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The Price of Stochastic Anarchy

Christine Chung, Katrina Ligett*, Kirk Pruhs**, and Aaron Roth

! Department of Computer Science
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Carnegie Mellon University
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Abstract. We consider the solution concept of stochastic stability] propose
the price of stochastic anarchgs an alternative to therice of (Nash) anarchy
for quantifying the cost of selfishness and lack of coordimain games. As a
solution concept, the Nash equilibrium has disadvantdgeshe set of stochas-
tically stable states of a game avoid: unlike Nash equditstochastically stable
states are the result of natural dynamics of computatipmalinded and decen-
tralized agents, and are resilient to small perturbatioos fideal play. The price
of stochastic anarchy can be viewed as a smoothed analygie giice of an-
archy, distinguishing equilibria that are resilient togefrom those that are not.
To illustrate the utility of stochastic stability, we stuthe load balancing game
on unrelated machines. This game has an unboundedly lamgegiMash anar-
chy even when restricted to two players and two machines.ho® shat in the
two player case, the price of stochastic anarchy is 2, aricetlem in the general
case, the price of stochastic anarchy is bounded. We comgetttat the price of
stochastic anarchy ©(m), matching the price of strong Nash anarchy without
requiring player coordination. We expect that stochasdibiity will be usefulin
understanding the relative stability of Nash equilibrisother games where the
worst equilibria seem to be inherently brittle.

* Partially supported by an AT&T Labs Graduate Fellowship andNSF Graduate Research
Fellowship.

** Supported in part by NSF grants CNS-0325353, CCF-0448198;-0514058 and IIS-
0534531.



1 Introduction

Quantifying theprice of (Nash) anarchis one of the major lines of research in algorith-
mic game theory. Indeed, one fourth of the authoritativedtmic game theory text
edited by Nisan et al. [20] is wholly dedicated to this tofait the Nash equilibrium
solution concept has been widely criticized [15, 4, 9, 1@jst-it is a solution charac-
terization without a road map for how players might arrivesath a solution. Second,
at Nash equilibria, players are unrealistically assumebet@erfectly rational, fully
informed, and infallible. Third, computing Nash equilidiis PPAD-hard for eveg-
player,n-action games [6], and it is therefore considered very @hjikhat there exists
a polynomial time algorithm to compute a Nash equilibriurarein a centralized man-
ner. Thus, itis unrealistic to assume that selfish agentsmeigl games will converge
precisely to the Nash equilibria of the game, or that they matessarilyconvergeto
anything at all. In addition, the price of Nash anarchy neatdmes with its own weak-
nesses; it blindly uses the worst case over all Nash eqiailitbespite the fact that some
equilibria are more resilient than others to perturbatianday.

Considering these drawbacks, computer scientists haderekitively little atten-
tion to if or how Nash equilibria will in fact be reached, angke less to the question of
which Nash equilibria are more likely to be played in the ey@ayers do converge to
Nash equilibria. To address these issues, we employ thhagttic stability framework
from evolutionary game theory to study simple dynamics ohpatationally efficient,
imperfect agents. Rather than defining a-priori states ssscNash equilibria, which
might not be reachable by natural dynamics, the stochastilisy framework allows
us to define a natural dynamic, and from it derive the stalalest We define therice
of stochastic anarchyo be the ratio of the worst stochastically stable solutmithie
optimal solution. The stochastically stable states of aeggamy, but do not necessar-
ily, contain all Nash equilibria of the game, and so the pdtstochastic anarchy may
be strictly better than the price of Nash anarchy. In gamesvfach the stochastically
stable states are a subset of the Nash equilibria, studyeatio of the worst stochas-
tically stable state to the optimal state can be viewed asa@otrad analysis of the
price of anarchy, distinguishing Nash equilibria that aniélle to small perturbations in
perfect play from those that are resilient to noise.

The evolutionary game theory literature stochastic stabilitystudiesn-player
games that are played repeatedly. In each round, each plagerves her action and its
outcome, and then uses simple rules to select her actiohéamnext round based only
on her size-restricted memory of the past rounds. In anydpplayers have a small
probability of deviating from their prescribed decisionasi The state of the game is
the contents of the memories of all the players. $toehastically stable stat@éssuch a
game are the states with non-zero probability in the limthig random process, as the
probability of error approaches zero. The play dynamics mpley in this paper are
the imitation dynamics studied by Josephson and Matros [16der these dynamics,
each player imitates the strategy that was most successfhef in recent memory.

To illustrate the utility of stochastic stability, we stuthe price of stochastic anar-
chy of the unrelated load balancing game [2, 1, 11]. To oumkedge, we are the first
to quantify the loss of efficiency in any system when the pisyge in stochastically
stable equilibria. In the load balancing game on unrelatachimes, even with only two
players and two machines, there are Nash equilibria withirary high cost, and so
the price of Nash anarchy is unbounded. We show that thesibeiguare inherently



brittle, and that for two players and two machines, the patetochastic anarchy is
2. This result matches the strong price of anarchy [1] witlrequiring coordination
(at strong Nash equilibria, players have the ability to damate by forming coalitions).
We further show that in the genenalplayer,m-machine game, the price of stochastic
anarchy is bounded. More precisely the price of stochastiochy is upper bounded by
thenmth n-step Fibonacci number. We also show that the price of sitithanarchy

is at leastn + 1.

