithm for the problem under the bottleneck objective.

4.1 Lower Bounds – Deterministic

The highest known lower bound for deterministic algorithms for the bottleneck objective is
1.5n, established in [5]. However, a lower bound of n

2
is relatively easy to construct:

−k −k + 1 ... −1 0 1 ... k − 1 k

r2k−2 ... r2 r1 r3 ... r2k−1

In this instance the servers are located at {−k,−(k − 1), ...,−1, 1, ..., k − 1, k} and the
request sequence is R = (0,−1, 1, ...,−(k−1), k−1, r2k), where r2k is placed according to the
following rule: after the first 2k − 1 requests, there will be one server s remaining. If s > 0,
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then assign r2k = −k, otherwise assign r2k = k. Note that this forces the last match to have
a cost of at least k = n

2
, whereas the optimal assignment will always have a bottleneck edge

of 1 (k of the requests will be collocated, and the other k requests can be shifted by 1 to then
all be collocated with servers, with no overlaps). Hence we have the immediate corollary:

Theorem 9. No deterministic algorithm can achieve a better ratio that O(n) for the bot-
tleneck objective.

4.2 Lower Bounds – Randomized

Although there has been no established lower bound for randomized algorithms under the
bottleneck objective, we can use a similar instance for the deterministic lower bound to
construct a lower bound for randomized algorithms:

Theorem 10. The competitive ratio of any randomized algorithm for the bottleneck ob-
jective with n servers is no better than n

2
= Ω(n).

Proof. We will construct an instance with n = 2k servers, where the servers are located at
{−k,−k+1, ...,−1, 1, ..., k−1, k} and the requests will arrive at r1 = 0, r2 = −1, r3 = 1, r4 =
−2, r5 = 2, ..., r2k−2 = −k + 1, and r2k−1 = k − 1 with the final request r2k landing either
on −k or k with uniform probability.

−k −k + 1 ... −1 0 1 ... k − 1 k

r2k−2 ... r2 r1 r3 ... r2k−1

Note that after r2k−1 has been matched by any algorithm, there will always be exactly one
server remaining, which we will denote by s ∈ Z. The expected cost of the bottleneck edge
in this algorithm will be at least the expected cost of the last edge created with s, since the
maximal distance pairing will necessarily be bigger than or equal to d(r2k, s) = |r2k − s|.
Since s ≥ −k, the edge cost if r2k = −k will be k + s. If r2k = k, then the edge cost
will be k − s, since s ≤ k. Hence, the expected cost of any algorithm will be at least
1
2

((k + s) + (k − s)) = k.
The offline optimal matching, however, would have a maximal pairing cost of 1. To

achieve this, simply match the leftmost available server with the leftmost unassigned request
and repeat. If r2k = k, then all the nonpositive requests will have a distance of 1 to their
respective server while all the positive requests will have a cost of 0. Thus the competitive
ratio of any algorithm will be no less than k

1
= k, where k is half the number of servers

used.

Thus for the bottleneck objective on n servers, the gap for randomized algorithms is
between n

2
and 2n− 1.
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4.3 Upper Bounds

Unfortunately, very little analysis has been done for randomized algorithms under the bot-
tleneck objective. In fact, our only upper bounds for the randomized bottleneck objective
are simply inherited from the deterministic algorithms for the bottleneck objective. Yet in
some ways this is sufficient - we have shown that the lower bound for randomized algorithms
under the bottleneck objective is linear and the best known algorithm is Permutation,
which has been shown to be linearly competitive. Perhaps most interesting, this shows that
the natural extension of the Minimax Matching algorithm to the randomized bottleneck
objective does not do drastically better than any other algorithms.

5 Conclusions and Further Work

At the end, we are still left with many open questions. Even with the definitively best
deterministic algorithm for the minimum weight objective, we still don’t know whether there
exists a constant-competitive algorithm or not. We do, however, know that the Bottleneck
objective is a strictly “harder” problem than the Minimum weight, as we have a logarithmic
upper bound for Minimum weight and a linear lower bound for the Bottleneck objective. To
close this work, we have a short list of objectives that may prove useful for the adventurous
reader:

1. Establish that any bound on the competitive ratio ρ can be transformed to a bound on
expanding request sequences on ρ-server sets, as this would greatly reduce the types of
instances to consider.

2. Establish a lower bound on the competitive ratio of the Minimax Matching algo-
rithm, as this would also be a lower bound on the competitive ratio of any deterministic
algorithm. In fact, the entire problem rests on the competitive ratio of the Minimax
Matching algorithm.

3. Reformat the ‘ranking’ of algorithms to include the run time, so that non-polynomial
time algorithms might not achieve more than polynomial time algorithms (note that
this only matters if there doesn’t exist a polytime algorithm that can compare to
Minimax Matching).
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