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ABSTRACT 

The role of historical mill dams in transforming river systems, especially throughout New 
England and the mid-Atlantic Piedmont regions of the United States has recently emerged as a 
topic of debate amongst the scientific community. In both physiographic provinces, large post-
settlement alluvium “legacy” deposits originating from colonial-era deforestation, agriculture, 
and ongoing hillslope land-use disturbances characterize the floodplains.  Furthering land-use 
impacts, water-powered milling from the late 17th to early 20th century was historically intensive 
throughout Southeastern New England and Pennsylvania, aiding in the floodplain storage of 
legacy deposits behind mill dams. These geologically recent legacy sediments overlay 
comparatively organic-rich, pre-colonial buried floodplain soils. Along mid-Atlantic Piedmont 
streams, debate has emerged regarding the ubiquity of both the interpreted pre-disturbance land 
surface, and the thickness of the legacy sediment layers in modern floodplains. When coupled 
with management concerns regarding the potential for legacy sediment to serve as a source for 
nutrient-rich sediment pollution and the rise of a billion dollar stream restoration industry, it is 
imperative that our understanding of the nature and extent of these floodplain deposits is pushed 
further. In this study, field sampling of exposed riverbanks was carried out along two major 
tributaries to the Christina and Brandywine Rivers in Pennsylvania and along two tributaries to 
the Connecticut River in order to characterize the nature and spatial variation of legacy sediment 
and buried soil thicknesses along the floodplain continuum. Floodplain deposits were analyzed 
for thickness, organic material, grain size, and color. A longitudinal survey accompanied the 
deposit measurements relative to the stream gradient and bank elevation. Deposit thicknesses 
were mapped using GIS and investigated for correlations with known historical mills and dams. 
Sites were cross-compared to explore the role of glacial history in legacy sediment deposition 
and variability of the pre-disturbance floodplain surface. Results indicated that floodplain 
deposits vary greatly within and between watersheds as well as within different glacial settings. 
Buried soils were consistently richer in organic content than post-settlement alluvium, but both 
layers had similar characteristic grain-size distributions. Post-settlement alluvium deposits varied 
widely in thickness within and between watersheds (20-160 cm in PA, 51-143 cm in CT), as did 
buried organic soils (0-80cm in PA, 20-48cm in CT). Mill dams served as a source of legacy 
sediment preservation, but were not collectively coupled with sediment deposits. Differences in 
regional and glacial histories influenced the magnitude to which sediments were stored in the 
floodplains, but it was slope, sinuosity, and depositional environment that appeared to most 
significantly impact the preservation of sediments in the landscape. The overall trends in the 
results suggest patchy distributions of pre-colonial floodplain conditions (e.g. grass dominated 
wetland, bottomland forest) as well as a patchy post-settlement depositional environment. 
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1.0 Introduction   

Rivers and streams have been the bloodlines of civilization since the earliest recorded 

human history. The importance of rivers for fresh water, food, recreation, navigation, and 

economic purposes is well known, yet there is increasing evidence that the once free-flowing 

natural rivers of the U.S have been in rapid decline for the last few centuries (Turner and 

Rabalais, 1991; Gergel et al., 2002; Walling, 2006). Early agricultural activity and deforestation 

throughout the Northeast from the 17th to 19th century rapidly eroded the upland landscape; just 

as the rise of dam construction trapped the downstream sediment influx coming off the land. In 

particular, these land-use impacts have created a tremendous amount of deposited anthropogenic 

sediment along rivers. Often referred to as legacy deposits, anthropogenic sediments exposed to 

land-use impacts are seen throughout the floodplain landscape. Management concerns regarding 

the contemporary impact legacy sediments have on rivers and streams create a need for 

understanding how waterways have been altered in order to adequately restore them.  

Increasing scientific interest in the implications of human alteration to river systems has 

been spurred by a need to restore rivers. In the past few decades, river restoration has grown to 

over a billion dollar a year industry (Bernhardt et al., 2005). Restoration relies heavily on the 

interpreted understanding of natural streams and utilizes pre-disturbed river systems as a 

baseline. A 2008 study by Walter and Merritts described the pre-colonial floodplain landscape 

across the mid-Atlantic Piedmont region as a grass-dominated wetland. However, debate has 

emerged regarding the ubiquity of their interpreted landscape across locations, especially as a 

template for restoration (Bain et al., 2008; Wilcock, 2008; Montgomery, 2008). This study, in the 

broadest sense, questions the extent to which human activities created a pulse of sediment in the 

landscape and whether the layer found below the human disturbance legacy deposit shows the 
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pre-colonial surface. Specifically, it aims to add understanding to both the contemporary 

influence of legacy deposits in historically altered river environments and the interpretation of 

the pre-disturbance floodplain landscape in glaciated versus unglaciated settings. Study sites in 

southeastern Pennsylvania and central Connecticut were used to test the ideas in question.  The 

study locations all experienced historically heavy levels of land use across the landscape 

associated with deforestation, agriculture, and mill dams.  

Human land-use activities have fundamentally changed the geomorphology of rivers. 

Land-use describes the various ways in which human beings use and manage the land and its 

resources. Today, nearly one-half of land surfaces have been transformed by human alteration, 

and an estimated two-thirds of the fresh water flowing in rivers obstructed by dams (Vitousek et 

al., 1997; Nilsson and Berggren, 2000). Human modification of land cover over the past few 

centuries in the United States has resulted in large volumes of sediment eroded from hillsides 

and deposited in valleys along rivers and streams (Walter and Merritts, 2008).  

The influence of landscape changes on rivers has long been studied (Hynes, 1975; 

Vannote et al., 1980; Allan, 2004). However, the level of change from a river’s “natural” state is 

difficult to both quantify and qualify. Assessing the impact of land-use change and related 

human activity on the geomorphology of rivers, in particular, is challenged by the general lack of 

long-term records of sediment transport (Walling, 1999). Human activities impact how both the 

channels and floodplains of a river evolve. When a river overtops its banks and floods, it leaves 

behind layers of sediment on either side of the channel referred to as the floodplain. Floodplain 

formation can be shaped by braided channels, which are multiple channels separated by small 

and often-temporary sediment bars, or a single, meandering channel. Alterations in flow regimes, 

sediment regimes, and vegetation cause rivers to switch between multi-thread and single-thread 
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channels (Tal, 2003; Wohl, 2004). The variety and influence of land-use histories necessitates a 

need to address site-specific and regional land-use histories, which might have influenced the 

geomorphology of rivers and streams observed today.  

Human impacts to aquatic ecosystems often involve changes in hydrologic connectivity 

and flow (Kondolf et al., 2006). Hydrologic connectivity refers to the fluxes of material, energy, 

and organisms moved by water within the channel, floodplain, and all other components of the 

ecosystem (Pringle, 2001). Connectivity is important for adequately characterizing fluxes within 

the landscape, and for understanding how humans alter those fluxes (Kondolf et al., 2006). In-

stream structures, such as dams, alter hydrologic connectivity and may effectively interrupt or 

eliminate connectivity of sediment (Wohl, 2014). Sediment connectivity can refer to the 

movement, or storage, of sediment down hillslopes, into channels, or along channel networks 

(Harvey, 1997; Fryirs et al., 2007; Brierley and Fryirs, 2013). Activities that reduce geomorphic 

complexity and storage of fine sediment and nutrients typically increase longitudinal 

connectivity of rivers (Wohl, 2014). Historically, prolific damming of streams along the eastern 

seaboard from the 17th to 20th century for water-powered milling compromised longitudinal 

connectivity and left a long-term legacy on the region. Dams trapped large volumes of sediment 

originating from colonial-era deforestation and ongoing hillslope land disturbance in the river 

valleys and streams of the East. By limiting overbank flows, however, these alterations reduced 

lateral connectivity between the channel and floodplain (Wohl, 2014). Rivers and streams 

disconnected from the natural system by human modifications explain much of the ecological 

degradation seen in waterways across the nation (Wohl, 2004). 

While prior studies suggested the role that land-use and damming have on sediment 

deposits along rivers (Milliman et al., 1983; Walling, 1999; James and Lecce, 2013), few studies 
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have taken into account the influence of geologic setting and glacial history between study 

localities. At the time of the last ice age, Connecticut and most of the Southern New England 

region remained under glaciation. However, the ice in Southern New England was thinner and 

retreated at a faster rate than its Northern New England counterparts (Soto and Huoppi, 2002). 

Soil that once covered New England was scraped away by glacial advancement and retreat, 

leaving a rocky landscape and limited loose sediment available to enter rivers and streams and be 

stored in the adjacent floodplains. In the mid-Atlantic Piedmont region, glaciation did not extend 

beyond the northernmost corners of Pennsylvania. The use of stream sites between two different 

geographic regions with unique glacial histories in this study provides a broader scope of 

understanding how geologic history influences stream formation and anthropogenic sediment 

accumulation. 

The large extent of suspected legacy sediments deposited along floodplains in 

preliminary field reconnaissance constitutes a reexamination of natural channel 

formation. Legacy sediments were identified based on soil color and composition. The issues of 

most interest involve understanding the similarities and differences in characterized legacy 

deposits and buried organic soil layers along riverbanks between and within Connecticut and 

Pennsylvania sites. This study, in the broadest sense, aims to 1) characterize the spatial variation 

of legacy sediment deposits across floodplain landscapes in two different geographical settings, 

with particular interest in the spatial relations between colonial mill dams and legacy deposits as 

well as the relationship between legacy deposit patterns and glacial history and 2) determine the 

variability and nature of the buried pre-settlement A horizon layers. It is hypothesized that 1) the 

presence of legacy sediment deposits vary depending on proximity to historic mill dam locations 

and glacial history, and that 2) buried organic soil layers vary in composition, reflecting a 
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heterogeneous pre-settlement floodplain landscape. Hypotheses were tested through extensive 

fieldwork collecting samples along exposed banks in Connecticut and Pennsylvania and through 

detailed sediment analysis of the samples collected. The observations made are critical to a 

broader and more thorough understanding of legacy sediments and the pre-disturbance 

floodplain surface. Little evidence has been given for the uniformity of historic valley-bottom 

surfaces, which often serve as a restoration template. Understanding of the pre-disturbance 

landscape is necessary for advancing river-restoration efforts. Knowledge of how human 

activities have contributed to landscape change also serves as a prerequisite for informed land-

management and restoration decisions (Walter and Merritts, 2008). 
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2.0 Background  

To identify patterns of sediment deposition along rivers and streams, it is necessary to 

understand how sediment arrives into the system. Sediment dynamics are difficult to measure but 

often change substantially over time in response to variations in the landscape (i.e glacial 

activity, dam sedimentation, land use) (James et al., 2009).  It is therefore important to look at 

the known individual impacts to fluvial sediments and how they affect river landscapes. 

Understanding the history of sediment change aids in anticipating responses to current river and 

stream management.  

2.1 Historic Land-use Impacts on Rivers 

Land-use activities, whether converting natural landscapes for human use or changing 

management practices on human-dominated lands, have transformed a large proportion of the 

earth’s terrestrial surface (Foley et al., 2005). The history of settlement patterns and 

socioeconomic conditions has produced various types of human land-use impacts on the rivers of 

the United States (Wohl, 2004). Graf (2001) calculated that humans have affected 79% of 

American rivers. In many cases, land-use activities have unintended consequences, creating a 

lasting legacy on the processes and form of a river (Wohl, 2014).  

2.1.1 Degradation of the American forest 

With the retreat of the last glaciation, the spread of forests over what had previously been 

a subartic plain introduced a whole new way of life upon the early human race (Wood, 1971). 

Forests had flourished unassisted for nearly 50 million years, remaining largely unmanaged  

(Williams, 1992). Evidence of land use from prehistoric and Native American maize-based 

agriculture prior to the Little Ice Age suggests an increased sedimentation in valley bottoms 

around 1100–1600 A.D (Denevan, 1992; Stinchcomb et al., 2011). This anthropogenic 



!

! 7 

sedimentation and land use change began roughly 500 years prior to major European settlement 

(Denevan, 1992; Stinchcomb et al., 2011). The arrival of early European colonists to New 

England, however, added more small forest clearings used for planting crops. Overall the lack of 

a market for excess production caused forest clearing to remain quite slow through the 17th 

century. As the emerging seaboard nation expanded westward, however, the supply of wood had 

to keep up with the demand of houses and ships being built (Wood, 1971).  

 In direct response to the need for more wood, forest clearings increased in size and 

abundance (Wood, 1971). The invention of the circular saw in the early 1800s further increased 

the scale of deforestation (McGregor, 1988). Stonewalls soon replaced fences in New England, 

as wood became a dwindling commodity. The wood-pulp process for making paper pushed 

loggers even deeper into the forest (Wood, 1971). Overnight, the new folk hero Paul Bunyan 

emerged, and the purchase of cheap land soared (Stewart et al., 1916). Deforestation, which had 

begun in New England and swept across New York and Pennsylvania, soon became a nation-

wide trend. By the mid-1800s land clearing and agriculture had come to a stop in New England 

as people moved west to more-arable soils. By the time westward forest clearing gained ground, 

ninety-six percent of the original forests of the northeastern and central states were already gone 

due largely to their settled populations and better agricultural soils and climate (Wohl, 2004).  

In clearing vast tracts of land, loggers of the 18th and 19th-century caused colossal 

amounts of erosion along hill slopes (Figure 2.1, 2.2). Forest removal increased water yield, 

especially within the first year after cutting (Lee, 1980). Tree roots and plant cover that had 

previously stabilized soil and hillslopes no longer aided in water absorption (Wohl, 2004). By 

exposing the soil to water, deforestation increased hillslopes’ vulnerability to mass movements 

(Harr, 1976). Geologically rapid erosion followed the removal of forest cover, transporting high 
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volumes of water, sediment, and nutrients down into river channels (Wohl, 2004; Montgomery, 

2012). Sedimentation from poor logging practices choked streambeds many miles downstream 

causing a loss of natural stream vegetation and destruction of fish habitat (Meade, 1996) (Figure 

2.2). The widespread soil erosion and stream siltation, caused by deforestation, left New England 

streams that once swarmed with seasonal migrations of herring, thick with mud and empty of 

fish (Wohl, 2004). As deforestation persisted and expanded across the country, the downstream 

effects were felt on a greater scale (Figure 2.2). A 1970s testimony by the director of the Pacific 

Northwest Division of the Environmental Protection Agency, further showed that streams in 

logged areas contained up to 7,000 times more sediment than they contained before they were 

logged (Wood, 1971).  

 
 

Figure 2.1: Typical stream processes and form 
in a forested watershed before timber harvest. 

Source: Wohl, 2004. 
!

Figure 2.2: Typical stream processes and form 
in a forested watershed after timber harvest. 

Source: Wohl, 2004. 
!

sediment 

sediment 
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2.1.2 Agricultural Land-use Impacts 

With an abundance of newly cleared and arable land throughout the Northeast, the impact 

of agricultural land-use followed suit in its erosive potential and sediment load. Early farming 

prioritized the floodplains for agricultural development (Bogucki, 1988). However, few places 

produce soil fast enough to sustain industrial agriculture over human time scales, let alone over 

geologic time (Montgomery, 2012). Agriculture in fertile valley bottoms of the eastern U.S. 

allowed populations to grow to the point where they had to farm on sloping land (Montgomery, 

2012). The agricultural economy of the northeast transformed with the urban, industrial economy 

of the late 18th to the middle of the 19th century (Bidwell, 1921). Intensive agricultural practices 

by the second half of the 19th century along the eastern seaboard increased erosion, nutrient 

pollution, and sediment load to streams and rivers.  

Several of the first studies documenting the effects of forest clearing and agricultural 

land-use focused on the Piedmont valley of Maryland (Wolman, 1967; Costa, 1975). A 1967 

study by Wolman indicated that sediment yields from forested areas pre-farming were less than 

35,000 kg per km2 yearly. Yields from the same region increased to between 105,000 and 

280,000 kg per km2 yearly with the advent of extensive agriculture (Wolman, 1967; Wohl, 

2004). A subsequent study of Piedmont streams in Maryland observed that agricultural sediment 

that was not eroded or transported downstream remained in the watershed as alluvium in the 

upper one meter of the floodplains (Costa, 1975). A number of more recent studies showed that 

rates of soil erosion from traditional agriculture practices are much greater than production of 

new soil by geologic processes (Langland and Cronin, 2003; Keller, 2010).  

Growing concern toward the concentration of nutrients stored in sediment deposits has 

caused for further examination of the role agricultural erosion and land-use runoff play in fluvial 
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systems. The influence of sediment in water pollution is tied both to the particle size of sediment 

and the amount of particulate organic carbon associated with sediment (Edwin, 1996). The 

chemically active fraction of sediment is usually cited as that portion which is smaller than 

63 µm and is typically classified as silt and clay (Wentworth, 1922; Edwin, 1996). A large 

number of contaminants are associated with agriculture and insoluble in water or hydrophobic, 

causing them to associate with particulates or adsorb to sediments after being released (Malmon 

et al., 2002).  

Results from a study by Malmon et al. (2002) advanced knowledge of a floodplain’s 

ability to strongly influence the redistribution of anthropogenic pollutants in fluvial 

environments (2002). A study by Niemitz et al. (2013) of streams in Cumberland County, 

Pennsylvania further showed that agriculturally affected watersheds had increasing 

concentrations of nutrient elements and trace metals in post-disturbance floodplain deposits. 

Niemitz et al. (2013) attributed the source of the excess nutrients such as phosphorus, copper, 

and lead to fertilizers, pesticides, and other historic soil amendments. Historically polluted 

sediments pose greater concern to aquatic systems as they are eroded from banks and transported 

downstream to additional bodies of water.  