Our work provides new insight into the equilibria of the |dzalancing game. Un-
like some previous work on dynamics for games, our work dagseek to propose
practical dynamics with fast convergence; rather, we usplgi dynamics as a tool for
understanding the inherent relative stability of equilibinstead of relying on player
coordination to avoid the Nash equilibria with unboundestt¢as is done in the study
of strong equilibria), we show that these bad equilibriaiateerently unstable in the
face of occasional uncoordinated mistakes. We conjechatethe price of stochastic
anarchy is closer to the linear lower bound, parallelingdtiee of strong anarchy.

In light of our results, we believe the techniques in thisgrawill be useful for
understanding the relative stability of Nash equilibriaiher games for which the worst
equilibria are brittle. Indeed, for a variety of games in greee of anarchy literature,
the worst Nash equilibria of the lower bound instances atetozhastically stable.

1.1 Related Work

We give a brief survey of related work in three areas: altéresato Nash equilibria as
a solution concept, stochastic stability, and the unrdlliad balancing game.

Recently, several papers have noted that the Nash equitilis not always a suit-
able solution concept for computationally bounded agelaging in a repeated game,
and have proposed alternatives. Goemans et al. [15] stuaerd who sequentially
play myopic best responses, and quantify phiee of sinkingthat results from such
play. Fabrikant and Papadimitriou [9] propose a model inclwtdgents play restricted
finite automata. Blum et al. [4, 3] assume only that playecsioa histories satisfy a
property callecho regret and show that for many games, the resulting social costs are
no worse than those guaranteed by price of anarchy results.

Although we believe this to be the first work studying stotitastability in the
computer science literature, computer scientists haventscemployed other tools
from evolutionary game theory. Fisher and Vocking [13]whbat under replicator
dynamics in the routing game studied by Roughgarden ancob3¥d@&?P], players con-
verge to Nash. Fisher et al. [12] went on to show that usingraubaneous adaptive
sampling method, play converges quickly to a Nash equiliariFor a thorough survey
of algorithmic results that have employed or studied otivetutionary game theory
techniques and concepts, see Suri [23].

Stochastic stability and its adaptive learning model agdistiin this paper were first
defined by Foster and Young [14], and differ from the standgmahe theory solution
concept of evolutionarily stable strategies (ESS). ES&aedinement of Nash equilib-
ria, and so do not always exist, and are not necessarily iassdavith a natural play
dynamic. In contrast, a game always has stochasticallyesstdites that result (by con-
struction) from natural dynamics. In addition, ESS areliegsi only to single shocks,
whereas stochastically stable states are resilient taspems noise.



Stochastic stability has been widely studied in the econsriiterature (see, for
example, [24,17,19,5,7,21,16]). We discuss in Sect. 2 eptscfrom this body of
literature that are relevant to our results. We recommenthyd25] for an informative
and readable introduction to stochastic stability, itspaitta learning model, and some
related results. Our work differs from prior work in stoctiastability in that it is the
first to quantify the social utility of stochastically staldtates, therice of stochastic
anarchy

We also note a connection between the stochastically ss#diles of the game and
the sinks of a game, recently introduced by Goemans et ahather way of studying
the dynamics of computationally bounded agents. In pddicthe stochastically stable
states of a game under the play dynamics we consider corrégpoa subset of the
sink equilibria, and so provide a framework for identifyitige stable sink equilibria.
In potential games, the stochastically stable states opldéne dynamics we consider
correspond to a subset of the Nash equilibria, thus progidimethod for identifying
which of these equilibria are stable.

In this paper, we study the price of stochastic anarchy id lmlancing. Even-Dar
et al. [8] show that when playing the load balancing game aelated machines, any
turn-taking improvement dynamics converge to Nash. Andelet al. [1] observe that
the price of Nash anarchy in this game is unbounded and ttoay tfat the strong price
of anarchy is linear in the number of machines. Fiat et all fitthten their upper bound
to match their lower bound at a strong price of anarchy of #éxaa.

2 Model and Background

We now formalize (from Young [24]) the adaptive play modetahe definition of
stochastic stability. We then formalize the play dynamitat twe consider. We also
provide in this section the results from the stochasticiktaliterature that we will
later use for our results.