2.2 Dam Impacts on Rivers 

The increased sediment flux from land-use was met with further complication 

downstream as humans began to structurally modify rivers and streams. At the same time that 

timber harvest and agriculture were rising to prominence throughout the eastern United States, 

small dams began to segment the flow of rivers to meet the demands of industrialization. A dam, 

in its most simplistic definition, is constructed to store water or raise the water level upstream to 

divert water into a canal or to increase the ’hydraulic head’. The hydraulic head is the difference 
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in height between the surface of a reservoir and the river downstream. A comparison model by 

Syvitski et al. (2005) estimated that humans increased the global river sediment transport through 

soil erosion and intensive land use by over two billion metric tons per year, yet simultaneously 

reduced the flux of sediment reaching the world’s coasts by over one billion metric tons per year 

due mainly to retention behind dams. By nature of design, dams since their early 

implementation, have been considered a factor of sediment storage along rivers and streams.  

While scientific attention is almost exclusively given to large dams, the use of dams in 

the United States long predates the era of monumental structures seen across the landscape today 

(Goldsmith et al., 1986; McCully, 1996; Graf, 1999; Graf, 2006; Macy, 2010). The first dams 

constructed in the United States corresponded with the first areas of European settlement 

(Schnitter, 1994). Early dams built through the 17th and 18th centuries were smaller and simpler 

in design, utilizing readily available materials. Prior to 1850, many small American dams were 

built using wood or stone stacked across stream channels (Jansen, 1980). Such methods made 

effective use of local materials at a time when transportation was limited. These early designs led 

to the use of timber crib dams filled with rock and covered with wood planking (Jansen, 1980).  

Regardless of building design or material, pre-industrial dams were low, crude, structures 

designed solely to increase water fall by raising the stream level for milling activities such as 

timber and grain (Billington et al., 2005).  

2.2.1 The Rise of Milling 

The need for dams rose with the need for timber along the Eastern Seaboard. As the 

timber industry assumed its place in the American marketplace, sawmills began to pop up 

throughout the Northeast, with streams and rivers serving as the necessary energy source to their 

success (Wood, 1971). The adoption by states of mill acts as early as the 1700s encouraged the 
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construction of mills and dams (Hunter, 1979; Walter and Merritts, 2008). Preferential treatment 

toward mill development included financial assistance, free local labor for construction, and the 

granting of water rights on local streams to power waterwheels (Cech, 2010). At the turn of the 

18th century, for example, the Maryland General Assembly passed the Maryland Mill Act to 

encourage continued construction of water mills in the state. The act entitled developers to an 80-

year lease on ten acres of private, riparian property on both sides of the stream (Hart, 1995). The 

Massachusetts Legislature passed a mill act shortly after which awarded mill owners the right to 

construct milldams with little regard to the effects of flooding on upstream landowners 

(Steinberg, 2003; Cech, 2010). 

 The mid-to-late 1700s ushered in a period of unprecedented economic growth for the 

United States (Melosi, 1984). Sawmills, gristmills, paper mills, and cotton mills, among others, 

dotted the sides of streams (Figure 2.3a, Figure 2.4). Milling intensified with economic growth in 

colonial America, peaking along the eastern seaboard in the 1800s.  Mill sites were selected by 

the ease with which the necessary head and fall of water could be obtained. Aside from the 

waterwheel, the dam was the most essential element of a mill (Billington et al., 2005). Small 

dams became critical to control the flow of water fueling the mills (Figure 2.3b).  

     

Figure 2.3a and 2.3b: An abandoned mill located on White Clay Creek in Avondale, PA and a 
rock dam located on Doe Run in Coatesville, PA. 

a)  b)  
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Figure 2.4:  Historic mill and dam in Sudbury Massachusetts. Photo source: Douglas Thompson 
 

2.2.2 Mill Dam Technology 

The technology of water mills in colonial America was wholly European in origin and 

character (Hunter, 1979). Dam design along rivers and streams in the Northeast wavered little 

from its pre-industrial construction through the early stages of the industrial revolution (Figure 

2.5). Mill owners of the 17th to 19th century were completely dependent on the hydrologic cycle 

for their supply of water power. The right amount of water was crucial. Too little water did not 

provide enough force to turn the wheel, while too much water kept the wheel from turning. Thus, 

the introduction of mill races or sluiceways became critical to the success of mill operations 

(Macy, 2010). In some locations, dams directed water into a mill race or sluiceway located 

upstream from the mill. The mill race diverted water from the stream to feed the water wheel. 

Mill races ranged in length depending on the need to build head. The better the site, the shorter 

the mill race. At the end of the mill race, a waterwheel turned and powered the mill, and the 

tailrace carried the water back into the stream or river (Reynolds, 2002). The dam was anchored 

into the riverbank with abutments designed to allow excess water to spill over (Cech, 2010).  
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Figure 2.5: Mills on the Tsatsawassa: Techniques for Documenting Early 19th Century Water-
Power Industry in Rural New York, by Philip L. Lord 

 
2.2.3 Mill Dam Locations 

Water-powered milling was especially intensive in the mid-Atlantic Piedmont region, 

west of the Atlantic Seaboard Fall Line (Figure 2.6). Stream gradients in the mid-Atlantic 

Piedmont region were conducive to milldam construction and the close proximity of shipping 

ports along the Coastal Plain was an added incentive (Walter and Merritts, 2008). New England 

had the highest regional density of dams, with 0.015 dams per km2 (Graf, 1999). The density of 

dams in New England, much akin to the mid-Atlantic, can be attributed to its regional history of 

milling along rivers and streams (Figure 2.6). Areas of historically intensive milling saw a 

decline in water quality as more dams utilized the natural supply of streams and rivers.  

Throughout New England, New Jersey, New York, and Pennsylvania, sawmill waste polluted 

streams. Local sawmills extensively dumped sawdust into the water to the point that fish 

populations rapidly declined (Wohl, 2004). 
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Figure 2.6: A map of dam density per area in the United States. Source: Graf, 1999 

2.2.4 The Modern Day Legacy of Dams  

Although structures were generally small for most of the history of dam building, new 

technologies in the 19th and 20th centuries allowed the construction of much larger and more 

complicated structures to generate hydroelectricity, control floods, support large-scale irrigation, 

and improve navigation (Smith, 1971; Schnitter, 1994). By current statistics, the United States 

has, on average, constructed the equivalent of one dam every day since Thomas Jefferson was 

president (DamNation, 2014).  The Army Corps of Engineers maintains a National Inventory of 

Dams, which includes more than 76,500 “large” structures over ten meters (Graf, 1993). Yet, 

there are over 2.5 million dams in the United States, most of which are small (generally <2 m), 

privately owned structures that are not taken into statistical account on a national level (National 

Research Council et al., 1992) (Figure 2.7). In addition, these older, small dams are frequently 

failing and causing damage, injury, and property loss. The discrepancy in criteria used by 
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governmental agencies and organizations to classify dam size is not reflected in statistics nor is 

dam size used in a consistent manner (Poff et al., 2002).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.7: Number and storage capacity of dams and reservoirs in the continental United States. 

Data from U.S. Army Corps of Engineers, 1996. Source of figure: Graf, 1999. 
 

As the burgeoning scientific study of dam removal has grown, there has been significant 

attention to large dams in the United States and on a global scale, while the impact of small dams 

has gone largely unrecognized (Schnitter, 1994; Graf, 2006). In part, the lack of information on 

small dams can be directly attributed to the lack of any scientific studies of dams predating the 

1900s. Consequently, the dams being constructed post-1900 were larger and more industrial in 

style and function than their earlier mill dam precursors. Long-term scientific evaluation has 

been instated on multiple large-dam removal sites. However, it is important to note that most of 

the dams in the U.S. are relatively small structures, and dam removal thus far has been 

dominated by the removal of small, often decrepit structures. While it is tempting to use size as a 

primary descriptor of a dam’s potential ecological impact (Poff et al., 2002), an evaluation of the 

environmental impact of small dams is also critical to the issue of dam removal. In areas where 

dams were historically heavily concentrated, the high density of structures is likely to provide a 
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greater localized aggregate effect than what is anticipated for a single small dam (Figure 2.6). 

Niemitz et al. (2013) argued that the remobilization of anthropogenic sediments from thousands 

of mill ponds in the eastern United States may add significant degradation of downstream 

ecosystems.  The storage of water and capture of sediment by dams of any size causes profound 

downstream changes in the natural patterns of hydrologic variation and sediment transport (Poff 

et al., 2002). 

2.3 River and Stream Channels 

2.3.1 Channel Formation 

As geology, climate, and anthropogenic factors change with time, river channels adjust in 

response. The type of river response depends on the magnitude and persistence of changes in 

water and sediment entering the river (Wohl, 2004). Channels originate in a variety of ways, 

related in part to the history of the land surface on which they develop. Water can flow down 

slope at the surface as overland flow, which is used to describe surface flow outside the confines 

of a channel (Wohl, 2014). The first formal theory of channel-formation mechanics was 

proposed by Horton (1945) and revolutionized geomorphological analysis (Dunne et al., 1995). 

Horton overland flow described the tendency of water to flow horizontally across land surfaces 

when rainfall exceeded infiltration capacity. Horton overland flow is most common where 

vegetation is sparse, slope gradients are steep, soil is thin or of low permeability, and 

precipitation intensities are high. A second type of overland flow, referred to as saturation 

overland flow, occurs when the soil becomes saturated, and any additional water input causes 

runoff (Dunne and Leopold, 1978; Montgomery and Dietrich, 2002). It is expected that 

saturation overland flow occurs more frequently than Horton overland flow with large land-use 

changes.  
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Sediment, much like water, also moves downslope through overland flow as well as 

through mass movements such as slides and flows. Slides typically result from a decrease in the 

shear strength of the soil as a result of weathering, freezing and thawing, or human alterations 

such as deforestation (Wohl, 2014). A flow occurs when debris is sufficiently liquefied or 

vibrated and experiences substantial internal deformation. Both slides and flows may be 

primarily erosional at high gradients and depositional at low gradients (Wohl, 2000). At some 

point downslope, surface irregularities concentrate overland flow into slight depressions that then 

enlarge as the rising water depth increases the shear stress acting on the substrate at the base of 

the flow (Wohl, 2014). This can give rise to rills and gullies, typically described as parallel 

channels with few or no tributaries (Wohl, 2014). Rills and gullies can form effective outlets for 

sediment erosion down slopes and into river networks (Sutherland, 1991). Rills can develop 

nearly simultaneously across a terrain and then integrate into a network (Dunne, 1980), forming 

definable banks, which separate the unchanneled areas from channel networks (Dietrich and 

Dunne, 1993). Channel formation further occurs where the sediment transport rate, defined as a 

function of stream power, increases rapidly (Knighton, 1976). As discharge increases during a 

flood, for example, flow velocity increases, and the greater force of flow exerted against the 

streambed and banks brings sediment into transport (Wohl, 2004). Channel morphology thus 

results from and responds to variation in the size of material eroded and deposited in various 

areas of the channel (Clifford, 1993).  

2.3.2 Channel Adjustments 

River-corridor geometry depends upon fluxes of water, sediment, and organic matter 

from headwaters to the river mouth, and between river channels and floodplains. Leopold and 

Wolman (1957) classified the change in shape or pattern of a river from headwater to deposition 
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zone as planform characteristics (Leopold and Wolman, 1957). One characteristic of the 

classification includes whether the river has one, single-thread, or several, multithread, channels. 

As the supply of water and/or sediment increases, alluvial channels change from single-thread, 

meandering channels to braided, multithread channels (Knighton, 1976).  The dynamic channel 

structure of rivers and streams is highly dependent on the flow of water, sediment supply, and 

vegetation. Channel classification based on planform characteristics has long been of interest to 

fluvial research (Schoor et al., 1999). Leopold and Wolman (1957) used an analysis of channel 

forming discharge (Q) and slope (S) to identify the threshold condition that separated single-

thread and braided channels (Leopold et al., 1957). Schumm (1977;1985) followed with a study 

relating channel planform to sediment transport, channel stability, and measured channel 

dimensions. Rosgen’s classification (1994) several years later described channel types that 

differed in entrenchment, gradient, width-depth ration, and sinuosity. Van den Berg (1995) 

further used stream power and bed-material size to predict channel planform. More recently, 

scientists have recognized the limitations of classifying channels solely on braided, straight, or 

meandering characteristics and have additionally stressed the relative response of a river to 

sediment inputs (Montgomery and Buffington, 1997).  

Along today’s river systems, braided channels are much less commonly observed than 

meandering channels. Braided streams typically have wide and shallow channels separated by 

sediment bars and tend to occur on steeper gradients where there is a large supply of sediment 

for braided bar formation (Wohl, 2000). Braiding at the reach scale is commonly associated with 

a large source of sediment from a hillslope mass movement or glacial activity (Knighton, 1976). 

Braided channels tend to store sediment for shorter periods of time and have rapid turnover times 

for floodplains compared to meandering or straight channel segments in the same region (Wohl, 
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2000; Beechie et al., 2006). Moreover, braided rivers are characterized by changes in width, 

where relatively small increases of water depth are associated with a large increase in surface 

area (Van der Nat et al., 2002; Ashmore and Sauks, 2006; Welber et al., 2013). Numerous field 

observations from studies conducted on large rivers show a strong relationship between braided 

channels and wood accumulation (Piégay et al., 1999; Gurnell et al., 2001; Bertoldi et al., 2013; 

Welber et al., 2013). The occurrence of sediment bars provides both a source for vegetative 

growth and wood retention sites. Braided channels are often distinguished from similar 

anabranching  channels by the rate of bar formation in relation to established vegetation. The 

tendency toward braiding versus anabranching may be influenced by a river’s ability to turn over 

its bed within the characteristic time for riparian vegetation to establish and grow to a mature 

state (Gran and Paola, 2001). Anabranching channels include multiple flow paths, but unlike a 

braided channel, individual subchannels are seperated by semi-perminant islands (Wohl, 2000)  

Single-thread channels, on the other hand, are typically differentiated on the basis of 

sinuosity, the ratio defined by actual flow path downstream to straight-line distance between two 

points (Wohl, 2014). Straight channels have a single channel with sinuosity less than 1.5. River 

reaches with a low sinuosity are often confined by steep valley walls or occur in erodible, 

alluvial boundaries (Wohl, 2014). In return, water moves faster through low sinuosity reaches of 

rivers, limiting the ability of sediment deposition and retention. Rivers flowing over gently 

sloping ground begin to curve back and forth across the landscape. These are called meandering 

rivers. A single-channel river with a sinuosity greater than 1.5 is classified as meandering and is 

the most widespread and common type of channel planform (Leopold, 1994; Wohl, 2014). 

A meander forms when moving water in a stream flows faster along the outer banks, eroding the 

bank and widening its valley, while the inner part of the river has less energy and deposits silt 
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along the inside of the meander bend. Leopold and Langbein (1966) determined that meanders 

appear to be the form in which a river does the least work in turning; hence they are the most 

probable form a river can take (Leopold et al., 1966). The slower water cannot carry as much 

sediment and deposits its load on a series of point bars. 

Widespread, intense human impacts on river systems, particularly over recent centuries, 

have caused major changes in channel characterization. Intensive erosion from deforestation and 

a lack of wood in streams has the potential to result in erosion down to bedrock, a more uniform 

longitudinal profile, and less channel form diversity (Frear, 1982). Human activities impact all 

three major controls on channel pattern: flow regime, sediment regime, and vegetation, causing a 

switch between multi-thread and single-thread channels (Figure 2.8).  

 

Figure 2.8: An example of river adjustment from single-thread meandering to multi-thread 
braided. Source: Wohl, 2014 

 
2.3.3 Role of Vegetation  

Numerous studies have documented the influence of riparian vegetation on channel 

morphology and flow dynamics (Graf, 1978; Johnson, 1994; Micheli and Kirchner, 2002; Simon 

and Collison, 2002, Tal et al., 2007). The riparian zone is the interface between terrestrial and 
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aquatic ecosystems, and includes sharp gradients of environmental factors, ecological processes, 

and biotic communities (Gregory et al., 1991). The presence of a riparian zone can strongly 

influence the characteristics of water, sediment, and solutes entering a river. Thus, removal of 

streamside vegetation from the riparian zone, whether by natural means or human activity, can 

have a tremendous impact on the hydraulics and morphology of stream channels. Tal and Paola 

(2007) conducted a series of flume experimentations to show that vegetation used to stabilize 

banks can shape the path of water and convert the planform morphology from braided to single-

thread.  

2.4 River and Stream Deposition  

When the balance of sediment load and/or channel geometry and slope is changed there is 

often a response, or adjustment of the fluvial system as it attempts to re-establish the equilibrium 

condition. River systems, or reaches, are considered in equilibrium when there is a balance 

between the amount of sediment load being supplied to the system and the capacity of the system 

to carry that sediment load out (Field, 2002) (Figure 2.9). Dynamic equilibrium assumes that 

changes may be made to the movement of sediment within the fluvial system, but those changes 

have a net effect of zero and allow for the continued downstream motion of sediment. Dynamic 

equilibrium is achieved through sediment continuity. Hard engineering features (i.e dams) 

disrupt continuity. Sediment downstream is eroded more but the sediment upstream is not able to 

replace the downstream sediment due to a lack of connectivity, therefore preventing the system 

from remaining in equilibrium.  
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Figure 2.9: Fluvial processes necessary to achieve sediment continuity and dynamic equilibrium. 
Source: Vermont Agency of Natural Resources 

2.4.1 Sediment transport  

Sediments that are deposited by flowing water in river valleys and deltas are commonly 

referred to as alluvium. Alluvial sediment originates from the weathering of parent material on 

land. Alluvium is then transported downslope by erosion, overland water flow, and river flow, 

and deposited in areas of the river valley where the water flow velocity is lower (Goudie, 2004).  

The particulate sediment transported by rivers and streams is often distinguished by suspended 

load, dissolved load, and bed load. Suspended load is the finest size fraction of the total sediment 

load and typically consists of grains with an intermediate diameter ≤ 0.062 mm. Suspended load 

consists of particles not found in large quantities on the bed surface. The settling velocities of the 

suspended particles are so small that they move at approximately the same velocity as the flow 

and only settle from suspension when velocity declines substantially (Wohl, 2014). Much of the 

suspended load in a river comes from bank erosion and surface erosion across the drainage basin. 