2.1 Adaptive Play and Stochastic Stability

LetG = (X, ) be a game with players, where{ = ]_[;.l:1 X, represents the strategy
setsX; for each playef, andr = ]_[;.l:1 m; represents the payoff functions: X — R
for each playerG is played repeatedly for successive time peribés1, 2, .. ., and at
each time step, player: plays some actios! € X;. The collection of all players’
actions at time defines a play profil&* = (51,55, ..., S%). We wish to model com-
putationally efficient agents, and so we imagine that eaehtdgas some finite memory
of sizez, and that after time stef all players remember a history consisting of a se-
quence of play profiles! = (St—=1 gt==+2 %) € (X)=.

We assume that each playidras some efficiently computable functipn: (X)* x
X, — R that, given a particular history, induces a sampleable gividihy distribution
over actions (for all players and histories, .« pi(h,a) = 1). We writep for
[, pi- We wish to model imperfect agents who make mistakes, andesaagine that
at timet each playef plays according tp; with probabilityl — ¢, and with probability
€ plays some action itX; uniformly at randont®. That is, for all players, for all actions

3 The mistake probabilities need not be uniform random—ait the require is that the distri-
bution has support on all actions ;.



a € X;, Pr[st =a] = (1 —€)p;(ht,a) + rx;7- The dynamics we have described define
a Markov proces® <7< with finite state spacél = (X)* corresponding to the finite
histories. For notational simplicity, we will write the Maiv process a®< when there
is no ambiguity.

The potential successors of a history can be obtained by\ibge new play pro-
file, and “forgetting” the least recent play profile in themnt history.

Definition 2.1. For any S’ € X, A historyh’ = (St==%2 gt==+3 St §')is a
successoof historyh! = (St==+1 gt==+2_  §t),

The Markov proces# has transition probability;, ,, of moving from stateh =
(S1,...,5%) tostateh’ = (T",...,T?):

[ X1
0 otherwise.

. [, (1 =€) pi(h,T7) + == if 1’ is a successor of h;
Phw =

We will refer to P° as the unperturbed Markov process. Note thatefas 0,
p;,.n > 0 for every historyh and successol’, and that for any two historiels and

h not necessarily a successor/gfthere is a series of historiesh, ..., h, such that
hi=h,h, = h, and for alll < i < z, h; is a successor df;_;. Thus there is positive
probability of moving between any and anyﬁ in z steps, and s@€ is irreducible.
Similarly, there is a positive probability of moving betweanyh and anyfz inz+1
steps, and s@€ is aperiodic. Thereford?c has a unique stationary distributipf.

The stochastically stable states of a particular game asykepldynamics are the
states with nonzero probability in the limit of the stationdistribution.

Definition 2.2 (Foster and Young [14]).A stateh is stochastically stableslative to
Peif lim,_q pf(h) > 0.

Intuitively, we should expect a process to spend almost all of its time at its stochas-
tically stable states whenis small.
When a playef plays at random rather than accordingtowe call this a mistake.

Definition 2.3 (Young [24]). Supposé)’ = (St==*T1 ..., S!) is a successor of. A
mistakein the transition betweeh and”’ is any elemens! such thatp; (h, Sf) = 0.
Note that mistakes occur with probabiliye.

We can characterize the number of mistakes required to get &éme history to
another.

Definition 2.4 (Young [24]). For any two states:, h’/, the resistance-(h, k') is the
minimum total number of mistakes involved in the transitior 4’ if 1’ is a successor
of h. If k' is not a successor df, thenr(h, h') = co.

Note that the transitions of zero resistance are exactlyethimat occur with positive
probability in the unperturbed Markov proceRS.

Definition 2.5. We refer to the sinks d?° asrecurrent classen other words, aecur-
rent clasof P is a set of state§' C H such that any state i@’ is reachable from any
other state inC' and no state outsid€' is accessible from any state insi@e



We may view the state spadé as the vertex set of a directed graph, with an edge
fromh to b if b/ is a successor df, with edge weight:(h, h').

Observation 2.6. We observe that the recurrent classdés, Ho, . . ., where eachH; C
H, have the following properties:

1. From every vertek € H, there is a path of cost O to one of the recurrent classes.

2. For eachH; and for every pair of verticed, h’ € H;, there is a path of cost 0
betweer and?h’.

3. ForeachH;, every edgéh, h’) withh € H;, h' ¢ H; has positive cost.

Let r; ; denote the cost of the shortest path betwégrand H; in the graph de-
scribed above. We now consider the complete directed dfaypth vertex se{ H,, Ho, . . .}
inwhich the edgé H;, H;) has weight; ;. LetT; be a directed minimum-weight span-
ning in-tree ofG rooted at vertexd;. (An in-tree is a directed tree where each edge is
oriented toward the root.) Thetochastic potentiadf H; is defined to be the sum of the
edge weights iff;.

Young proves the following theorem characterizing stotibally stable states:

Theorem 2.7 (Young [24]).In anyn-player game= with finite strategy sets and any
set of action distributiong, the stochastically stable statesBf'-»-< are the recurrent
classes of minimum stochastic potential.