Globally, suspended sediment accounts for about 70% of total fluvial sediment transport to the 
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oceans (Wohl, 2014). In reservoirs or mill pond locations, where water is pooled, an 

accumulation of suspended sediments is often found (Merritts et al., 2010). 

Bed-material load includes grains typically coarser than 0.062 mm. These grains move 

either in contact with the bed by rolling, sliding, saltating, or suspended just above the bed 

(Wohl, 2014). In most river systems, the bed load is what influences the channel morphology and 

stability (Kondolf et al., 2002). The dissolved load is material carried in solution downstream. 

The introduction of metallic pollutants into a river, whether it is natural (erosion) or artificial 

(anthropogenic), can occur in dissolved form (Jain et al., 2004). Trace metals, in particular, 

receive significant attention as contaminants occurring in concentrations and carried downstream 

in the dissolved load. Because many trace metals are adsorbed to fine sediment, the mobility and 

storage of fine sediments along banks and floodplains can strongly influence the spread of trace 

metals through a river network (Wohl, 2014).  

2.4.2 Floodplains 

The area of sediment deposition adjacent to the channel is referred to as the floodplain.  

The floodplain is generally considered to be the relatively flat area of land that stretches from the 

banks of the parent stream to the base of the valley walls and over which water from the parent 

stream flows at times of high discharge (Goudie, 2004). Whereas a wide variety of present-day 

floodplain types can be defined, their formation can be regarded, in most cases, as the product of 

the interaction of two processes, vertical and lateral accretion (Nanson, 1986; Wright et al., 

1993). Wolman and Leopold (1957) concluded that lateral accretion and within-channel 

deposition are the dominant processes of floodplain formation, accounting for up to 90 percent of 

the deposits (Knighton, 1976). Lateral accretion develops point bars, a depositional feature made 

of alluvium that accumulates on the inside bend of streams and rivers. Vertical accretion on the 
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other hand is most often attributed to overbank deposition. Most of the vertical floodplain 

deposition occurs during floods when flow velocity and sediment transport rates are large with 

the most fine-grained alluvium deposited furthest from the channel. When a succession of floods 

causes overbank deposition, each flood elevates the surface higher above the channel (Wright et 

al., 1993). Land-use changes including agriculture and forest clearing have the potential to 

exacerbate naturally occurring floods and therefore overbank deposition. When the increased 

sediment supply produced by land-use accumulates in rivers, channel capacity is reduced, and 

floods are more likely to spill beyond the channel and across the valley bottom (Wohl, 2004).  

2.4.3 Terraces 

Geologically ancient floodplains are often represented in the landscape by fluvial 

terraces. Terraces form when streams carve downward into the floodplain, leaving discontinuous 

remnants of older floodplain surfaces as step-like features along the sides of the valley (USGS, 

2004). Terraces serve as an excellent indicator of change in a rivers’ longitudinal profile through 

time because they represent channel and floodplain surfaces no longer subject to active fluvial 

modification (Wohl, 2000). Many factors influence why streams and river episodically carve into 

their floodplains, forming terraces. Because stream terraces are typically widely distributed along 

steams throughout a region, changing climatic conditions are likely an important factor in their 

formation (Bull, 1991). Streams broaden their floodplains when sediment supplies are high and 

down cutting by stream erosion is abated (USGS, 2004). The elevation of a terrace indicates the 

recurrence interval in which it is flooded. Data on the age, spatial extent, and stratigraphy of the 

terraces as well as independent information on the timing and nature of base-level change, 

glaciations, and historical land use are necessary to explain terrace formation (Wohl, 2014). 
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Numerous classifications are used in conjunction with terraces. Terraces are often 

categorized into two types based on their composition, and distinguished as strath or depositional 

terraces. Strath terraces have low-relief terrace treads formed in bedrock or other cohesive 

materials such as glacial till, and are overlain by a thin veneer of alluvium (Wohl, 2014). 

Existence of a strath terrace implies a period of vertical stability during which a river forms a 

relatively planar bedrock valley bottom by lateral erosion, followed by a period of vertical 

incision as transport capacity increases beyond sediment supply (Wohl, 2014). Strath terraces are 

less likely to form as rates of incision increase, because the river is cutting downward too fast to 

form a strath tread (Merritts et al., 1994). Strath terraces tend to be more extensive where rivers 

flow over bedrock less resistant to weathering and erosion (Montgomery, 2004; Wohl, 2008, 

Wohl, 2014).  

Depositional terraces form from alluvium. Depositional terraces are alluvial sequences 

too thick to be mobilized throughout their depth by the river (Wohl, 2014). Because depositional 

terraces can form more rapidly than strath terraces, they do not necessarily imply a period of 

vertical stability. They do, however, imply a period of deposition, followed by incision. 

Alluvium in depositional terraces is commonly topped by a tenth of a meter to one meter of fine 

overbank sediments (Pazzaglia, 2013). Depositional terraces have been attributed to a range of 

activities including fluctuating water and sediment discharge during glacial cycles and sediment 

moving downstream over periods of tens to hundreds of years in response to hillslope mass 

movements (Pazzaglia, 2013). More recently, the direct modification of rivers and watersheds by 

human land-use has resulted in the development of depositional terraces along many rivers and 

streams (Blum et al., 2000). 
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Another categorical descriptor of terraces is paired and unpaired. Paired terraces have 

equivalent surface heights on both sides of a river valley. Unpaired terraces do not match across 

the valley and might occur in situations of continued incision as a river migrates laterally across 

the valley (Wohl, 2014).  

2.4.4 Legacy Sediments  

Human-accelerated hillslope erosion and deposition of sediments has caused the alluvium 

layers found in floodplains and terraces to be thicker than typically expected in a natural stream 

system (Walter and Merritts, 2008). Legacy sediments are alluvium deposits left as a result of 

past human activities such as changes in land cover or construction of mill dams. Legacy 

sediments persist and continue to heavily influence river process and form. The potential for 

legacy sediments to remobilize suggests that they might add significant degradation to 

downstream ecosystems (Niemitz et al., 2013). 

2.5 Soil Development 

The soils that compose floodplains and terraces can be used to distinguish between the 

two geomorphic features.  Given enough time, distinctive soils develop, the character of which 

depends upon climate, vegetation, topography, and source material (Bridge, 2009).  Soil can be 

used to give a sense of the age of geomorphic surfaces. The nature and degree of soil 

development varies in time and space as a function of floodplain-deposition rate, parent 

materials, climate, topography, and vegetation (Goudie, 2004). For soil to initially develop, 

weathering, or the physical and chemical breakdown of rocks, has to occur.  

Vertical and horizontal movements of the materials in a soil system create a distinct 

layering, parallel to the surface called a soil profile (Keller, 2010). Each layer is referred to as a 

soil horizon (Figure 2.10). The O horizon and A horizon contain highly concentrated organic 
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material. The difference between these two layers reflects the lack of mineral sediments present 

in the O horizon. Generally, the O horizon consists entirely of plant litter and other organic 

material, while the underlying A horizon contains both organic and mineral material (Birkeland, 

1999). The pure organic of the uppermost O horizon tends to go away quickly. The A horizon 

tends to be dark in color because of the abundant organic material (Figure 2.10). Below the A 

horizon, some soils have an E horizon, or zone of leaching; a light-colored layer that is leached 

of iron-bearing components (Figure 2.10). The B horizon, or zone of accumulation, underlies the 

O, A, or E horizons and consists of a variety of materials and minerals translocated downward 

from overlying horizons (Jenny, 1994). The C horizon is composed of weathered parent material 

that can be alluvial in nature (Figure 2.10). The bottommost R horizon is unweathered parent 

material (Keller, 2010). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.10: Soil horizons from loose organic surface matter to parent material. Source: 
http://spot.pcc.edu/~kleonard/G202/Lecture4.html 
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The age of a soil can be estimated by the amount of weathering that has occurred and 

extent to which the parent material has been converted to distinct horizons. Soil age is based on 

three general criteria: 1) the more horizons that are present, the older the soil; 2) the thicker the 

horizons, the older the soil; and 3) the greater difference there is between adjacent horizons, the 

older the soil (University of Nebraska Cooperative Extension, 1999). The color of soils can also 

serve as an indicator of age. Soil chronosequences have been increasingly used to link color and 

age (Jenny, 1994). Chronosequences are related soils that evolved under similar conditions of 

parent material, vegetation, topography, and climate, but at different times (Harden, 1982). 

Chronosequences translate spatial differences between soils into temporal differences (Huggett, 

1998).  

Color can also indicate the physical and chemical composition of a soil.  The B horizon 

shows the most dramatic differences in color, varying from yellow-brown to light red-brown to 

dark red, depending upon the presence of clay minerals and iron oxides (Keller, 2010). Dark 

colors are usually due to the presence of organic matter. Therefore, the darker the surface 

horizon, the more organic matter content assumed. Since the A horizon is typically the most 

organic rich of mineral horizons, coloring tends to be a dark brown to black with often visible 

organic material. Distinguishable A horizon layers that are visible along stream and river banks 

are an accumulation of buried A horizon soils over time.  

2.6 Floodplain Interpretation Debate  

A study by Walter and Merritts (2008) changed the way of thinking about floodplain 

deposits in relation to human land-use and river system alterations. Walter and Merritts (2008) 

characterized pre-disturbance Eastern stream systems as small multithread channels situated 

within widespread vegetated wetlands. Water and Merritts (2008) observed dark, organic-rich A 
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horizons with abundant seeds and woody debris, interpreted to be pre-settlement alder shrub-

scrub and grass-dominated meadows. They inferred that Holocene wetland sediments persisted 

until European settlement, and were often preserved beneath historic sediment deposits stored 

along valley bottoms (Walter and Merritts, 2008). These geologically recent, light-colored 

deposits were suspected to be a result of upland soil erosion, mill damming, and road building 

that began circa late 17th to 18th century (Snyder, 2015).  

 Walter and Merritts (2008) argued the damming that accompanied colonial settlement 

and industrialization disturbed the channel-floodplain connectivity, causing a build-up of 

sediment behind dams. Slackwater sedimentation buried the pre-disturbance floodplain and left 

large legacy deposits along streams where milling was particularly intensive (Walter and 

Merritts, 2008). Walter and Merritts (2008) attributed the legacy deposits to historic dam 

impoundments. Their results show that a single mill dam is capable of enhancing sedimentation 

over several hectares (Walter and Merritts, 2008). When coupled with an increase in erosion as a 

response to deforestation and agricultural practices, mill-dam construction converted river 

valleys into a series of linked sediment-filled ponds (Walter and Merritts, 2008). As many 

crudely constructed mill dams breached, channels incised to create the single-thread, meandering 

channels widely observed across the landscape today (Walter and Merritts, 2008). Walter and 

Merritts (2008) point to legacy-sediment deposits as a reason why so many eastern streams 

exhibit much lower bankfull heights than actual heights of banks. Walter and Merritts (2008) 

further call for a reevaluation of current restoration attempts that rely on the meandering eroding 

channel bank as the natural reference condition.  

Debate has emerged regarding the ubiquity of both the interpreted pre-disturbance grass-

dominated wetlands, and the thickness of the legacy sediment mantle in modern floodplains. 
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Walter and Merritts (2008) give one interpretation of how and why certain floodplain 

depositional characteristics are seen today, but their interpretation begs for further analysis of 

what the channel looked like before disturbance across landscapes, and the possibility to return 

to that state.  

Bain et al. (2008) questioned Walter and Merritts (2008) hypothesis that milldams were 

primary factors in historic sedimentation along mid-Atlantic valleys. In response to Walter and 

Merritts (2008), Bain et al. (2008) suggests that local observations can not necessarily be 

generalized to wider settings, as pre-colonial forms were inconsistently documented. Bain et al. 

(2008) argued that post-settlement land clearing and farming also added to immense volumes of 

fine-grained sediment along valley bottoms. Bain et al. (2008) interpreted the conclusions made 

by Walter and Merritts (2008) to suggest that pre-Colonial river valley forms represent an 

updated ideal condition for restoration. While enhanced understanding of historic valley 

conditions can offer useful guidance for stream rehabilitation design (i.e. observations of 

organic-rich, hydric soils by Walter and Merritts), Bain et al. (2008) argued that watershed 

managers need to consider both historic and contemporary causes of sediment supplies before 

deciding how to respond in restoration efforts.  

Wilcock (2008) took the restoration fragment a bit further, questioning what should be 

done in terms of improving streams. He raised issue with Walter and Merritts (2008) advocacy 

for remediation methods, which he interpreted to be large-scale. Wilcock (2008) referred to “hot 

spots” of erosion found along stream banks that might lead to local reductions of sediment 

loading, but have not been addressed by current science. Wilcock (2008) agreed with the 

statement made by Walter and Merritts (2008) that today’s streams differ from their pre-colonial 
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condition, emphasizing that a pristine stream is an unlikely template for restoration because the 

drivers of stream dynamics (i.e. water and sediment) have changed (Wilcock, 2008).  

Several components of the arguments made by Walter and Merritts (2008) as well as the 

critique by their colleagues require further examination. Walter and Merritts (2008) argue a pre-

disturbance wetland landscape characterized the mid-Atlantic Piedmont region. Little evidence 

has been provided, however, to generalize the full extent of pre-contact, historic landcover for 

the mid-Atlantic Piedmont region beyond localized observations, a point made in Bain et al.’s 

(2008) critique. Evidence is thus needed to justify broad application of these findings elsewhere 

or to examine whether other possible pre-disturbance landscapes might have characterized parts 

of the region. The regional scale of Walter and Merritts’ (2008) observations of legacy sediment 

thicknesses in relation to mill dam locations also requires further investigation. Lancaster 

County, Pennsylvania experienced more industrialization than other areas of mill operation in the 

mid-Atlantic Piedmont region, begging the question of how deposits may vary with damming 

frequency.  

On a level of restoration, the pre-disturbance characterizations made by Walter and 

Merritts (2008) may be beneficial on a local level, but can be detrimental to restoration efforts if 

applied regionally. Restoration ecology is a relatively young interdisciplinary field (Hanson et 

al., 2008). When applied to rivers, restoration is strictly defined as a return to a close 

approximation of the river condition before human disturbance (Wohl, 2004). It is by definition 

necessary to fully understand the pre-disturbance surface at each restoration site. In a response 

article to Walter and Merritts (2008) Science publication, geomorphologist David Montgomery 

necessitated the importance of understanding how natural streams work for river restoration 

(Montgomery, 2008). The sinuous form of meandering channels, which evolved out of the 
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studies of Luna Leopold and M. Gordon Wolman in the 1950s, still constitutes the natural ideal 

of a stream in channel restoration design across the United States. Walter and Merritts (2008) 

showed that the clearing of large wood and damming of streams altered the morphology of many 

rivers, which were previously thought to be natural. Thus a reconstitution of what represents a 

natural channel requires reexamination (Montgomery, 2008).  

While Bain et al.  (2008) and Wilcock (2008) are skeptical in their adoption of Walter 

and Merritts (2008) claims, they’re critiques provide little in the way of progressing current 

standards of river restoration and rehabilitation. The continual debate over natural stream 

conditions shows there has been no conclusion as a science, causing restoration to remain largely 

unchecked. River and stream restoration projects are increasingly numerous and economically 

driven, but rarely subjected to systematic post-project evaluation (Kondolf et al., 1995). The few 

evaluations that have been conducted indicated a high percentage of failures (Kondolf et al., 

1995), and few reliable data sets on which to base an estimate or true value exist.  

The numerous gaps remaining in the data leave many unanswered questions as a science. 

Walter and Merritts (2008), among a growing number of studies, indicate that dam-related 

sedimentation is common in the mid-Atlantic Piedmont (Walter and Merritts, 2008; Pizzuto and 

O’Neal, 2009). Far fewer studies have addresses the pervasiveness of historic mill dam 

sedimentation in the New England region. Both regions have a similar history, timing and 

intensity of European settlement. Both New England and the mid-Atlantic relied on intensive 

agriculture, with Pennsylvania continuing to rely on industrial farming beyond the timescale of 

New England. However, glaciation occupied New England’s Pleistocene landscape, while the 

mid-Atlantic region remained ice-barren. It is critical to comparatively study the role of 

geography and glacial history in floodplain deposition along streams to gain insight into the 
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ubiquity of both the impact legacy sediments have on modern streams, as well as the pre-

disturbance surface that once covered the valley-bottom.  

 Previous research related to river and stream sedimentation patterns shows how changes 

to the landscape influences the way sediment is deposited in the floodplains and the long-term 

influences human activity has on morphology (James and Lecce, 2013). Glacial activity, land-

use, and dam sedimentation all influence the way channels form as well as how sediment enters 

the river valley and deposits out in the landscape. However, many questions remain unanswered 

in connecting regional landscape histories with observed modern-day floodplain deposits. This 

study aims to look at how changes in the landscape in two states might affect patterns of 

sedimentation and whether patterns are localized or occur on a regional scale. Data were 

collected at two sites in both Connecticut and Pennsylvania that had known historic human-

alterations, but varying glacial histories.  
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3.0 Study Area 

Select streams in the New England and mid-Atlantic Piedmont physiographic provinces 

were studied to look at where and why legacy sediment deposits occurred along river valleys as 

well as to assess the continuity of a buried pre-disturbance floodplain landscape below the 

anthropogenic deposits. Two study areas in Pennsylvania and Connecticut with known colonial 

mill-dam activity were chosen to examine the influence of dams on legacy-sediment deposition. 

Connecticut and Pennsylvania were further selected as study locations to examine the role that 

differing geography and post-glacial activity play in floodplain-sediment storage. Before the 

selection of the study basin, a number of prospective sites were visited. The four streams selected 

were chosen on the basis of their ease of access, multiple exposed banks, and known human 

impacts.  