2.2 Imitation Dynamics

In this paper, we study agents who behave according to atstigdification of the
imitation dynamics introduced by Josephson and Matros [Y@ note that this modi-
fication is of no consequence to the results of Josephson atd$/16] that we present
below.) Playeri using imitation dynamics parameterized dy= N chooses his action
at timet + 1 according to the following mechanism:

1. Player: selects a set” of o play profiles uniformly at random from theprofiles
in historyh,.

2. For each play profil& € Y, i recalls the payoffr;(S) he obtained from playing
actions;.

3. Playeri plays the action among these that corresponds to his highgsff; that
is, he plays thé'" component ohrgmaxgcy m;(S). In the case of ties, he plays a
highest-payoff action at random.

The valueo is a parameter of the dynamics that is taken tabg o < z/2. These
dynamics can be interpreted as modeling a situation in wétigtach time step, players
are chosen at random from a pool of identical players, whb pkayed in a subset of the
last z rounds. The players are computationally simple, and so deounterspeculate
the actions of their opponents, instead playing the actian tas worked the best for
them in recent memory.

We will say that a history: is monomorphidf the same action profil& has been
repeated for the lagtrounds:h = (S, S, . .., S). Josephson and Matros [16] prove the
following useful fact:

Proposition 2.8. A set of states is a recurrent class of the imitation dynariiesid
onlyif itis a singleton set consisting of a monomorphicestat



Since the stochastically stable states are a subset of cbeeat classes, we can
associate with each stochastically stable state (.5, . . ., .S) the unique action profile
S it contains. This allows us to now define the price of stodhastarchy with respect
to imitation dynamics. For brevity, we will refer to this thughout the paper as simply
the price of stochastic anarchy.

Definition 2.9. Given a gamé~ = (X, 7) with a social cost functiory : X — R, the

price of stochastic anarchof G is equal tomax %, whereOPT is the play profile
that minimizesy and themax is taken over all play profile§ such that, = (S,...,S)

is stochastically stable.

Given a game&s, we define thebetter response grapbf G: The set of vertices
corresponds to the set of action profilestafand there is an edge between two action
profilesS and S’ if and only if there exists a playérsuch thatS’ differs from.S only
in playeri’s action, and playet does not decrease his utility by unilaterally deviating
from S; to S;. Josephson and Matros [16] prove the following relatiop$letween this
better response graph and the stochastically stable staaggame:

Theorem 2.10.If V is the set of stochastically stable states under imitatiymegnics,
thenV = {S: (S,...,S) € V}is either a strongly connected component of the better
response graph af, or a union of strongly connected components.

Goemans et al. [15] introduce the notion of sink equilibna & corresponding
notion of the “price of sinking”, which is the ratio of the satwelfare of the worst
sink equilibrium to that of the social optimum. We note thia¢ strongly connected
components of the better response grapty @orrespond to the sink equilibria (under
sequential better-response play)@fand so Theorem 2.10 implies that the stochasti-
cally stable states under imitation dynamics corresporaidobset of the sinks of the
better response graph 6f and we get the following corollary:

Corollary 2.11. The price of stochastic anarchy of a gafi@inder imitation dynamics
is at most the price of sinking 6f.

3 Load Balancing: Game Definition and Price of Nash Anarchy

The load balancing game on unrelated machines models a sgeafs who wish to
schedule computing jobs on a set of machines. The machinesdifferent strengths
and weaknesses (for example, they may have different tyjpe®oessors or differing
amounts of memory), and so each job will take a different amhad time to run on
each machine. Jobs on a single machine are executed ingbatath that all jobs on
any given machine finish at the same time. Thus, each agense¥tealules his job on
machineM; endures théoadon machinel/;, where the load is defined to be the sum of
the running times of all jobs scheduled df). Agents wish to minimize the completion
time for their jobs, and social cost is defined to berfakespanthe maximum load on
any machine.

Formally, an instance of the load balancing game on unitlatchines is defined
by a set ofn players andn machinesM = {My, ..., M,,}. The action space for each
player isX; = M. Each playeri has some cost; ; on machinej. Denote the cost



of machinel; for action profileS by C;(S) = >, st.s,—; ¢i,;- Each playeri has
utility function 7;(S) = —Cs,(S). The social cost of an action profile is (S) =
max;ecp C;(S). We defineOPT to be the action profile that minimizes social cost:
OPT = argming, x v(S). Without loss of generality, we will always normalize so
thaty(OPT) = 1.

The coordination ratio of a game (also known as the price afcry) was intro-
duced by Koutsoupias and Papadimitriou [18], and is intdridequantify the loss of
efficiency due to selfishness and the lack of coordinatiomaymational agents. Given
a game and a social cost function, it is simple to quantify th©PT game state:
OPT = argmin~(S). Itisless clear how to model rational selfish agents. In mpost
work it has been assumed that selfish agents play accordmdlésh equilibrium, and
the price of anarchy has been defined as the ratio of the ctis¢ @forst (pure strategy)
Nash state t@PT. In this paper, we refer to this measure as the price of Naatchy,
to distinguish it from the price of stochastic anarchy, whiee defined in Sect. 2.2.