3.1 Christina River Basin Study Sites 

3.1.1 Basin Characteristics 

The sixth order Christina River Basin is 1440 km2 and consists of four sub-watersheds: 

White Clay Creek (277 km2), Red Clay Creek (140 km2), Brandywine Creek (842 km2), and the 

tidal Christina River (202 km2). Streams within the Christina River Basin range in Strahler’s 

stream order from first order at the headwaters of White Clay Creek to seventh order at the 

mouth of the Delaware River. Strahler’s stream order is a classification used to define stream 

size based on a hierarchy of tributaries (Strahler, 1957). When two first order streams come 

together, they form a second order stream. It is not until two second order streams combines that 

a third order stream is designated. Streams ranking sixth or higher are generally major, navigable 

rivers. For comparison, the Mississippi River is a tenth order stream and the Amazon River is a 

twelfth order stream.  
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 The Christina River Basin straddles southeastern Pennsylvania and northern Delaware 

(Figure 3.1). All four sub-watersheds flow into the Delaware River Estuary. The Christina River 

Basin transitions through the two most populated physiographic provinces in the U.S. In 2010, 

the National Science Foundation designated the Christina River Basin as one of ten integrative 

Critical Zone Observatory sites across the United States. Specifically, the basin hosts a continual 

study of vertical and lateral carbon, mineral, and water fluxes over a range of modern and 

historical land-use areas. Both sampled stream reaches were within the municipal boundaries of 

Chester County, Pennsylvania, an area with an average annual precipitation of 1,145 mm. 

Geologically, a diverse lithology, ranging from micaceous schist and gneiss to quartzite and 

marble (Figure 3.2) spans across Chester County and is overlaid by deep, unglaciated soils (Soto, 

1994).  

 

Figure 3.1: Aerial map of the Christina River Basin watershed. Source: SWRC. 
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Figure 3.2: Geological map of the Christina River Basin bedrock. Source: SWRC.  
 

3.1.2 Historic Land-Use 

Land use in the mid-Atlantic Piedmont region spans back centuries and is today 

composed of a gradient of surface covers including mature forest, agriculture, urban, 

commercial, and industrial land use. Historically, the Piedmont region provided the bulk of 

manufacturing and agricultural goods to port cities and a large portion of the wheat and flour for 

mid-Atlantic shipping (Walter and Merritts, 2008). The going land rate at the end of the 18th 

century in Pennsylvania was 12.5 cents per acre, causing an upsurge in land purchases and 
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clearing (Wood, 1971). In contrast to Connecticut, Pennsylvania, especially southern and central 

Pennsylvania, never had the widespread, broad abandonment of agriculture that Connecticut 

experienced.   

Mid-Atlantic Piedmont valleys were the ideal size for water-powered mills. The flow of 

water was sufficient to turn 17th through early 20th century water wheels, yet not too high to pose 

engineering challenges for building and maintaining dams and mills along valley bottoms. 

Compared to other watersheds such as that of Lancaster County, industrialization of the Christina 

River Basin was less intensive and consequently did not rely on the stacked formation of dams 

exhibited along Lancaster County streams (Figure 3.3). Streams in the Christina River Basin 

were gentle and relied on mill races to divert water from the stream up to several kilometers 

(Figure 3.5, 3.8).  

 

Figure 3.3: Historic map of dam locations in Lancaster, County. Dam locations are circled. 
Source: Franklin and Marshall College.  
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Figure 3.4: Watersheds of White Clay Creek and Doe Run study reaches located in Chester 
County, Pennsylvania 

!

 

 
 

3.1.3 White Clay Creek 

White Clay Creek is a third-order stream within the mid-Atlantic Piedmont and Atlantic 

Coastal Plain physiographic provinces (Figure 3.4). The majority of the stream is in the mid-

Atlantic Piedmont valley, which is characterized by its low relief and tectonically inactive rolling 

hills, plateaus, and stream valleys (Figure 3.5). The southern portion of the stream, near Newark, 

Delaware, is in the Atlantic Coastal Plain, a relatively flat and tidal area. The 277-km2 White 

Clay Creek watershed drains agricultural and wooded land into the Christina River (Figure 3.6). 

Over the past several decades, White Clay Creek has been the site of several influential stream 

ecological and hydrologic studies (Dunne and Leopold, 1978; Newbold et al., 1997; Kaplan et 

al., 2008; Karwan et al. 2011). In 2000, White Clay Creek received designation as a Wild and 
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Scenic River and is the only entire watershed designated within the Wild & Scenic Rivers 

System. The drainage area is 29.3 mi2, with a discharge of 0.34 cubic meters per second.  

 Study samples were taken from the east branch of the stream, a 21.7 km stretch 

beginning in the West Marlborough Township and home to the long-term research watershed for 

the Stroud Water Research Center at approximately (N 39.8594493°, W -75.7830744°). The east 

branch of the stream used in the study is unique in its land management. Vegetation adjacent to 

the stream is maintained on an experimental basis by the Stroud Water Research Center. The 

upstream section is home to a riparian forest of 100 to 150-year-old trees. The downstream reach 

includes both a managed and wild meadow. The middle-reach of the stream is newly reforested 

within the last 30 years.  The two-kilometer continuous study reach was selected because of the 

known location of three former mills within the study reach, as well as for its monitored and 

varying vegetation along reaches (Figure 3.7).  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Topographic map of White Clay 
Creek floodplain. 
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Figure 3.6: Land cover of White Clay Creek Watershed.   
!

Mill!race!

 
Figure 3.7: Section of 1883 map from the Chester 

County Historical Society of East Marlborough Twp. 
indicating the location of dams, mills, and mill races 
along the study section of White Clay Creek. Yellow 
circles depict dam locations and red arrows point to 

the diversion of the stream to mill races.  
!
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3.1.4 Doe Run 

Doe Run is a 56.2 km2 watershed and tributary to Brandywine Creek about 80 km 

southwest of Philadelphia and about 11 km northwest of White Clay Creek. The Brandywine 

flows into the Christina River, where it meets White Clay Creek, and serves as a tributary to the 

Delaware River. Doe Run is wider and has a greater elevation gradient than its neighboring 

White Clay Creek. (Figure 3.8) Water powered gristmills in the Brandywine Valley were 

abundant along the creek and important in developing American industry before the introduction 

of steam power. During the American Revolutionary War, the Battle of Brandywine was fought 

around the river, and from1802 to 1921 the river was the site of the DuPont gunpowder mill, one 

of the most successful manufacturers of explosives. Consequently, Doe Run was exposed to a 

higher level of industrial activity and damming than White Clay Creek.  

Within the 5.8-km, discontinuous study reach, there were two known dams (Figure 3.9). 

The majority of land adjacent to the study reach on Doe Run was managed meadow, which was 

mowed in close proximity to the edge of the bank. The reach was broken into an upstream and 

downstream segment based on the visible presence of exposed banks and suspected legacy 

sediments. A narrow forested reach of the study area was not sampled due to a lack of bank 

exposure and thick vegetation. USGS stream gauge data is not available for Doe Run.  
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Figure 3.8: Topographic map of Doe Run floodplain. 
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Figure 3.9: Section of 1883 map from the Chester County Historical Society of 
Newlin Twp. indicating the location of dams and mills along the study section of 

Doe Run. 
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3.2 Connecticut River Basin Study Sites  

3.2.1 Basin Characteristics 

The Connecticut River is the longest river in the New England region of the United 

States. The Connecticut River Basin encompasses a 29,137 km2 area, extending from the 

U.S/Canadian border near Quebec to its mouth in Long Island Sound (Figure 3.10). Considerably 

larger in size than the Christina River Basin, the Connecticut River Basin has 148 tributaries, 

including 38 major rivers (Figure 3.10). The river flows through Holyoke Basalt in Connecticut 

with minor exposures of Triassic sandstones and siltstones (Douglas et al., 2002).  

 With climactic variation, vegetation along the Connecticut has changed. From 14,000 to 

10,000 years ago, spruce, jack pine, and hemlock prevailed throughout New England. New 

England vegetation underwent large-scale changes following the retreat of glaciers. In southern 

New England hemlocks and hardwood trees such as oaks and chestnuts dominated the landscape. 

As more settlers arrived, certain tree species were favored either because of their utility or 

because of their inherent tolerance of a wide range of environmental conditions (Foster et al., 

2004). Mature forest conditions today differ from their pre-settlement abundance. The chestnut, 

for instance, is no longer found in abundance due to a blight removing the species in the early 

1900s.  
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Figure 3.10: Connecticut River Watershed extending from the Canadian border down to Long 
Island Sound. Source: Fish and Wildlife Service. 
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3.2.2 Historic Land-Use 

The Connecticut River Basin simultaneously experienced intensive deforestation and 

agricultural activity (Figure 3.11). By 1820, only 25% of Connecticut was forested (Hochholzer, 

2010). An 1875 report by the U.S. Department of Agriculture stated that trees in Connecticut had 

been cut faster than they were grown, as field after furrowed field replaced the previously 

forested the landscape with an agricultural checkerboard. (Wood, 1971; Bell, 1985). In contrast 

to Southeastern Pennsylvania, by the turn of the 20th century, the Connecticut River valley and 

uplands started to reforest quickly as the soils were worn out, and many farmers abandoned New 

England agriculture with Westward Expansion (Bell, 1985). 

Further exhausting available resources, the New England Water Resource Region had the 

highest historic density of dams per square kilometer (0.015 dams km2), a legacy of the region’s 

long history of mill dams. The structures partitioned New England watersheds into units 

averaging about 44 km2 (Graf, 1999). The damming legacy of the region remains today as the 

Connecticut River has over a thousand dams on its tributaries and sixteen dams spanning its 

main stem, only twelve of which are hydropower projects (National Fish Habitat Partnership, 

2015).  
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Figure 3.11:  Historical changes in forest cover. Results show Connecticut forest cover was 
below 30% around 1850. Source: Foster et al., 2004. 

 
3.2.3 The Salmon River 

The Salmon River was chosen as a study site based off its known location of a mill dam 

and possible location of a second dam upstream (Figure 3.12). The presence of suspected legacy 

sediments upstream but a lack of any identifiable deposits downstream provided an interesting 

comparison in depositional characteristics. The Salmon River, located in the New England 

physiographic province, is formed at the confluence of the Blackledge and Jeremy rivers just 

west of Colchester, Connecticut (Figure 3.13). The Salmon River runs southward for 16 

kilometers before joining the Connecticut River 24 kilometers upstream of Long Island Sound.  

The average channel slope for the Salmon River is 0.4%, bankfull widths average 25 m, and the 

D50 value of the streambed material ranges between 16 mm and 256 mm (Thompson and 

Hoffman, 2001). The river flows through a steep-walled, forested, valley that is dominated by a 

thin layer of glacial till with episodic schist and gneiss outcrops (Thompson, 2002). 
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Geologically, the study reach was predominantly near-ice-marginal fluvialdeltaic deposits in the 

lower Salmon River valley (Figure 3.14). Because the north-east-southwest trend of Salmon 

River valley was parallel to retreating ice margin, the southern part was most likely uncovered all 

at once instead of sequentially northward (Stone et al., 2005). The drainage area of the Salmon 

River is 259 km2 and the discharge is on average 4.8 cubic meters per second.  

Remnants of a historic dam are visible on both sides of the Salmon River upstream of the 

Veteran’s Fishing Area (N 41.6066998°, W -72.4272193°) (Figure 3.12). The dam was 

constructed of rock with tiers extending into the forested bank. Approximately 200 m 

downstream there is an abandoned mill structure that could have utilized the dam for 

waterpower. The Salmon River and its tributaries each had more mills trying to operate by the 

middle of the nineteenth century than the water supply could support during periods of minimal 

precipitation (O'Keefe and Foster, 1998). 

     

Figure 3.12: Remnant dam along the Salmon River. Arrows point to dam structure embedded in 
the bank.  
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Figure 3.13: Topographic map of the Salmon River study reach. Source: USGS.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Quaternary map of Salmon River watershed. Source: USGS. 
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3.2.4 The Blackledge River 

A 0.6-km study reach was used for the study on the Blackledge River. The Blackledge 

River in Marlborough, Connecticut, serves as a tributary to the Salmon River and runs for 26.4 

km before joining the Salmon River. The Blackledge River flows south from an elevation of over 

200 m before emptying into the Salmon River (Figure 3.15). The Salmon and Blackledge Rivers 

are natural trout and salmon streams of historic renown (Hunter, 1941). A small study reach 

along the Blackledge River was sampled in two locations. Forested vegetation was abundant up 

to the edge of the bank. From this point further, the Blackledge and Salmon River sites will be 

generally lumped together as “upstream Salmon” and “downstream Salmon” for ease of 

understanding in the results. The Blackledge River is periodically mentioned by name in the 

methods section to distinguish field reconnaissance. 

  

Figure 3.15: Topographic map of the Blackledge River study reach. Source: USGS.  
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4.0 Methodology 

In order to characterize the nature and spatial variation of probable legacy sediments 

(PSA) and suspected buried A horizons (BS) along the floodplain continuums of the Christina 

and Connecticut River Basins, a combined approach of field work, laboratory sediment analysis, 

and GIS generated-mapping was selected as a research strategy. Spatially extensive field 

sampling of exposed riverbanks along White Clay Creek (PA), Doe Run (PA), and the Salmon 

River (CT) was carried out to identify variation in the geologically recent sediment stratification 

of stream banks in proximity to historic mill dams. Floodplain deposits were analyzed for 

organic content and grain size to determine if there was a distinguishable legacy sediment 

deposit and buried A horizon present. The testing of sediment samples was further intended to 

determine whether sediment layers were ubiquitous within and between stream sites. GIS helped 

to investigate correlations in spatial location of deposits with known historical mills and dams.  

4.1 Mill Dam Location Reconstruction 

Many historic mill dams throughout the New England and mid-Atlantic regions are no 

longer visible along rivers and streams today. In order to understand the relationship between 

dam locations and sediment deposits, an archaeological reconstruction of mill and dam locations 

was completed using historic maps prior to fieldwork. For White Clay Creek and Doe Run in 

Southeastern Pennsylvania, 1886 land-use and property maps by township were obtained from 

the West Chester Historical Society. These maps delineated stream locations as well as dam and 

mill locations prior to the start of the 19th century (Figure 3.7, Figure 3.9). Similar stylistic maps 

were not available at the time of study for the Salmon River. However, remnants of a mill and 

dam on the Salmon River downstream study reach provided visual evidence that the location was 

dammed. The locations of historic mill dams were used to select tributaries within the Christina 
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and Connecticut River Basins, as well as to designate study reaches within each of the selected 

streams.  

4.2 Fieldwork 

Fieldwork along the Pennsylvania streams began in early June, 2015 with preliminary 

scouting to determine which reaches of the study streams would be suitable for the research 

objective. Two hundred forty eight samples (200 along White Clay Creek and 48 along Doe 

Run) were taken at exposed banks along the two streams. Banks were observed for any visible 

color or composition distinctions that identified layers of sediment. In particular, distinctions 

were made between any visually identified probable legacy sediments (hereinafter PSA), 

suspected buried A horizons (hereinafter BS), and sub-surface deposits. While variable between 

sites and riverbanks at sites, in general, PSA were identified by a light brown sediment color, 

uniform fine sand-grain composition, and a lack a substantial organic material. BS layers were 

defined by a dark grey/brown coloring as well as by the amount of organic material present. 

Organic material ranged from fine particulate matter to large wood. Sub-surface deposits were 

identified closest to the streambed and were heavily clay-dominated or matched the bed material. 

Samples were scraped from each identified layer using a trowel, placed into Ziploc bags, and 

refrigerated until further processing. The defined sediment layers at each exposed bank were 

measured for thickness to the nearest millimeter using a measuring tape. Measurements were 

taken from the marked bottom of the layer upward for each defined layer. Photographs and 

detailed field notes were prepared for each site with particular attention to buried organic soil 

composition and overall bank characterization. GPS points of exposed bank sites were taken 

using a Garmin 64st device. GPS points were useful to later correlate the location of specific 

sediment trends or differences in relation to historic milldam locations.  
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The same fieldwork methodology for identifying PSA and BS layers was used along the 

study reaches of the Salmon River, CT. Fieldwork in Connecticut took place in early October. In 

addition to sediment samples, a Munsell chart was used to evaluate and classify the color of the 

sediment at each PSA and BS layer. The Munsell chart separates the color shade components 

(relative to red, yellow and blue), value (lightness or darkness) and chroma (intensity or 

strength). Holes were bored in to the floodplain terrace using a hand-auger to further assess the 

presence and potential deposition of legacy sediments. At the time of field sampling, the 

discharge of the river was unusually low compared to average discharge measures at the 

downstream gauge station, permitting goof access for bank sampling.  

After the leaves dropped in early November, a topographic survey was conducted along 

the 0.6-kilometer study reach, aimed at assessing the relative importance of the stream gradient 

and bank elevation and sediment deposits. Special attention was given to surveying the top of 

banks, thalwegs, and sediment layer heights near sample sites. There was no known benchmark 

elevation along the study reach, and in return a temporary benchmark was constructed. Due to 

the range at which the survey took place, the level of precision in the bank elevation varies, but is 

still considered more precise than an autolevel or LIDAR imagery.  

4.3 Sediment Analysis 

4.3.1 Sample Prep 

Prior to any testing, all samples were baked for 24 hours in a drying oven at 60° C to 

remove any moisture. Upon completion of the drying process, samples were disaggregated, and 

crushed using a mortar and pestle. Samples were sub-divided into smaller sample bags for 

additional testing and stored in a desiccator to make sure the sediment remained free of moisture.  
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4.3.2 Grain Size  

A grain-size analysis was used to observe the uniformity of sediment sizes between PSA 

and BS layers, both within layers and across stream sites. Since particle diameters typically span 

many orders of magnitude for natural sediments, testing the grain size served as a way to classify 

and describe the distribution of sediment. Grain size also provides evidence towards the 

depositional environment. A nested-dry sieve was used to distinguish the diameter of the grains 

for each PSA and BS sample. The mesh of each stacked sieve decreased by a set ratio equivalent 

to a half-phi value. Samples were sieved from course sand (2.0mm) to very fine sand (0.032mm). 