Definition 3.1. For a gameG with a set of Nash equilibrium stat&s the price of

(Nash) anarchys maxgsece %.

We show here that even with only two players and two machthedpad balancing
game on unrelated machines has a price of Nash anarchy thab@inded by any
function ofm andn. Consider the two-player, two-machine game with = c2 2 =1
andey 2 = co,1 = 1/, for somed < § < 1. Then the play profil©PT = (M, Ms)
is a Nash equilibrium with cost 1. However, observe that ttadile S* = (Ms, M;)
is also a Nash equilibrium, with cosf § (since by deviating, players can only increase
their cost froml/§ to 1/ + 1). The price of anarchy of the load balancing game is
thereforel /4, which can be unboundedly large, although=n = 2.

4 Upper Bound on Price of Stochastic Anarchy

The load balancing game is an ordinal potential game [8] sarttie sinks of the better-

response graph correspond to the pure strategy Nash etuilite therefore have by

Corollary 2.11 that the stochastically stable states avdaet of the pure strategy Nash
equilibria of the game, and the price of stochastic anarshymost the price of anarchy.
We have noted that even in the two-person, two-machine lakhbing game, the price

of anarchy is unbounded (even for pure strategy equilibFiagrefore, as a warmup, we
bound the price of stochastic anarchy of the two-player;trazhine case.

4.1 Two Players, Two Machines

Theorem 4.1. In the two-player, two-machine load balancing game on &gzl ma-
chines, the price of stochastic anarchy is 2.

Note that the two-player, two-machine load balancing gaaret@ave at most two
strict pure strategy Nash equilibria. (For brevity we cdesithe case of strict equilibria.
The argument for weak equilibria is similar). Note also th#her there is a unique
Nash equilibrium at M, M;) or (M, Ms), or there are two alv; = (M, M) and
Ny = (M, My).

An action profileN Pareto dominates/” if for each playet, C, (V) < Cn:(N').



Lemma 4.2. If there are two Nash equilibria, andy; Pareto dominatesVs, then only
N7 is stochastically stable (and vice versa).

Proof. Note that if V; Pareto dominated/;, then it also Pareto dominated/; , M;)
and (Ma, Ms), since each is a unilateral deviation from a Nash equilibrfar both
players. Consider the monomorphic stal®, . .., N»). If both players make simulta-
neous mistakes at timeto Ny, then by assumptiony; will be the action profile in
hit1 = (Na,..., No, N7) with lowest cost for both players. Therefore, with positive
probability, both players will draw samples of their hisésrcontaining the action pro-
file Ny, and therefore play it, unti,, = (N1,..., N7). Therefore, there is an edge
inG fromh ={Ns,...,Na}toh’ = {Ny,..., N1} of resistance. However, there is
no edge front’ to any other state ig with resistance< o. Recall our initial obser-
vation that in fact,V; Pareto dominates all other action profiles. Therefore, h@ofse
mistakes will yield an action profile with higher payoff thah for either player, and so
to leave staté’ will require at leastr mistakes (so that some player may draw a sample
from their history that contains no instance of action peofi). Therefore, given any
minimum spanning tree @ rooted ath, we may add an edgé, »’) of weight 2, and
remove the outgoing edge froln, which we have shown must have cgst. This is a
minimum spanning tree rooted &t with strictly lower cost. We have therefore shown
that i’ has strictly lower stochastic potential thanand so by Theorem 2.7, is not
stochastically stable. Since at least one Nash equilibnmust be stochastically stable,
h' = (Ny,...,Ny) is the unique stochastically stable state. O

Proof (of Theorem 4.1)f there is only one Nash equilibriud/,, M) or (M, Ms),
then it must be the only stochastically stable state (singmtential games these are a
nonempty subset of the pure strategy Nash equilibria), amst also beDPT. In this
case, the price of anarchy is equal to the price of stochastirchy, and is 1. Therefore,
we may assume that there are two Nash equilibYiaand N,. If N; Pareto dominates
N5, then N; must beOPT (since load balancing is a potential game), and by Lemma
4.2, N7 is the only stochastically stable state. In this case, tive prf stochastic anarchy
is 1 (strictly less than the (possibly unbounded) price @afrahy). A similar argument
holds if N, Pareto dominated/;. Therefore, we may assume that neitdgrnor No
Pareto dominate the other.

Without loss of generality, assume thét is OPT, and that inV; = (M7, M»),
M, is the maximally loaded machine. Suppose thatis also the maximally loaded
machine inN,. (The other case is similar.) Together with the fact thatdoes not
Pareto dominaté/s, this gives us the following:

c11 < c22
c21 < C22
C1,2 > C22

From the fact that bottV; and N, are Nash equilibria, we get:

Cc1,1+tC21 = C22
c1,1+C1 > cC12

In this case, the price of anarchy among pure strategy Nashlen is:

C1,2 _C11+C21 C1,1 +C2,1 2,1

C292 2,2 C1,1 C1,1




Similarly, we have:

C1,2 _C11+C21 C1,1 +C2,1 C1,1
9 < 9 9 S 9 9 :1+ 9

C22 2,2 2,1 2,1

Combining these two inequalities, we get that the price o$iNanarchy is at most
1+ min(cy 1/c21,c2,1/c1,1) < 2. Since the price of stochastic anarchy is at most the
price of anarchy over pure strategies, this completes thefpr a

4.2 General Casen Players,m Machines

Theorem 4.3. The general load balancing game on unrelated machines hias jof
stochastic anarchy bounded by a functibralepending only on andm, and

U(n,m) <m- Fy(nm+ 1),
whereF,,)(i) denotes thé’" n-step Fibonacci numbér.

To prove this upper bound, we show that any solution worse tha upper bound
cannot be stochastically stable. To show this impossjbilie take any arbitrary solu-
tion worse than our upper bound and show that there must allvay minimum cost
in-tree inG rooted at a different solution that has strictly less coantthe minimum
costin-tree rooted at that solution. We then apply Profms2.8 and Theorem 2.7. The
proof proceeds by a series of lemmas.

Definition 4.4. For any monomorphic Nash statke= (5, ..., S), let theNash Graph
of h be a directed graph with vertex séf and directed edge§\/;, M) if there is some
player: with .S; = M; andOPT; = M;. Let theclosureM; of machinel;, be the set
of states reachable from/; by following0 or more edges of the Nash graph.

Lemma 4.5. In any monomorphic Nash stake= (S, .. ., ), if there is a machind/;
such thatC;(S) > m, then every machin&/; € M, has costC;(S) > 1.

Proof. Suppose this were not the case, and there exisid ag M; with C;(8) <1
SinceM; € M;, there exists a simple paidf;, = M, Mo, ..., M, = M;) with

k < m. SinceS is a Nash equilibrium, it must be the case thgt ;(S) < 2 because
by the definition of the Nash graph, the directed edge fAdin ; to M, implies that
there is some playerwith S; = M_q, but OPT; = M. Sincel = ~(OPT) >
Cr(OPT) > ¢, if playeri deviated from his action in Nash profifeto S, = Mj,
he would experience costy(S) + ¢;r < 1+ 1 = 2. Since he cannot benefit from
deviating (by definition of Nash), it must be that his costSinCj,—1(S) < 2. By the
same argument, it must be th@t_»(S) < 3, and by inductionC,(S) <k <m. O

Lemma 4.6. For any monomorphic Nash state= (5,...,S) € G withy(S) > m,
there is an edge from to somey = (7, ...,T) wherey(T) < m with edge cosK n
ingG.

1 if i <m; )
Y Fwy () =3 =" B (i) € o(20) f fixedn.
(n) (%) {Zz Fon(G) otherwise y(i) € o(2") for any fixedn

j=i—mn



Proof. Let D = {M; : C;(S) > m}, and define the closure @, D = {J,, ., M.
Consider the successor stafeof & that results when every playesuch thatS! € D
makes a mistake and plays on their OPT macl§ifi¢t = OPT;, and all other players
do not make a mistake and continue to piy* = S?. Note that by the definition of
D, for M; € D, for all playersi playing machingj in S, OPT; € D. LetT = S'*1.
Then for allj such thatM; € D, C;(T) < 1, sinceC;(T) < C;(OPT) < 1. To see
this, note that for every playérsuch thatS! = M; € D, Sitt = M; if and only if
OPT; = M;. Similarly, for every playei such_thaTSf“ = M; € D butS! # M;,
OPT; = M;, and so for each machin¥; € D, the agents playing of/; in T are
a subset of those playing aw; at OPT. Note that by Lemma 4.5, for all/; € D,
C;(S) > 1. Therefore, for every agentwith S! € D, m;(T) > m;(S), and so for
h' = (S,...,S,T,T) asuccessor di’, r(h', h") = 0. Reasoning in this way, there
is a path of zero resistance fromto g = (7,...,T). We have therefore exhibited
a path betweert and g that involves only|{i : S! € D}| < n mistakes. Finally,
we observe that ifi/; € D thenC;(T) < 1, and by construction, if/; ¢ D, then
C;(T) = C;(S) < m, since as noted abov®/; ¢ D implies that the players playing
M; in S are the same set playidd; in T. Thus, we have/(T') < m, which completes
the proof. a

Lemmad4.7.Leth = (S,...,S) € G be any monomorphic state witf(.5) < m.
Any path inG from h to a monomorphic staté’ = (5',...,S5") € G wherey(h') >
m - F(,y(mn + 1) must contain an edge with cost o, whereF{,,) (i) denotes the'"
n-step Fibonacci number.