Histograms depicting percent frequency of particle-size occurrence were delineated from the 

sieving procedure. Knowledge of the particle size was critical to understand the homogeneity of 

grain distribution between probable legacy sediment and suspected buried A horizon deposits. A 

computer program called GRADISTAT was used to analyze the sieving data. GRADISTAT is 

written for the rapid analysis of grain-size statistics from any of the standard measuring 

techniques. Mean, mode, sorting, skewness and other statistics were calculated arithmetically 

and geometrically (in metric units) and logarithmically (in phi units) using moment and Folk and 

Ward graphical methods (Blott and Pye, 2001).  In particular, D10, D50, and D90 values were 

pulled for comparison between sites. The D50 indicated the median value, the D90 indicates the 

point where 90 percent of the distribution was coarser than the overall sample, and the D10 shows 

where ten percent of the grains were coarser than the overall sample.  

4.3.3 Organic Content 

The percent organic content in each sample was critical in observing similarities or 

differences between the PSA and BS horizons. The organic content was measured through an 

ash-free dry mass method (AFDM), which indicated the loss on ignition, or percent of weighted 
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carbon that burnt out of the greater sediment sample. It was expected that BS horizons would be 

richer in organic content than PSA layers.  

Samples were placed in evaporating dishes and heated for one hour prior to testing in 

order to remove any moisture before massed empty. The dish was then filled with a sample of 

sediment and massed. The sediment-filled evaporating dishes were placed in a ceramic kiln to 

burn off any organic content. The kiln burned at 450° C to 500° C for six hours after heating to 

temperature. The dried samples were weighed to get the loss on ignition. The AFDM method did 

not take into account the weight of the organic materials’ ash remaining in the dishes after 

coming out of the kiln.  

4.4 Computer modeling of study sites 

4.4.1 GIS  

Study area maps for the sampled watersheds were constructed using GIS. Additionally, 

for the mid-Atlantic Piedmont stream sites, locations of mill dams from the 1860 historic maps 

were overlain in GIS with the field sampling GPS coordinates. This helped to contextualize 

sediment sample results within the stream system and interpret the extent to which mill dams 

played a role in the location and characteristics of the deposit. Isoline maps were created for 

Pennsylvania to show thickness differences between sediment layers in relation to mill-dam 

locations.   

4.4.2 Sinuosity  

Google Earth was used to measure the sinuosity of the each study reach. The sinuosity 

measure gives a better understanding of the channel characteristics and is useful in extrapolating 

pre-disturbance conditions. In general, straight bedrock streams that flow directly downslope 
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have a sinuosity index of about one, and meandering streams have a sinuosity index that is 

greater than 1.5 (Richards, 1982; Babar 2005).  

The methodology used was aimed at best distinguishing between PSA and BS layers. The 

chosen methodology was also necessary to understanding whether PSA sediments were historic 

relics of land use. The use of similar methods at each site allowed for regional comparisons to 

assess the importance of glacial history on PSA depositional processes.  
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5.0 Results 

Results indicated that floodplain deposits vary greatly within and between watersheds. 

Thick, fine-grained deposits interpreted as legacy sediments were found at Doe Run and White 

Clay Creek (PA) and along the upstream Salmon River reach (CT), but were not found along the 

downstream Salmon River reach (CT). The PSA deposits observed most often existed with a 

darker, organic BS layer below. Grain-size, organic content, color, and thickness were used to 

distinguish between deposits, and to infer the floodplain environment at the time of deposition. 

Grain-size values showed greater differences between sediment layers in Connecticut, but 

relative uniformity in Pennsylvania. A positive relationship between low-slope, high-sinuosity, 

and the presence of deposits was observed at all three sites with legacy sediments. Between all 

three sampled sites, there was significantly more  organic carbon found in the suspected buried A 

horizons than in the legacy sediments.  

5.1 Pennsylvania Site Observations 

5.1.1 Visual Observations 

A visual reconnaissance of Doe Run and White Clay Creek was done prior to any 

sampling to understand the site conditions and identify any sediment-deposit patterns. Doe Run 

and White Clay Creek exhibited similar meandering, single-thread channel characteristics. The 

sinuosity of White Clay Creek was 1.55 and the sinuosity for Doe Run was 1.48 (Appendix C). 

Both streams transitioned between managed meadow and forested vegetative cover. Sampling 

locations on both streams displayed clear distinctions between layers of sediment at exposed 

banks (Figure 5.1). The thick, top layer of sediment was characteristically a larger deposit of 

light-brown-colored sediment lacking in any visible organic material (Figure 5.2, 5.3). Below 

this deposit, there was a dark-brown or black buried layer, with visible organic material. Large 
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wood, root matter, and leaf liter was consistently found in buried-soil layers (Figure 5.2, 5.3). On 

two Doe Run sites, a unique re-buried organic sediment layer was found between the observed 

post-settlement alluvium and clay layers (Figure 5.5).   

 

 

 

 

 
 

 

 

 

 

 
 

Figure 5.1: An exposed bank showing the three types of sampled sediment layers, post-
settlement alluvium, buried soil, and sub-soil.  

 

      
 

Figure 5.2: Exposed bank sampling sites along Doe Run. Arrow A points to the PSA layer. 
Arrow B points to the BS layer. 
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Figure 5.3: Exposed bank sampling sites along White Clay Creek. Arrow A points to the PSA 
layer. Arrow B points to the BS layer. 

 
5.1.2 Organic Content 

Percent organic carbon was used to infer the relative time sediment deposits were 

exposed at the surface and served as an identifier between PSA and BS layers. BS layers were 

consistently richer in organic content than PSA deposits. Using White Clay Creek as the standard 

of comparison, AFDM results were significant between all sites as well as between labeled PSA 

and BS samples (Appendix A). Statistical analysis suggested that all terms were significant, but 

PSA and BS served as the best predictors of differences (Table 5.1).  

 
Table 5.1: AFDM whole model response comparing results by distinguished layers and 

by site. White Clay Creek is used as the standard. 
 

 

 

 

 

Term P-value 
PSA or BS  <0.0001 
Site (Doe Run) 0.0240 
Site (Salmon River) 0.0080 

PSA or BS (Doe Run) 0.0006 

PSA or BS (Salmon River) <0.0001 
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Along White Clay Creek, the percent weighted carbon was significantly higher in BS 

layers than in PSA layers (P = 0.003) (Appendix A). However, because multiple samples were 

taken at diffuse boundaries of distinction between the BS layers and sub-surface clay layers 

where sediment of the two different horizons was mixed together, statistical analysis was run for 

a second time without any of the mixed samples (Figure 5.4b). When statistics were run without 

any samples taken at diffuse boundaries, there was an even greater statistically significant 

difference between the White Clay Creek PSA and BS layers (P < 0.001). Detailed field notes 

taken at each site were used to identify which samples were taken at diffuse boundaries of 

sediment (Appendix B). Sediment samples that were run for AFDM as BS mixed with the sub-

surface deposit had lower percent organic content. Similarly, PSA samples run for AFDM as 

PSA mixed with roots and hanging vegetation from the top of bank had higher percent organic 

content than those not taken at diffuse boundaries (Figure 5.4a).  

The percent organic carbon was significantly higher in PSA layers than in BS layers 

along Doe Run (P = 0.024) (Table 5.1). At two Doe Run sample sites, a suspected buried A 

horizon was suspected below the present water level and an additional thin re-buried organic 

deposit was observed between the PSA and clay deposits of the same site (Figure 5.5). Samples 

were taken for both observed organic layers. Within and between White Clay Creek and Doe 

Run visible organic material ranged from fine-particulate organics to leaf litter and large wood. 

White Clay Creek exhibited more wood additions in the samples than Doe Run. 
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Figure 5.4a and 5.4b: Diffuse sediment layers showing a mixing between roots and PSA 
and between BS and sub-surface clay.  

 

 
 

Figure 5.5: Doe Run sample with a BS layer below the present water level (Arrow B) and an 
additional thin re-buried organic deposit observed between PSA and clay deposits (Arrow A). 
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5.1.3 Grain Size 

Results of grain size provide evidence toward changes in depositional environment and 

flow conditions with time. Comparison of D10, D50, and D90 values for White Clay Creek PSA 

and BS layers showed no statistically significant difference (Table 5.2) (Appendix A).  

Table 5.2: Grain-size distributions of PSA and BS at White Clay Creek, PA.  

Grain Size Distribution P-value 

D10 0.3000 
D50 0.6014 
D90 0.6014 

 
5.1.4 Thickness 

 Variation exists between the thickness and composition of buried organic soils and post-

settlement layers. Post-settlement alluvium deposits varied widely in thickness within and 

between watersheds (20-160 cm), as did buried organic soils (0-80cm) (Table 5.3). No clear 

correlation was found at either Doe Run or White Clay Creek between post-settlement alluvium 

thickness and the known location of historic mills or dams (Figure 5.6a-b, 5.7a-b). No 

statistically significant difference was found between the thickness of sediment layers between 

White Clay Creek and Doe Run sites, suggesting thicknesses do not vary extensively between 

the two Pennsylvania sites. 

Table 5.3: Comparison of mean, minimum, and maximum thickness measurements between 
distinguished sediment layers and sites. 

 
 

 

 

 

 
Mean (cm) Standard Dev. Min. (cm) Max. (cm) 

White Clay BS 35.5 15.2 13 78 

White Clay PSA 70.5 24.2 24 161 

Doe Run BS 24.3 12.7 13 55 

Doe Run PSA 86.2 30.0 28 145 
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Figure 5.6a and 5.6b: Isoline of PSA concentration showing the thickness of sediment layers for 
studied reaches in Doe Run and White Clay Creek. 

 

    
 

Figure 5.7a and 5.7b: Isoline of BS concentration showing the thickness of sediment layers for 
studied reaches in Doe Run (a) and White Clay Creek (b). 

 
5.2 Connecticut Site Results  

5.2.1 Visual observations  

The upstream study reach of the Salmon River is a meandering, single-channel system 

with a sinuosity of 1.44 (Appendix B). Each of the four upstream Salmon River sample locations 
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displayed clear distinctions between layers of sediment at exposed banks. The top layer of 

sediment was characteristically a larger deposit of light-brown colored sediment, lacking any 

visible organic material. These lighter colored, near-surface deposits were labeled as PSA. 

Below this deposit there was a dark brown or black buried layer with visible organic material 

labeled as BS (Figure 5.8). A paired terrace, with the left and right bank at approximately the 

same elevation, was observed at the furthest downstream site within the upstream Salmon River 

reach (Figure 5.10). The left bank of the terrace exhibited a dark sediment layer with a larger 

light-colored sediment deposit above it. The channel bed was far from the terrace on the right 

bank, but close to the left-bank terrace. The site was distinguished as a terrace by its higher bank 

elevation and visible soil horizons. While other terraces were observed along the study reach, 

they were larger and identified as Quaternary age due to size and a lack of a visible dark layer 

(Figure 5.9). Quaternary age terraces ranged in height from 2.7 to 3.0 m, and were measured 

using a laser range finder.  

     
 

Figure 5.8: Sediment layer distinction and exposed banks along the upstream Salmon River 
location. Arrow A points to the PSA layer. Arrow B points to the BS layer. 
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Figure 5.9: Quaternary aged terrace along the Salmon River.  
 

 
Figure 5.10: Cross-section at the furthest downstream sampling site of the upstream Salmon 

River study reach surveyed by Alex Iezzi, Grace Medley, and Doug Thompson (2013). Cross-
section indicates a paired terrace.  

 
Visual reconnaissance was initially done for the downstream sampling site along the 

Salmon River, where remnants of a mill and dam remain. The downstream sampling reach of the 

Salmon River is a narrow, bedrock-dominated channel, with a sinuosity of 1.04 (Figure 5.11). 
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One sediment sample was taken at the location. However, it was determined that the site did not 

include deposits of fine-grained sediments that the remaining three sites had, and thus no further 

data analysis was conducted at the site (Figure 5.11). 

   

Figure 5.11: Downstream Salmon River view looking upstream and left bank dam remnants with 
displaying no visible fine-grained sediment deposits. 

 
5.2.2 Color 

Distinct visual differences in sediment color were observed between layers at exposed 

bank sites. A Munsell color chart was used to identify the color of the PSA and BS layers along 

the upstream study reach of the Salmon River. BS layers were identified as black 10YR 2.5/1 or 

2/1 using the Munsell color chart. The PSA deposits were identified as 6/4 10YR yellowish 

brown or 5/4 10YR yellowish brown for all samples (Appendix B).  

5.2.3 Organic Content  

Percent organic content ranged from 2.9 % to 18.0 % among BS layers and 0.7 % to 2.5 

% among PSA deposits (Table 5.4).  The organic content of the PSA layers was significantly 
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greater than the organic content of the BS layers at the upstream Salmon River site (P = 0.0204). 

Sample point AM4 was taken at a diffuse boundary between the BS and sub-surface deposit and 

consequently had a lower percent organic content (Appendix B). When run without the outlier 

point of the BS layer at AM4, the difference in percent organic material between the PSA and BS 

was still statistically significant (P = 0.0038) (Appendix A). Results suggest that BS layers 

sampled along the Salmon River were consistently higher in organic content than the BS layers 

along White Clay Creek and Doe Run.   

Table 5.4: Percent organic content between BS and PSA layers at the upstream Salmon River 
reach. 

 
  AM3 AM4 AM5 AM6 
BS 18.0% 2.9% 9.1% 11.1% 
PSA 2.5% 0.7% 0.7% 0.9% 

 
5.2.4 Grain Size 

The overall size of sediment grains between the PSA and BS layers showed that the PSA 

grain size was smaller in diameter than the BS below, although the difference was not 

statistically significant (Table 5.5). The most downstream sampling site used in the analysis 

(AM3) had the finest D90 value compared to sampling sites further upstream on the Salmon 

River (Appendix A). The trends in grain size for the PSA deposits were not entirely linear, but 

generally the finer sediments were deposited downstream and coarser sediments were found 

upstream. The difference in median grain size (D50) between the PSA and BS layers is 

statistically significant (P = 0.0159), with larger median sediment size found in PSA layers. PSA 

layers also had a significantly larger D10 grain size than BS layers (P = 0.0098). No statistically 

significant difference was found between the D90 values of the two layers (P = 0.1733).  
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Table 5.5: Grain size results between PSA and BS layers along the Salmon River upstream and 
downstream reach. D10, D50, and D90 value measured in micrometers.  

 
Sample D10 D50 D90 
AM3PSA 68.25 166.8 334.2 
AM3BS1 52.81 130 826.3 
AM3BS2 51.21 109.5 480.5 
AM4PSA 183 358.6 928.2 
AM4BS 70.16 193.4 429.4 
AM5PSA 203 454.7 1231.3 
AM5BS 59.21 170.8 634.1 
AM6PSA 159 370.2 1082.8 
AM6BS 67.96 188.9 658.2 

 
 
5.2.5 Thickness 

Thick sequences of PSA deposits were found along the upstream Salmon River reach. As 

a general trend, the thicknesses of the PSA deposits ranged within 0.27 m of each other, with the 

exception of the most downstream sampling site. BS thicknesses ranged within 0.28 m of each 

other along the reach (Table 5.6).  

Table 5.6: Thickness averages along sample sites at the upstream Salmon River reach. 
 

Sample Point (upstream 
to downstream) PSA Thickness (cm) BS Thickness (cm) 
AM3 51 39 
AM4 143 20 
AM5 116 48 
AM6 122 41 
AVERAGE 108 37.3 

 
5.2.6 Longitudinal Profile 

A longitudinal survey was used to distinguish the overall stream gradient and bank 

elevation of the upper Salmon River sites. Results from the longitudinal profile showed that the 

downstream top of the bank was roughly three meters above the thalweg and the upstream top of 

bank was 1.25 m above the thalweg (Figure 5.10, 5.12). The tops of the banks are at similar 
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elevation, with one point not fitting this trend. The slope of the PSA layer is about 0.01% while 

the slope of the river is on average 0.4%. No thalweg measurement was taken at AM3 and AM4 

because the water depth extended above 1.5 m in depth. The trend in the thalweg line indicates a 

high gradient of slope relative to the other measured surfaces (Figure 5.12). Unlike the top of the 

bank, the slope along the thalweg was not uniform and exhibited variation in depth.   

 

Figure 5.12: Salmon River upstream reach longitudinal profile. 

 
Results between Connecticut and Pennsylvania sites give a sense of how fluvial systems 

have responded to landscape changes with time, as well as where sediments are preserved along 

the contemporary landscape. Comparatively, results from Connecticut sites showed significant 
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differences between layers in the grain size and percent organic content, and results from 

Pennsylvania showed significant differences in organic content and color between layers. Similar 

depositional conditions between Pennsylvania sites correlated with somewhat similar PSA and 

BS characteristics between White Clay Creek and Doe Run, however there was a significant 

difference between all sites (Table 5.1). Consequently, the depositional environment and slope 

along the upstream and downstream Salmon River reaches varied, and results suggested 

sediment deposits were not uniformly preserved along the river. Overall, results showed a 

significant difference in the organic content between labeled PSA and BS layers as well as 

between sites, with the percent organic of the labeled BS serving as the highest measured carbon 

content across comparisons.  
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6.0 Discussion 

Results from this study provide strong evidence for the presence of a buried A horizon 

and overlying legacy sediment layers along both streams in Pennsylvania and the upstream reach 

of the Salmon River in Connecticut. The downstream study reach of the Salmon River had a 

remnant mill and dam, but no preserved legacy deposit or buried A horizon. Statistical 

comparisons of soil color, organic content, and grain size of 258 sediment samples across the 

three sites suggests that a wide variance exists in the characteristics of floodplain deposits. 

Variation in the thickness and composition of sediment layers between sites suggests that 

deposits were not uniformly formed or preserved. It is necessary to provide interpretations of 

sediment layers on a regional and local scale in order to understand the impact of legacy 

sediments and what the pre-disturbance depositional environment looked like.  

6.1 Evidence for a Buried A Horizon 

The A horizon of a soil tends to be darker due to the abundance of organic material 

within the layer (Jenny, 1994). Visible A horizon layers along stream and river banks indicate an 

extensive period of exposure at the surface, which allowed the layer to form and accumulate 

organic matter with time. The distinguishable, dark coloring of the BS layer observed at Doe 

Run, White Clay Creek, and the upstream Salmon River site, provide evidence that the observed 

sediment layer is a former A horizon. Results from a Munsell color test of the BS layer at the 

upstream Salmon River site were black 10YR 2.5/1 or 2/1. A Munsell test used by Walter and 

Merritts (2008) to identify buried A horizons characterized the soil layers black, 10YR 2/1 as 

well.  The coloration of the BS layers observed along White Clay Creek and Doe Run, PA were 

visually consistent  with the upstream Salmon River site and Walter and Merritts (2008) (Figure 

5.1). The similarity in color between the observed sites and Walter and Merritts (2008) 
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characterization of a buried A horizon color provides evidence that the dark sediment layer 

observed in Connecticut and Pennsylvania was a buried A horizon.  

Visible organics in all of the Connecticut and Pennsylvania BS samples further supported 

the labeling of the sediments as a buried A horizon. Organics found in White Clay Creek and 

Doe Run BS layers showed a range of organic composition from fine particulate organics to leaf 

litter and wood. Walter and Merritts (2008), on the other hand, found visible woody debris, 

seeds, algal mats, pollen, and peat in the buried A horizon sample sites. The upstream Salmon 

River site was rich in leaf litter and rotted wood.  The inclusion of visible organic material in the 

suspected buried A horizon is evidence that the layer was exposed to the surface and 

accumulated vegetative cover with time. The possibility of roots extending from the surface 

down to the buried A horizon and adding to the organic content was considered. However, the 

visual observations of large wood (< 15 – 40 cm diameter) protruding from the BS layer of 

exposed banks suggests that the suspected buried A horizon was exposed at the surface prior to 

its current buried position.   

The A horizon of a soil profile typically contains a higher concentration of organic 

material than underlying layers. Ash free dry mass results indicated that the sampled BS layers 

along the Salmon River ranged from 2.9% to 18.0% (Table 5.4). Comparatively, BS samples 

along White Clay Creek and Doe Run ranged from 1.3% to 13.8% and 2.7 to 15.7% respectively 

(Table 5.1). The Pennsylvania sites sampled by Walter and Merritts (2008) had an average of 

2.0% to 9.0% percent weight total carbon. Results indicate that sample sites along the Salmon 

River were consistently higher in organic material than sediment samples taken along White 

Clay Creek and Doe Run in Pennsylvania as well as those observed by Walter and Merritts 

(2008) in Pennsylvania. This goes against the expectation that Pennsylvania soils would be 
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higher in percent organic content due to a suspected older age of soil. Based on the comparison 

of percent organic content, the BS layers in Connecticut were older than those sampled in 

Pennsylvania. It is possible that the floodplains along White Clay Creek and Doe Run in 

Pennsylvania have been heavily reworked, and the soils are thus not as old as the pre-disturbance 

condition might otherwise be. Although the loss on ignition was lower at the two Pennsylvania 

sites compared to Connecticut, ash-free dry mass results from White Clay Creek and Doe Run 

were still higher than those measured by Walter and Merritts (2008). Between all sites, the 

percent carbon was statistically significant between both the identified sample layers and 

streams. This suggests a clear difference in carbon content and ages of soil at all sites.  

6.2 Evidence for Legacy Sediments 

A distinct light-colored deposit lacking in significant organic content and labeled as PSA 

was consistently observed above the buried A horizon and interpreted as legacy sediments. In a 

standard soil profile, an O horizon is found above the buried A horizon (Birkeland, 1999). 

However, O horizons tend to be very small (Keller, 2010) and not as thick as the observed PSA 

layer. The color of the PSA deposits were 10YR 6/4 yellowish brown or 10YR 5/4 yellowish 

brown for all samples taken in Connecticut. Walter and Merritts (2008) observed pale to 

yellowish brown legacy deposit, which corresponds in color with the findings in Connecticut as 

well as with visual observations of color along White Clay Creek and Doe Run (Figure 5.2, 5.3, 

5.8). The lighter color of the observed sediment layer above the buried A horizon suggests a 

limited amount of organic material. The lighter coloration of the PSA soil also suggests the layer 

was exposed at the surface for less time than the A horizon below. Results supported this 

assumption, showing that the organic content of the PSA layer ranged from 0.7% to 2.5% along 

the upstream Salmon River site (Table 5.4), 1.0% to 6.2% along Doe Run, and 1.0% to 6.8% 
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along White Clay Creek (Table 5.1). Walter and Merritts (2008) found 1.0% to 2.0% percent 

weighted total carbon in the layer above the buried A horizon, along their study sites in 

Pennsylvania. The observed PSA alluvium layer above the buried A horizon was identified in 

this study and by Walter and Merritts (2008) as legacy sediments.  

At the upstream Salmon River site, a depositional terrace was observed at the first 

sampling point (AM3). The site was distinguished as a depositional terrace by its higher bank 

elevation and visible soil horizons (Figure 5.10). The presence of a distinct buried A horizon 

along the terrace at AM3 suggests an older surface below the PSA deposit that did not continue 

to form due to the large deposit above it. The top of the PSA layer of the terrace does not have 

well developed soil, indicating a younger age than the A horizon below. The closeness of the 

channel bed to terraces on the left banks compared to terrace locations on the right bank suggests 

that the river migrated laterally and reworked the floodplain with time (Figure 5.10). Additional 

higher terraces (>3m) were observed along the study reach, but were identified as Quaternary 

age terraces based on size and a more uniform, low percent organic content throughout the 

terrace. A lack of buried A horizons and higher elevation at the other terraces on the Salmon 

River, further suggests they there have not been any new deposits since the initial formation.  

The downstream reach on the Salmon River lacked both legacy sediments and an 

observable buried A horizon (Figure 5.11). A remnant dam at the site is visible evidence of 

human alteration to the system, however, it cannot be inferred whether the downstream sample 

site on the Salmon River once had a buried A horizon or legacy sediments because no deposits 

were preserved at the location.  Downstream, the channel constricts at a narrowing in the valley. 

It is suspected that any legacy sediments that existed along the lower reach were either not 

formed or preserved due largely to the steep, narrow, bedrock dominated channel. The high 
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energy of flow through the confined channel and valley prevents little sediment from depositing 

along the riverbanks beyond the constriction. The low sinuosity of the steep, bedrock-dominated 

channel and narrow valley at the downstream site decreases the likelihood of floodplain sediment 

deposition and storage. Compared to the downstream Salmon River reach, the sinuosity along 

the upper Salmon River, White Clay Creek, and Doe Run ranged from 1.44 to 1.58. The three 

sites that exhibited legacy sediments all had relatively similar sinuosity, meandering channels, 

and low-grade slopes. Results thus show that sinuosity and slope heavily influence the 

depositional environment and thus the ability for a site to store and preserve sediment.  

6.3 Cause of Legacy Deposits 

The cause and source of legacy deposits is not ubiquitous between sites. All four study 

sites have experienced a heavily modified landscape from deforestation, agriculture, and 

damming. White Clay Creek, Doe Run, and the downstream Salmon River site have known mill 

dams within the study reaches. It is suspected that the upstream Salmon River site was also 

dammed as evidenced by the paired terraces at the sampling site with uniform, low slope along 

the top of the bank (Figure 5.10, 5.12). Typically, the top of the bank corresponds with the 

changing slope of the river. However, the longitudinal profile for the upstream Salmon reach 

showed that the downstream top of the bank was roughly three meters above the thalweg and the 

upstream top of bank was about 1.25 m above the thalweg (Figure 5.12). It is suspected that the 

dip in the bank elevation at the one point on the longitudinal profile is due to post-impoundment 

erosion taking place since the dam was removed. This suggests a more recent reworking of the 

floodplain. While there was not a statistically significant difference between the grain size of the 

legacy sediment deposit and buried A horizon, there was enough of a difference to suggest 

something caused the current to slow and deposit finer material closer to AM3 (Figure 5.12, 
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Table 5.5). The general trend of grain size decreasing with distance downstream is characteristic 

of approaching slower moving water (Table 5.5). The best explanation for this was a change or 

block in the flow that abruptly decreased the movement of water. The low-grade slope and 

meandering channel provide a considerable distance to deliver sediment along. When addressing 

the land-use history of the region, it is likely that this block in flow was due to the placement of a 

dam. As water and sediment hit the dam impoundment, the channel bed was raised and coarser 

material deposited out further upstream. The possibility of deltaic deposits was considered as a 

potential influence in sediment deposition, but there was no clear evidence of deltaic deposits.  

Deltaic deposits often occur where a river enters a standing body of water. The sudden decrease 

in energy causes the river to deposit out its sediment load. The lower Salmon River site 

supported Walter and Merritts (2008) claim that current and former dam sites frequently exhibit 

little evidence for sedimentation in New England.  

In Pennsylvania, no clear correlation was found between legacy-sediment thickness and 

the known location of historic mills or dams (Figure 5.6a-b, 5.7a-b). This is a divergent 

observation from the described sediment impoundments by Walter and Merritts (2008). 

According to Walter and Merritts (2008), in the mid-Atlantic region, thick, one to five meter, 

historic deposits are nearly ubiquitous at former dam sites (Walter and Merritts, 2008). Walter 

and Merritts (2008) observed legacy sediments as wedged deposits of fine-grained sediments 

behind mill dams, with finer sediment deposited closest to the dam location. This observation is 

congruent with observations made on the upper reach of the Salmon River (CT), but it is not 

representative of observed legacy deposits on White Clay Creek and Doe Run (PA).  Variation 

between the observed legacy sediments in Pennsylvania and presence of dam impoundments 

from the findings of Walter and Merritts (2008) can be attributed to multiple sources. Despite the 
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claim made by Walter and Merritts (2008) that deposits are ubiquitously found at all former dam 

sites in the mid-Atlantic Piedmont, the nature of damming and landscapes between the sites used 

by Walter and Merritts (2008) and this study are not uniform. Historical maps of Chester County 

from 1883 and LIDAR imagery show that local streams were diverted through a mill race, an 

alternative to the stacked dam method observed in Lancaster County (Walter and Merritts, 2008). 

Chester County was not industrialized to the same extent as Lancaster County, and instead one 

dam often diverted water into a race, which extended in many cases over a kilometer or fed 

multiple mills. The streams in Chester County were also less steep compared to the hilly 

topography of Lancaster, which might have resulted in more sediment deposited in the streams at 

the base of hillslopes. A lack of strong evidence linking legacy sediments to mill dam locations 

in Pennsylvania suggests local land-use might have a larger impact in the formation and storage 

of legacy sediments. The more developed and loose soil available on the ground surface in 

Pennsylvania provided a larger supply of erosional material to rivers in stream as the landscape 

was modified by deforestation and agriculture.  

At two Doe Run sample sites, a buried A horizon was suspected below the present water 

level and an additional thin re-buried organic deposit was observed between the post-settlement 

alluvium and clay deposits (Figure 5.5). It was inferred that the uppermost re-buried sediment 

deposit was still legacy sediments. Several possible reasons exist for the observed variation in 

the legacy deposit including the presence of a dam raising the base-level and causing upstream 

migration of sedimentation, localized land-use change, a major flood, or period of more active 

deposition followed by stabilization and then re-activation. 
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6.4 Impact of Glacial History on Regional Differences  

Differing glacial topographies between Connecticut and Pennsylvania appeared to affect 

the morphology of river systems. Due to glaciation in Connecticut, the overall age of soil 

throughout the Connecticut River Valley is geologically younger than areas of Southeastern 

Pennsylvania, which remained unglaciated. Results differed, however, suggesting that the soil 

preserved in the Salmon River buried A horizon was older than the soil composing the buried A 

horizons of White Clay Creek and Doe Run. The best explanation for this is likely that the 

floodplains along the two Pennsylvania sites were considerably reworked with time, both by 

natural events and human influences.  

Glacial activity changed the distribution of sediment in Connecticut. The advance of ice 

sheets mobilized the pre-glacial fine sediments covering the landscape, and left glacial till in the 

river valley as the ice sheets retreated. Glacial till was observed along the downstream reach of 

the Salmon River at AM3 and AM4 (Figure 5.12). It is inferred that glacial till was visible at the 

exposed banks of AM3 and AM4 because the banks were closer to the valley wall. The 

downstream sampling site on the Salmon River shows clear evidence of glacial activity changing 

the river valley morphology. Glacial activity scraped the landscape of sediment, leaving a 

narrow, steep, bedrock-dominated valley. Quaternary-aged terraces were observed on the 

Salmon River (Figure 5.9), suggesting dams are not the sole factor in terrace formation along 

human-altered streams, a divergent observation from Walter and Merritts (2008). While less soil 

was available across the Connecticut landscape, the distance of the upstream reach provided an 

ideal depositional environment for the accumulation of sediment along the reach. Therefore, 

what was observed along the upstream Salmon River reach, represented in many ways, an ideal 

sediment deposit sequence. In Pennsylvania, the soil covering the landscape was not exposed to 
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glacial activity creating a more developed and available supply of loose sediment compared to 

Connecticut. The observation of legacy sediments in both Pennsylvania and Connecticut 

suggests that regional differences and glacial history did not eliminate the possibility of legacy 

sediments. Rather, changes in slope, sinuosity, and depositional environment, which could be 

partially attributed to glacial history, appear to have a larger impact on the preservation of 

deposits.  

6.5 Pre-disturbance Valley-bottom Conditions 

The buried A horizon layer gives an indication as to the pre-colonial floodplain 

landscape. Variation between the grain size and weighted carbon content of buried organic soil 

layers between the three sites with a buried A horizon reflects a varied pre-settlement floodplain 

landscape. Although it has been previously suggested by Walter and Merritts (2008) that pre-

settlement floodplain conditions resembled a scrub-vegetated wetland meadow across the mid-

Atlantic Piedmont Valley, large wood, root matter, and leaf liter contained in buried A horizons 

of the two sampled Piedmont streams suggests that the landscape was far more heterogeneous 

and included large forested reaches along the floodplains. The higher weighted carbon values at 

the two Pennsylvania study reaches further suggest potential variation in the land-cover 

compared to the sites sampled in Pennsylvania by Walter and Merritts (2008). White Clay Creek 

and Doe Run exhibited flow conditions, for instance, not indicative of a swampy and braided 

floodplain. It is possible that the stream systems were anabranching, but no conclusive evidence 

was determined for the valley-bottom condition on a regional or even full-stream scale.  

Upstream on the Salmon River, the percent carbon was highest upstream compared to all 

other sample sites, possibly suggesting a more densely forested pre-disturbance valley-bottom. 

The upstream, wide valley of the Salmon River is favorable to potential braided conditions. 
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However, downstream the Salmon River is constricted with a narrow valley and high-energy 

flow, a morphology not conducive to braiding or anabranching channels. Results were not 

conclusive as to what regional or local vegetative patterns might have existed across the valley-

bottom.  

6.6 Implications for Restoration 

The acknowledgment of legacy sediments and a buried A horizon along select streams 

calls into question how the morphology of rivers has been changed by sediments. When applied 

to rivers, restoration attempts to return a system to a close approximation of the condition before 

disturbance (Wohl, 2004). Results from buried A horizon and legacy-sediment characterizations 

show that the morphologies and functions of pre-settlement streams are often different from 

those of modern streams, requiring the spatial heterogeneity between streams to be carefully 

accounted for in restoration efforts. The buried A horizon provides a glimpse into the pre-

disturbance valley bottom, but its interpretation requires careful analysis on a site-by-site level.  

Today’s restoration model often assumes the meandering, eroding channel bank as the 

natural reference condition (Walter and Merritts, 2008). Walter and Merritts (2008) called for a 

reevaluation of current restoration attempts that rely on the meandering, eroding channel bank as 

the restoration baseline. This study echoes the restoration concerns of Walter and Merritts 

(2008), arguing that the large extent of legacy sediments deposited along floodplains constitutes 

a re-examination of natural-channel formation. When taking into account legacy deposits, a 

pristine stream becomes an unlikely template for restoration because the drivers of stream 

dynamics have all changed (Wilcock, 2008). The perspective that change is the rule, rather than 

the exception is important to critically understanding the restoration needs of a river system. The 

assumptions that changes in sediment deposition and channel morphology have been minor, and 
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that pristine reference reaches exist that can be emulated to design stable yet “natural” 

reengineered reaches, should be both critically evaluated on a case-by-case basis (James et al., 

2009). The generalizations made by Walter and Merritts (2008) also cannot be made on a 

regional level without examining the specific land-use, types of alteration, and changing 

sediment dynamics taking place. Contemporary alterations of river sediment constitute a legacy 

for the future (Wohl 2015).  

Variation in floodplain characteristics at all four sites strongly suggests restoration 

baselines cannot be made on a regional basis, but must be determined at the local level. At the 

downstream Salmon River site, evidence in the straight, bedrock-dominated channel suggests 

that the river system was at no point a braided channel with a wide floodplain. Upstream on the 

Salmon River, it was deduced that the closeness of the channel bed to terraces on the left banks 

compared to terrace locations on the right bank was due to the river migrating laterally back and 

forth across the floodplain with time. As the river moved, it carved out sediment and reworked 

the floodplain, as exhibited in the wide spacing between the left bank and right bank terraces. 

Walter and Merritts (2008) interpreted legacy findings to mean that most floodplains 

along mid-Atlantic streams are actually depositional terraces. However, the terraces observed in 

Connecticut suggest that not all terraces are dam related and that the river system had been 

building terraces for a long time. While the pre-disturbance condition of the upstream Salmon 

River is not clear, there is not strong evidence that the area was braided. In Pennsylvania, there 

was no conclusive evidence as to what the pre-disturbance channel morphology looked like. 

Walter and Merritts (2008) advocate for the regional pre–disturbance morphology to resemble a 

broad, shallow, braided channel landscape. However, further research is needed to understand 

the full extend of pre-disturbance channel morphology.   
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6.7 What Comes Next?  