Proof. Suppose there were some directed pBtin G (h = hy,ho,...,hy = 1)
such that all edge costs were less tharWe will imagine assigning costs to players
on machines adversarially: for a playieon machine)/;, we will considerc; ; to be
undefined until play reaches a monomorphic sfgten which he occupies machine
J, at which point we will assign; ; to be the highest value consistent with his path
from hy_1 to hy. Note that since initiallyy(S) < m, we must have for all € N,
ci,5; < m = mEq(n).

There arenn costsc; ; that we may assign, and we have observed that ourfirst
assignments have taken valuesnF(,)(n) = mF(,)(1). We will assume inductively
that ourk'” assignment takes value at mos#\,,)(k). Let by, = (T,...,T) be the
last monomorphic state i such that onlyk cost assignments have been made, and
higt1 = (T',...,T") be the monomorphic state at which the- 1%¢ cost assignment
is made for some playéron machine);. Since by assumption, fewer tharmistakes
are made in the transition, — hy41, it must be that; ; < Cr,(T); thatis,c; ; can be
no more than playei's experienced cost in stafe If this were not so, playerwould
not have continued playing on machipée 7" without additional mistakes, since with
fewer thano mistakes, any sample of sizewould have contained an instance of
which would have yielded higher payoff than playing on maehi. Note however that
the cost of any maching/; in 7" is at most:

n—1
G < Y iy <> mFpy(k—i) =mFu)(k+1)
0

i:cq ;% undefined i=
3J

where the inequality follows by our inductive assumptiore Wave therefore shown
that thek®" cost assigned is at mostF,,)(k), and so the claim follows since there are
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at mostum costsc; ; that may be assigned, and the cost on any machiSéimat most
the sum of the: highest costs. a

Proof (of Theorem 4.3)Given any statér = (S5,...,S5) € G wherev(S) > m -
F(,)(mn+1), we can exhibita staté = (U, U, .. ., U) with lower stochastic potential
thanh such thaty(U) < m - F(,,)(nm + 1) as follows.

Consider the minimum weight spanning in-tfBg of G rooted ath. We will use
it to construct a spanning in-tréé rooted at a stat¢ as follows: We add an edge of
cost at most: from h to some statg = (7,...,7) such thaty(T) < m (such an
edge is guaranteed to exist by Lemma 4.6). This induces & tliobughh andg. To
correct this, we remove an edge on the path fripto / in T}, of cost> o (such an
edge is guaranteed to exist by Lemma 4.7). Since this bréaksewly induced cycle,
we now have a spanning in-tr@g with root f = (U, U,...,U) such thaty(U) <
m - F,)(mn 4+ 1). Since the added edge has lower cost than the removed Edbas
lower cost thai},, and sof has lower stochastic potential than

Since the stochastically stable states are those with mimistochastic potential by
Theorem 2.7 and Proposition 2.8, we have proven/thanot stochastically stable.0

5 Lower Bound on Price of Stochastic Anarchy

In this section, we show that the price of stochastic anafehlpad balancing is at least
m, the price of strong anarchy. We show this by exhibiting astdnce for which the
worst stochastically stable solution coststimes the optimal solution. Our proof that
this bad solution is stochastically stable uses the folhgigmma to show that the min
cost in-tree rooted at that solutionghhas cost as low as the min cost in-tree rooted at
any other solution. We then simply apply Theorem 2.7 and &sitipn 2.8.

Lemma 5.1. For two monomorphic states and 2’ corresponding to play profile§
ands’, if S’ is a unilateral better response deviation frastby some playet, then the
resistance(h,h’) = 1.

Proof. Suppose playermakes the mistake of playingf instead ofS;. Since this is a
better-response move, he experiences lower cost, and gasdme samples an instance
of S, he will continue to plays;. No other player will deviate without a mistake, and
so play will reach monomorphic staké after > turns. O

My My Mz My
1 1-6 oo 00
2—-25 1 2—-30 o0
3—46 o0 1 3-50
4—-66 oo 00 1

A WDNPE

Fig. 1. A load-balancing game with price of stochastic anarehjor m = 4. The entry corre-
sponding to playeir and machiné\/; represents the cosf, ;. Theds represent some sufficiently
small positive value and theos can be any sufficiently large value. The optimal solution is
(M1, M2, M3, My) and costs 1, butM», Ms, M4, M1) is also stochastically stable and costs
4 — 66. This example can be easily generalized to arbitrary
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Theorem 5.2. The price of stochastic anarchy of the load balancing gameroalated
machines is at least:.

Proof. To aid in the illustration of this proof, refer to the instanaf the load balanc-
ing game pictured in Fig. 1. Consider the instance of the lealdncing game om
unrelated machines where= m and the costs are as follows. For each playeom
1lton,letc;; = 1. For each playei from 2 ton, lete; 1 = i — 2(i — 1)d, whered

is a diminishingly small positive integer. Finally, for édaplayeri from 1 ton — 1, let
¢iiv1 = 1—(2¢—1)¢. Let all other costs beo or some sufficiently large positive value.