While this study provides greater understanding into the source of legacy sediments and 

pre-disturbance conditions, the results are ambiguous across sites as to the sole contributor to 

either sediment layer. Much of this study questioned the claims made by Walter and Merritts 

(2008) regarding both the primary cause of legacy deposits and the pre-disturbance conditions of 

floodplains. Walter and Merritts (2008) suggest that legacy sediments are all historic artifacts of 

dams. However, the lack of a strong correlation between thickness and grain size closer to mill 

dams along the two Piedmont study streams, suggests legacy sediments might equally be historic 

artifacts of land-use. The question of how much legacy sediments are attributed to dams is still 

unknown. Evidence of a mill dam by a fine-grained sediment wedge and paired terrace upstream 

on the Salmon River, nonetheless, suggests that the type and frequency of damming might play a 

role. However, the lack of legacy sediments at the known remnant mill dam downstream on the 

Salmon River site indicates that deposits are not uniformly preserved in the landscape, making it 

difficult to understand the full extent of buried A horizon and legacy deposits.  

 Percent organic content and Munsell color tests proved to be the most useful methods for 

distinguishing a legacy deposit and A horizon below. The statistically and visible differences 

between the color and organic composition of sediment layers matched the defined sediment 

characterizations of Walter and Merritts (2008) and suggest a strong confidence in the labeling of 

sampled sediments. Differences in regional responses to legacy deposits and A horizons 

necessitate a need for more research to understand pre-disturbance channel morphology.  
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7.0 Conclusion  

Clear evidence of legacy sediments and a buried A horizon in both Connecticut and 

Pennsylvania has implications for the longstanding interpretation of a natural stream. Differences 

in regional and glacial histories influenced the magnitude to which sediments were stored in the 

floodplains, but it was slope, sinuosity, and depositional environment that appeared to most 

significantly impact the preservation of sediments in the landscape. As exhibited in the upstream 

and downstream study reaches of the Salmon River, CT, a single river can vary greatly in its 

depositional environment. No two study sites were alike, although Doe Run and White Clay 

Creek exhibited the most similar depositional environments (Appendix A). Even in a 

geologically young landscape, such as Connecticut, legacy sediments were found to be present. 

Glacial history appeared to impact the likelihood of sediment storage based on a younger 

geologic landscape and different valley configuration. Valley configuration and slope 

dramatically changed the depositional environment between upstream and downstream Salmon 

River sites, causing legacy sediments to be preserved in one location and not the other. The 

duration and intensity of damming appeared to have effect on the thickness and grain uniformity 

of legacy deposits near suspected mill dam sites, explaining differences between deposits 

observed by Walter and Merritts (2008). Walter and Merritts argued that legacy sediments are 

uniformly the case with proximity to mill dams. However, results suggest that for some places, 

especially New England, legacy sediments are not uniformly found but are possible. The 

depositional environment, valley configuration, and slope appeared to be the main factors 

determining if legacy sediments were present along rivers and streams.  

The visible material of buried A horizons and higher percent carbon in both the 

Connecticut and Pennsylvania site, suggest an alternative perhaps valley bottom condition than 



!

! 84 

the scrub wetland described by Walter and Merritts. However, results were not conclusive as to 

what regional or local vegetative patterns might have existed across the valley-bottom. Observed 

characteristics of each site suggest that some sites could have exhibited more braided 

characteristics (i.e. the upstream Salmon River, parts of Doe Run and White Clay Creek), while 

the morphology and flow of others made it highly unlikely (i.e. downstream Salmon River, parts 

of Doe Run and White Clay Creek).  

Results necessitate the need for site-based restoration practices that take into account the 

deposition characteristics and historical context of floodplains. Within and between river and 

streams, depositional environments and valley configurations can vary dramatically. Statistical 

differences in the carbon content between legacy sediment and buried A horizon layers across all 

sites indicates different ages of soil and significant variation between the pre-disturbance 

condition of each stream (Appendix A). The need for site-by-site restoration thus suggests that 

broad sweeping conclusions should not be upheld as a restoration baseline because there is a vast 

amount of variation in the landscape.  
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Salmon River Field Data 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

GPS 
Point 

Notes 

AM6 BS protrudes out 219cm but is 41cm in thickness. BS very organic and dark w/ 
root+woody debris. PSA very sandy and eroded. Pebbles eroded down into PSA. 
Bank heavily vegetated. Dead grass overhanging. 

AM5 Meander near split of Jeremy and Salmon. PSA=light sand deposit. Heavily 
vegetated bank and eroded dead grass overhanging. BS=slumping small 
vegetation covering. Very dark and organic. Woody debris and roots.  

AM3 No veg on top. Exposed bank across from point bar. Lots of small roots exposed. 
Dark BS layer above and below PSA. PSA=sandy. BS2=dark soil w/ woody 
debris and little roots. BS1=dark soil w/ rotted roots and leaf litter. SS=pebble 
bed. Still pool @ bend in river upstream of small rock dam for pooling 

AM2 Took a small core. Very sandy. Hit rock before able to go deeper. Looking 
downstream dam wall 

AM1 Looking downstream dam wall 
AM4 Lots of small roots extending from top of bank. Small veg along top. BS mixed 

with SS- sandy and dark. SS=same as bed. Silt and pebble dominated. BS mixed 
with SS.  

GPS 
Point 

Latitude 
(N) 

Longitude 
(W) 

Sample 
Date 

Right/Left PSA 
(cm) 

BS 
(cm) 

Other Layers 

AM6 41.58012 72.42332 10/16/15 R 122 41  
AM5 41.58028 72.42332 10/16/15 R 116 48  
AM3 41.57853 72.42338 10/16/15 L 51 33/44.5 BS1=33. 

BS2=44.5 
AM2 41.55529 72.44126 10/16/15 L 224   
AM1 41.55535 72.44147 10/16/15 R    
AM4 41.57856 72.42302 10/16/15 L 143 20  



! 119 

White Clay Creek Field Data 
 

GPS 
Point Notes 

AM13 
Bank undercut. Tall grass overhanging. Gravel dominated bed. Exposed roots. No 
visible woody debris in BS. 

AM14 
BS layer extends below water. Protrudes 74cm. Wood debris in BS. Sample taken 
directly in front of mill. Slightly undercut. Grass overhanging. 

AM15 

Large sediment protrusion. Appears to be PSA that was eroded down of the bank 
but also potentially deposited. PSA protrusion measures 184cm from bank. Exposed 
roots. BS below water. 

AM16 
61cm slanted BS protrusion from bank. Large tree slightly upstream with roots 
extending above PSA. Bank undercut. Vegetation growing out of eroded PSA 

AM17 
45cm of BS slanting. 103cm PSA slanting. PSA eroding slope onto BS. BS 
protruding out and below water. Bank heavily vegetated. 

AM18 

PSA slanting 140cm. PSA layer has vegetated cover. PSA protrusion. BS below 
water level. BS layer variable along bank. Bed sand dominated with small pebbles 
<5cm 

AM19 

Bank eroded and undercut. BS layer protrudes out. Extends below water level. 
Aquatic vegetation along stream bed. Bed sand dominated with small pieces of 
gravel 

AM20 
Roots extending out of PSA. Grass dominated. Bed sand dominated with pebbles 
and cobbles 

AM21 
Mostly grass covered, no trees near bank, very defined BS layer. Rocks around 
30cm radius.  

AM22 Bank filled with grass and trees.  
AM23 Bank filled with grass. Bed sand dominated with small pebbles 

AM24 
Bank slightly slumped. Grass growing along top of bank. Bed pebble and gravel 
dominated. Aquatic vegetation present but sparse 

AM25 

Large white clay deposit spanning left bank. Layer shows reddish coloring signs of 
oxidization as well as a few woody debris pieces (<2cm) suggesting a possible BS 
layer. No dark organic sediment was found. Clay layer is either SS with no BS layer 
present or BS unlike we have seen and no SS layer. Bed is pebble dominated 
(>10cm,<30cm) closest to bank and sand dominated along the channel and RB 

AM26 Split in stream. Grass cover. Not as undercut as previous banks. 

AM27 
Bed is pebble dominated (>7cm, <35cm). Bank was covered by dead grass, which 
was cleared away prior to sampling. Site above small stream split/island. 

AM28 

Stream section right next to agricultural cornfield. Likely to have influenced/eroded 
bank. Presence of BS but buried under PSA and not distinct. Roots extend to bed. 
Organic content in PSA 

AM29 

Bank adjacent to farm field. PSA eroded over BS. Bank covered in dead grass 
cleared away before sampling. PSA and BS mixed together. BS was found deep into 
bank. Measurement taken was of entire bank height. Bed mostly sand and pebbles 

AM30 43cm slanting BS. Bed silty with sand. Vegetation covering bank down to water.  
AM31 Cobbled bed (>5cm, <15cm). Some small gravel close to bank. Highly vegetated 
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bank. Dead grass overhanging.  

AM32 

Stream is meandering heavily in this reach. Bank has a very low slope that appears 
to serve as a path or animal access to water. BS/SS not distinguishable. Sand 
dominated bed 

AM33 
Large deposit of clay from PSA to below water level. Bed is heavily vegetated. 
Small roots exposed. Rapid meandering 

AM34 Small pool beside glide. Bend is mostly sand, closer to bank. Grass dominated bank. 

AM35 
Mostly grass vegetation. Pool formation away from flow. Sand dominated near the 
bank.  

AM36 
Bank has eroded down to the bed with only PSA deposit. Deeper and forms pool. 
Grass dominated bank 

AM37 
SS measurement not clear, same as bed but mixed with BS. Grass dominated bank. 
Dead grass overhanging. Bed is sand and pebbles.  

AM38 
Bed pebble dominated. Bank highly vegetated. Roots extending down to water 
level. Covered with dead grass.  

AM39 

PSA extends to bed. PSA covering BS layer, making it not measurable. Measure 
taken along curve. Bank covered in grass. 4 logs sticking out of bank 32cm above 
bed height- suggests BS still present underneath PSA. 

AM40 
BS extends to bed. Grass dominated bank. Sample along bank curve. Scoured out 
pool 80cm below sample site. Bed is gravel and sand 

AM41 

BS extends to bed. Sample taken at small split in the stream with grass island in the 
middle. Grass dominated along top of bank but does not extend down bank 
extensively 

AM42 

Highly deposited sediment from eroded bank. Bank undercut near bank full height. 
Grass dominated section protected by grass bank protrusion. Cut from the glide 
(high flow)- forms shallow pool. 

AM43 

PSA extends down to bed. Part of glide. Channel very narrow and straight. 
Constricted flow at high velocity. Bank height is small. Heavily vegetated with 
grass, shrubs, and lily. Bed is pebble dominated (>5m, <20cm). PSA eroded into 
water/bed near bank.  

AM44 
SS and BS mixed below water. Wider section of stream between two glides that are 
constricted. Low bank. Grass dominated. Small pebble bed on RB, sand bed on LB.  

AM45 

White/orange clay layer resembling AM25 sample site. Bank is undercut in PSA 
layer but BS/SS protrudes out. Bank is grass dominated. Site upstream of riffle. 
Clay layer is either BS or SS. Roots extending out of PSA. Bed is large pebble 
dominated (>8cm, <30cm) 

AM46 
Bed silty sand with small gravel particles. BS mixed with PSA below water level. 
Extends to bed. Grass dominated bank. 

AM47 

Large clay protrusion overlying bed. Bed silty sand dominated. Mowed grass along 
top of bank. Bank is undercut in PSA layer with grass overhanging. 88cm clay (BS) 
protrusion. Bed heavily vegetated with aquatic plants.  

AM48 

BS and SS probably mixed but not measureable distinction. Deep pool with aquatic 
vegetation on bed. Bank is undercut in PSA layer. Bed is mostly silt. Site near 
benchmark  

AM49 
In between AM48 and AM49, there is a long stretch of straight channel covered 
with grass and no exposed bank. AM49- PSA is covering part of the BS, but BS is 
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still measurable. Site in a glide. Bed is silty with cobbles. 3m upstream from site, 
large wood debris sticks out 34cm above bed on the right bank. Corresponds with 
BS measurement taken at AM48 and AM49.  

AM50 
Site downstream of riffle. Bed is gravel and cobble dominated (<20cm). Dead grass 
overhanging bank. BS extends down to bed. High velocity of water. 

AM51 
Cobble bed with small pebbles. Very small bank with small plant and grass growth. 
LB heavily vegetated. RB next to mowed meadow. 

AM52 

Grass dominated bank down to water. Bank undercut at PSA with dead grass 
overhanging. Large cobbles for bed (<25cm, >8cm). SS mixed with BS. BS entirely 
submerged below water.  

AM53 

Site shallow pool to glide going through heavily vegetated tall grasses upstream. BS 
extends to bed. Forms step out of hard clay. Bed is gravel with medium sized 
pebbles. Top of bank is mowed grass.  

AM54 

Clay heavy bank. Forms step-like feature. Bed pebble dominated (>8cm,<20cm). 
High flow but bank protected by grass buffer. Channel incised. Site downstream of 
riffle 

AM55 

Large rocks (>15cm, <35cm) in bank and in channel bed. Forming riffle 
downstream. Bank has low grass along top and dead grass draping over. Difficult to 
dig due to rocks. BS extends down to bed. 

AM56 

Subsoil and BS mixed below water level. Clearly defined BS and PSA. Mowed 
grass along top of bank. Bed gravel dominated with some sand and pebbles (<8cm). 
Bank eroded.  

AM57 Large 25 cm diam wood coming out of bank. Roots exposed.  

AM58 
Large log extending out of BS (30 cm diam). SS might be eroded PSA or slumping 
BS. Sandy bed; grass above bank 

AM59 Large clay deposit in bank (33.5cm). Top of bank vegetated. Undercut PSA bank. 

AM60 
BS extended down to bed. BS below water covered in deposited SS. Pebble 
dominated bed. 

AM61 
Bank heavily vegetated and eroded. Sand bar (121cm). Left bank has multiple logs 
sticking out of BS. 

AM62 
Below water level BS is mixed with PSA and immeasurable. Few large rocks 
(>30cm). Sandy bed with pebbles 

AM63 
Lots of dead grass hanging over bank. BS has small ~12cm diam logs coming out of 
bank. Narrow channel. Pebbly bed. 

AM64 
Channel is constricted and part of a glide. Bank vegetated; grass mowed up to bank. 
Pebbly bed. 

AM65 Short bank very vegetated. Silty sandy bed.  

AM66 
PSA down to large white clay deposit (37.5cm to bed). Dead grass overhanging 
bank. PSA undercut. Rocky bed. Below riffle. 

AM67 
Short bank. Top mowed to streamside. PSA layer eroded and deposited on top of 
BS. Silty and pebbly bed. 

AM68 
PSA very undercut and has deposited sediment onto BS. Narrow channel w/ quick 
flow. 

AM69 
Short vegetated bank. PSA extends to bed with large rock inclusions in bank. Sandy 
bed w/ large rocks.  
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AM70 
Short vertical bank; grass mowed to streamside. Large rock streambed. Exposed 
roots. 

AM71 Very vegetated bank. First point taken in forested area. Rock embedded bank. 

AM72 

BS extends down to bed. Small roots exposed and overhanging from top of bank. 
Low, dense shrub vegetation (leafy). Bed silty sand. Large roots extending out of 
PSA.  

AM73 
BS has lots of medium sized rocks embedded in bank. BS extends to bed. Heavily 
eroded. Pebbly bed. 

AM74 
Grassy bank w/ two trees (~40cm diam). Exposed roots on bank; PSA undercut. SS 
is claylike layer extending to bed. Silty pebbly bed. 

AM75 
Eroded PSA deposited on top of BS causing it to mix (also mixed with bed 
sediment). Short bank. Exposed roots. Leaf deposits on bank. 

AM76 Short vertical bank. Exposed roots. Undercut BS. Sand bar in middle of stream. 

AM77 
Clear difference between BS and underlying layer. BS shows no organic material- 
very sandy. Medium rocky bed. 

AM78 
Short bank. Large tree overhanging stream. Roots exposed at bank. Slumped moss. 
Undercut PSA (eroded down over BS). Silty bed w/ medium rocks. 

AM79 
Below riffle. Large clay layer between PSA and BS. Undercut PSA; exposed roots. 
BS submerged and extends to bed. Silty sand bed w/ medium rocks.  

AM80 

Low bank with moss and small veg overhanging. Straight channel below riffle. Bed 
cobbled. BS buried under PSA for all of bank. Small wood debris extends out of 
bank below water level about 15cm above bed.  

AM81 
Giant tree has carved out pool-like formation in bed and curve in bank. Large tree 
roots exposed. Low bank with dense shrub vegetation. 

AM82 

BS layer covered by PSA eroded sediment. Extends below water level. BS and SS 
mix below water. Short bank short grasses and small vegetation. Bed is sandy silt 
with gravel and small pebbles (<10cm) 

AM83 

PSA layer eroded down on BS layer. Undercut near the top of overhanging. Short 
and dense. Vegetation small trees one meter from the bank. Bed dominated by small 
pebbles and silty near the bank. 

AM84 

Below small rock dam. Channel widens before channelized glide downstream. 
Medium roots overhanging. Small shrubs on top of bank. BS extends to bed. Large 
pebble bed with sand underlying. 

AM85 

The bed is silt with medium sized pebbles. Bank is short in height and densely 
vegetated with grass and small plants. Clay deposit mixed with BS. Small gravel 
intrusion in bank. 

AM86 

PSA is eroded down to BS. Medium sized root expose from PSA. Small trees about 
a meter height. Bed is sandy-silt dominated with medium sized pebbles. Clay/SS 
extends to bed. 

AM87 

BS buried very deep below PSA and was not measurable. Sample taken along 
curve/slip in the bank. Bed is silty-sand. Low bank with short grass. PSA is heavily 
eroded over the BS. 