Note that in this instance the optimal solution is achievégmveach player plays
on machineM; and thusy(OPT) = 1. Also note that the only pure-strategy Nash
states in this instance are the profilés = (M1, Mo, ..., M,,),

No = (Mo, My, M3, My, ..., M), N3 = (Mo, M3, My, My, ..., Mp),...,Np—1 =
(MQ, Mg, M4, ceey ]\/[mfl, Ml, Mm), Ny, = (MQ, Mg, M4, Cey ]\/[m, Ml) We ob-
serve thaty(N,,,) = m — 2(m — 1)§ &~ m, and the monomorphic state corresponding
to NV, is stochastically stable:

Note that for the monomaorphic state corresponding to eac Neofile/V;, there is
an edge of resistance 2 to any monomorphic gtéte. . ., S;) wheresS; is on a better-
response path to Nash profil ;. This transition can occur with two simultaneous
mistakes as follows: At the same time stgplayer: plays on machiné/; ., and
player: + 1 plays on machind/;. Since for this turn, playerplays on machiné/; .,
alone, he experiences cost thab iess than his best previous cost. Player1 expe-
riences higher cost. Therefore, player 1 returns to machiné/;,; and continues to
play it (sinceN; continues to be the play profile in his history for which heexgnced
lowest cost). Playercontinues to sample the play profile from time stépr the nexts
rounds, and so continues to play &f), ; without further mistakes (even though player
141 has now returned). In this way, play proceeds timesteps to a new monomorphic
stateS; without any further mistakes. Note that$j, playersi andi + 1 both occupy
machinel; 1, and soS; is one better-response move, and hence one mistake, away
from N, 41 (by moving to machiné/,, playeri 4+ 1 can experiencé less cost).

Finally, we construct a minimum spanning in-tfEe  from the graphy rooted at
N,,. For the monomorphic state corresponding to the Nash pisfilé <i <m — 1,
we include the resistance 2 edgedp All other monomorphic states correspond to
non-Nash profiles, and so are on better-response paths wIdash state (since this is
a potential game). When a state is on a better-response@ftio Nash stated’; and
Nj;, we consider only the stat®; such that > j. For each non-Nash monomorphic
state, we insert the edge corresponding to the first stepeiétter-response path to
N;, which by Lemma 5.1 has cost 1. Since non-Nash monomorphiiessare part of
shortest-path in-trees to Nash monomorphic states, wlaeh bdges to Nash states of
higher index, this process produces no cycles, and so forsparning in-tree rooted
at N,,. Moreover, no spanning tree gfcan have lower cost, since every edgd i,
is of minimal cost: the only edges ifly,, that have cost- 1 are those leaving strict
Nash states, bitny edge leaving a strict Nash state must have o8t Therefore, by
definition of stochastic potential, Theorem 2.7, and Prajmrs2.8, the monomorphic
state corresponding t,,, is stochastically stable. a

Remark 5.3.More complicated examples than the one we provide here shatthe
price of stochastic anarchy is greater thapand so our lower bound is not tight. For
an example, see Figure 2.
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My My Mz M,
1 1 oo 4—36
2—9 1 2-§ o
3—-203—-26 1 3—-20
4—-305—46 oo 1

A WDNPE

Fig. 2. The optimal solution here i&M:, M2, M3, M4) and costs 1, but by similar reasoning as
in the proof of Theorem 5.2,M4, M3, M1, M>) is also stochastically stable and coSts 4.
This example can be easily generalized to arbitrary valties.o

We note the exponential separation between our upper aret lbounds. We conjec-
ture, however, that the true value of the price of stochastarchy falls closer to our
lower bound:

Conjecture 5.4.The price of stochastic anarchy in the load balancing gantte wvire-
lated machines i®(m).

If this conjecture is correct, then tkie(m) bound from the strong price of anarchy [1]
can be achieved without coordination.

6 Conclusion and Open Questions

In this paper, we propose the evolutionary game theory isolebncept of stochastic
stability as a tool for quantifying the relative stability equilibria. We show that in
the load balancing game on unrelated machines, for whiclptiice of Nash anarchy
is unbounded, the “bad” Nash equilibria are not stochastistable, and so the price
of stochastic anarchy is bounded. We conjecture that theruppund given in this
paper is not tight and the cost of stochastic stability fadidalancing i€ (m). If this
conjecture is correct, it implies that the fragility of thiead” equilibria in this game is
attributable to their instability, not only in the face ofgkr coordination, but also to
minor uncoordinated perturbations in play. We expect thattéchniques used in this
paper will also be useful in understanding the relative ibtatf Nash equilibria in
other games for which the worst equilibria are brittle. Tiniemise is evidenced by the
fact that the worst Nash in the worst-case instances in mameg (for example, the
Roughgarden and Tardos [22] lower bound showing an unbaljdee of anarchy for
routing unsplittable flow) are not stochastically stable.
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