AM88 

BS extends down to bed. PSA eroded down over PSA and deposited. Clear 
definition of layers. Short bank but tall and dense grass overtop. Small roots and 
dead grass overhanging. Medium roots through middle of PSA layer. Medium trees 
2-3 meters from bank. Sandy gravel bed with some medium cobbles. 
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AM89 

BS extends to bed but covered with PSA. PSA layer undercut possibly due to 
erosion and exposed roots. PSA is only present in the roots. Bed is sandy silt with 
medium and small cobbles. BS layer protrudes below water level and forms steps. 

AM90 

Downstream of 1st bridge. Bank eroded but not undercut. Small vegetation 
extending down bank. One small tree 1 meter from bank. Bed is sand dominated 
with a few small pebbles. BS mixed with SS 

AM91 

Small gravel and pebble bed. Very clear. No loose sediment. Medium roots extend 
along top of bank. Large tree upstream 1.5m from bank edge. Exposed roots. Low 
vegetation. 

AM92 

Bank is all PSA. Bed is gravel and small pebbles. Bank is short and vertical. Small 
grass along top. PSA layer eroded a little but not undercut. No exposed roots. Trees 
>3m away. 

AM93 

BS extends down to bed. Mixed with SS as bed. BS 3cm behind PSA. Bank is 
vertical and slightly eroded. Small roots exposed. Top of bank is short grass. Bed 
sandy silt.  

AM94 
BS extends to bed. Bank eroded down and deposited on top of BS. Moss covering 
bank with medium shrubs 12cm from edge. Bed is sandy silt with small pebbles. 

AM95 

BS extends to bed. Tree with 1.5m exposed roots. Top of bank is small vegetation 
and grass. Bed is sand, gravel and small pebble dominated. Small woody debris 
(20cm) extends our from BS  

AM96 

SS may be mixed with BS. PSA eroded down over BS, but it is measurable. BS is 
sandy at base. Bank cover is short grass. Bank has root exposure. Bed is sand, 
gravel, and pebbles. 

AM97 

BS is lighter in color and more clay-like but there is a distinct different between the 
SS and BS. Medium root extending at bank. Heavily vegetated with grass and 
medium sized trees. Bed is sand, pebbles, and cobbles.  

AM98 

Bank is highly vegetated with exposed roots. All sediment layers have organic 
material. Bed is cobble, pebble, and gravel. Shrubs down to water level and medium 
sized trees located 1.5m from bank. 

AM99 

PSA and clay combined layer between PSA and BS layers (20cm). SS is mixed with 
BS, down to the bed. Short bank with small exposed roots. Bank with small and 
medium bushes. Bed is sandy-silt 

AM100 

PSA and clay combined layer between PSA and BS layers (27.5cm). BS extends to 
bed. BS below water has a lot of woody debris in it. PSA eroded and deposited on 
clay. Thick dense shrub. Big cobbles on bed.  

AM101 
Highly vegetated bank with a big tree and roots exposed on bank. PSA extends up to 
roots only. Bed is cobbles and large pebbles. Bank is undercut and held by the roots.  

 

Sample 
Date 

GPS 
Point 

Right/
Left 

Latitude 
(N) 

Longitude 
(W) 

PSA 
(cm) 

BS 
(cm) 

SS 
(cm) Corrected 

23-Jun-15 AM13 R 39.85918 75.78304 91.6   8.6 
BS (8.6)=SS, SS 
original (12.9)=bed 

23-Jun-15 AM14 R 39.85313 75.78615 44 54 16   
23-Jun-15 AM15 L 39.8531 75.78591 103 22     
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23-Jun-15 AM16 R 39.85318 75.78587 58 33 7   
23-Jun-15 AM17 L 39.85326 75.78576 91   23 BS(23)=SS 
23-Jun-15 AM18 R 39.85347 75.78582 112 32.4     
23-Jun-15 AM19 L 39.85357 75.78556 64 41     
23-Jun-15 AM20 R 39.85378 75.78561 70.5 26.5     
23-Jun-15 AM21 L 39.85382 75.78541 71 34.5     
23-Jun-15 AM22 L 39.85394 75.78527 69.2 19.1 8   
23-Jun-15 AM23 R 39.85402 75.78519 70.5 22     
23-Jun-15 AM24 R 39.85407 75.78522 69.7 62     

23-Jun-15 AM25 L 39.8542 75.78491 27   64.3 

Definite white clay 
but has organic. BS 
switched to SS after 
EA test 

23-Jun-15 AM26 R 39.85434 75.78487 70.3 18.4   
After drying- layer 
has clay 

23-Jun-15 AM27 R 39.85445 75.78481 50 17.2   
After drying- layer 
has clay 

23-Jun-15 AM28 L 39.85466 75.78479 52.5       
23-Jun-15 AM29 L 39.8547 75.78469 66.5       
23-Jun-15 AM30 L 39.85465 75.78448 67 39     
24-Jun-15 AM31 R 39.85487 75.78432 67.3 31.4     
24-Jun-15 AM32 R 39.85498 75.78419 36       

24-Jun-15 AM33 L 39.85502 75.78415 31   106 

Old 
BS=clay…moved 
to SS 

24-Jun-15 AM34 R 39.85501 75.78429 84.5 21.4 24   
24-Jun-15 AM35 R 39.85504 75.78442 82.5 30.5     
24-Jun-15 AM36 R 39.85505 75.78452 161       
24-Jun-15 AM37 R 39.85514 75.78457 91 27     
24-Jun-15 AM38 R 39.85524 75.78472 63 78     
24-Jun-15 AM39 L 39.85531 75.78467 107       
24-Jun-15 AM40 R 39.85538 75.78447 81 28     
24-Jun-15 AM41 R 39.85542 75.78445 61 57     
24-Jun-15 AM42 L 39.85537 75.78431 134       
24-Jun-15 AM43 R 39.85529 75.78407 71       

24-Jun-15 AM44 R 39.85522 75.78392 58 42   
SS and BS mixed 
in sample 

24-Jun-15 AM45 L 39.85532 75.78374 42   81 BS(81)=SS 
24-Jun-15 AM46 R 39.85544 75.78385 87       
24-Jun-15 AM47 R 39.85546 75.78402 93 24     
24-Jun-15 AM48 R 39.85551 75.78413 87 39     
24-Jun-15 AM49 R 39.85582 75.78377 67 39     
24-Jun-15 AM50 R 39.85598 75.78365 87 33     
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24-Jun-15 AM51 R 39.85611 75.78349 40 17     

24-Jun-15 AM52 L 39.8562 75.78339 
112.

4 17.5     
24-Jun-15 AM53 R 39.85625 75.78341 51.5   74 BS(74)=SS 
24-Jun-15 AM54 R 39.85638 75.78349 49   108 BS(108)=SS 
24-Jun-15 AM55 R 39.85648 75.78343 77 30     
24-Jun-15 AM56 R 39.85649 75.78336 68 54     
25-Jun-15 AM57 R 39.85659 75.78316 77.5 47.4     

25-Jun-15 AM58 L 39.85638 75.78312 96.5 58.5   
BS measure=SS 
(24.5)+BS (34) 

25-Jun-15 AM59 L 39.85638 75.78297 69   
104.

5 

BS(71)=SS…SS+cl
ay 
deposit(33.5)=104.
5 

25-Jun-15 AM60 L 39.85643 75.78293 74 37     
25-Jun-15 AM61 R 39.85658 75.78293 99.5       
25-Jun-15 AM62 L 39.85678 75.78294 114       
25-Jun-15 AM63 L 39.85704 75.78291 70 38.5     
25-Jun-15 AM64 R 39.85719 75.78294 110       
25-Jun-15 AM65 R 39.85745 75.78294 56.5 25     
25-Jun-15 AM66 L 39.85756 75.78285 74.5   37.5 Clay deposit=SS 
25-Jun-15 AM67 R 39.85764 75.78298 53 31     
25-Jun-15 AM68 L 39.85785 75.78304 65   43 BS(43)=SS 
25-Jun-15 AM69 R 39.85802 75.78299 87       
25-Jun-15 AM70 L 39.85834 75.78295 65 19.5     
25-Jun-15 AM71 L 39.85897 75.78337 86 50.5     
25-Jun-15 AM72 R 39.85892 75.78346 74 37     
25-Jun-15 AM73 R 39.85904 75.7836 98 18     
25-Jun-15 AM74 L 39.85931 75.78371 83 31 24.5   
25-Jun-15 AM75 R 39.85935 75.78395 46 20.5     
25-Jun-15 AM76 L 39.85944 75.78413 39.4 45.5     

25-Jun-15 AM77 R 39.85944 75.78432 37.5 17   
PSA heavily mixed 
with BS 

25-Jun-15 AM78 L 39.85974 75.78446 62 14     
25-Jun-15 AM79 L 39.85986 75.78446 53 30.5     
26-Jun-15 AM80 L 39.85996 75.78428 46.5 26 13.5   
26-Jun-15 AM81 R 39.86034 75.78455 53 13 17   
26-Jun-15 AM82 L 39.86023 75.78429 65 32 2   
26-Jun-15 AM83 R 39.8605 75.78426 46 43     
26-Jun-15 AM84 R 39.86073 75.78403 53 26     
26-Jun-15 AM85 L 39.86086 75.78382 46   26.5 old BS=SS 
26-Jun-15 AM86 R 39.86089 75.78428 63.4 21 56.5   
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26-Jun-15 AM87 L 39.86106 75.78407 61.5   19   
26-Jun-15 AM88 R 39.86111 75.78419 65 35.5     
26-Jun-15 AM89 R 39.86142 75.78409 24 51     
26-Jun-15 AM90 L 39.86134 75.78378 84 78 7.3   
26-Jun-15 AM91 R 39.86154 75.78372 74 45     
26-Jun-15 AM92 R 39.86151 75.78327 130       
26-Jun-15 AM93 R 39.86158 75.78322 67 36 15   
26-Jun-15 AM94 R 39.862 75.78326 86 49     
26-Jun-15 AM95 R 39.86221 75.78341 62.5 49     
26-Jun-15 AM96 L 39.86236 75.78339 59.5 52     
26-Jun-15 AM97 L 39.86259 75.78345 49 40.5 35   
26-Jun-15 AM98 L 39.86293 75.78409 63.5 29     
26-Jun-15 AM99 L 39.86307 75.78415 56.5 27     

26-Jun-15 
AM10
0 L 39.86349 75.78423 51 31.5     

26-Jun-15 
AM10
1 L 39.86359 75.78452 41 75.5     

16-Jul-15 
AM10
2 L 39.89389 75.8757 83.5 43     



! 127 

Doe Run Field Data 
 

GPS 
Point 

Notes 
 

AM102 PSA mixed with BS. BS extends to bed and has dark clay content. Top of bank is 
mowed grass. Undercut bank along a meander, under a riffle 

AM103 BS is buried under PSA and below water level. PSA layer has slumped down. Grass 
is mowed over bank. Veg is encroaching on the bank. Rock toppled over the bank. 
BS sample taken but not measurable 

AM104 Grass mowed bank. PSA extends to bed and mixed with grey clay. Sampled at a riffle 
AM105 There is no BS. Bank is covered with grass and overhanging veg. PSA is clayey. PSA 

is cemented below water with small rock inclusions. Located at a glide. PSA was a 
mix of clay and PSA layer throughout until below water surface 

AM106 SS is a light clay layer, which extends to bed. Grass is mowed to bank. Site below a 
riffle. 

AM107 SS is a light clay layer, which extends to bed. Grass is mowed to bank. Channel is a 
deep pool 

AM108 SS=clay. Small shrub vegetation. Moss/algae extending down bank. Medium grey 
clay deposit to bed w/ orange coloring. Stagnant water/not in stream flow 

AM109 SS=Clay. BS below water level. Clay deposit between BS+PSA. Overhanging tall 
grass and plants. Sample along meander. Sand and small pebble bed. Clay slightly 
lighter grey color than BS and has no organic matter 

AM110 Clay=45cm and between PSA+BS. PSA eroded down to bed and over BS. Deep pool 
with a few boulders (1-2m). Bank is heavily eroded. Small roots exposed and grass 
mowed to bank. Bank is rocky at clay layer 

AM111 SS=Clay. Short bank. Medium grass and small overhanging roots. PSA, clay, 
BS=order of layers. BS extends to bed and is below water. Bed is small cobbles 
dominated. Clay layer has some gravel inclusions. All layers mixed with PSA. BS 
more sandy but has organic 

AM112 All PSA. Short bank downstream of bridge. PSA extends to bed. Gravel and pebble 
inclusions in bank. Medium grass to bank. Cobble stream bed 

AM113 Grass mowed to bank. Site just upstream of bridge on Fernwood rd. SS is clay and 
extends to bed. Small wood roots overhanging. Bed is cobble dominated with small 
pebbles.  

AM114 Short bank mowed to edge. BS extends to bed. PSA has clay particles mixed in 
slightly. BS=clay rich and could be possible SS. Vines overhanging. Site along glide. 

AM115 Tall grass along bank w/tree plantings. BS extends to bed. Site along riffle 
AM116 SS=Clay. Bank cemented with rock. Site is just downstream of a big riffle, away 

from the river. Bank is mowed grass. Large rock intrusions. PSA is more reddish. 
Exposed roots 

AM117 PSA is reddish and very eroded over the lower 1/2 of bank. SS is 14cm in beneath 
PSA and very cemented. Exposed steep bank. Dark, sandy, clay beneath PSA (SS) 
that is grey in color. Mowed grass. There are rock intrusions (<8cm) in bank, site in 
pool. Larger pebbles below, over-hanging roots.  

AM118 SS measurement=74 from bed, 51 above water, and a 100cm step protrusion. Grassy 
bank in the form of a step that goes down to the bed. Rock-cemented in steps. Silt at 
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pool 
AM119 Undercut bank. Medium dense grass along top of bank. Small overhanging roots. BS 

is clay-like but darker than SS/clay layer below. Very thin. BS layer with very little 
organic matter. Bed is pebble and cobble dominated 

AM120 32cm clay protrusion below water. SS grey+orange clay layer heavily cemented with 
small rocks. Mowed to bank edge. Tree roots exposed through PSA layer. Below 
riffled cobble bed.  

AM121 Darker clay layer between PSA and lighter clay but without very much organic 
matter. Similar to AM119. Short grass bank. Tree roots exposed. Bed is medium 
pebbles and silt. Clay protrusion below water level.  

AM122 SS is present but not measurable (sinking mud). BS is visibly mixed with PSA. 
Gravel inclusions in lower portion of bank. PSA mixed with BS below water level, 
but mostly PSA. Short grass bank 

AM123 BS very thin and unevenly distributed across bank. Small stick embedded in BS 
layer. Short grass bank and small veg overhanging. Bed is large cobble and sand 

AM124 BS1 layer slightly clay but has very little wood. BS2 layer large old wood w/ some 
gravel inclusions. Tall exposed bank w/ short grass below riffle. New BS (BS1) 
doesn’t have organic matter that is substantial. Refer to field notebook for diagram. 

AM125 Clay/SS extends to bed. Protrudes below water level. Grass mowed to bank. Bed is 
gravel and small pebbles. 

AM126 Grass mowed to bank. Clay/SS layer extends to bed. Small pebble and large cobble 
stream bed.  

AM127 BS=darker clay layer but little organic content. SS=white/orange clay. Short grass 
and veg overhanging  

AM128 Grass mowed to bank (meadow). Small roots overhanging. Clay layer slightly 
protruding below water. SS has a few pieces of isolated woody debris 

 
 
 
Sample 

Date 
GPS 
Point 

Right/
Left 

Latitude 
(N) 

Longitude 
(W) 

PSA 
(cm) 

BS 
(cm) 

SS 
(cm) Corrected 

16-Jul-15 AM103 R 39.89378 75.87563 145     
 16-Jul-15 AM104 R 39.89358 75.87572 110.5       

16-Jul-15 AM105 L 39.8933 75.87638 102   25.5   
16-Jul-15 AM106 R 39.89256 75.87649 59.5   67.5   
16-Jul-15 AM107 L 39.89309 75.87669 54   63   

16-Jul-15 AM108 R 39.89131 75.87925 28   94 
PSA mixed with 
clay 

16-Jul-15 AM109 L 39.89171 75.8792 45.5 13 93 BS mixed with clay 
16-Jul-15 AM110 L 39.89153 75.88064 112.5 23   PSA and BS mixed 

16-Jul-15 AM111 R 39.8905 75.88234 48.5 25 31 
Clay heavily mixed 
with PSA 

16-Jul-15 AM112 R 39.88931 75.88525 128     
PSA mixed with 
clay 

16-Jul-15 AM113 L 39.8896 75.88596 69   73   
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16-Jul-15 AM114 R 39.88947 75.88621 89 55     
16-Jul-15 AM115 R 39.88961 75.88724 113 27     
17-Jul-15 AM116 R 39.90417 75.846 134   58   
17-Jul-15 AM117 R 39.9039 75.84614 108   72.5   
17-Jul-15 AM118 L 39.90368 75.84565 62.5   74   
17-Jul-15 AM119 R 39.90342 75.84569 50 14 61   
17-Jul-15 AM120 R 39.90337 75.86738 92   28   
17-Jul-15 AM121 R 39.90142 75.86948 98 18 49   
17-Jul-15 AM122 R 39.90154 75.86962 131 15   BS+PSA 
17-Jul-15 AM123 L 39.90113 75.87049 88 15 32 BS2= 17cm 
17-Jul-15 AM124 L 39.89764 75.87263 82 21 29   
17-Jul-15 AM125 R 39.89985 75.87099 75   91   
17-Jul-15 AM126 R 39.89953 75.87086 66   66   
17-Jul-15 AM127 L 39.89954 75.87132 90 22 39   
17-Jul-15 AM128 R 39.89888 75.87123 77   39   
 
!
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APPENDIX C 
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White Clay Creek, PA 
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Doe Run, PA 
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Upstream Salmon River, CT 
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Downstream Salmon River, CT 
 

 


	Connecticut College
	Digital Commons @ Connecticut College
	2016

	Spatial Variation in Characterized Buried Soils and Legacy Sediments of the Northeast USA
	Anna Marshall
	Recommended Citation


	Microsoft Word - thesis cover page.docx

