
Connecticut College
Digital Commons @ Connecticut College

Computer Science Honors Papers Computer Science Department

2011

Punctuated Anytime Learning and the Xpilot-AI
Combat Environment
Phillip Fritzsche
Connecticut College, phillip.fritzsche@conncoll.edu

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscihp

Part of the Artificial Intelligence and Robotics Commons

This Honors Paper is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut College. It has
been accepted for inclusion in Computer Science Honors Papers by an authorized administrator of Digital Commons @ Connecticut College. For
more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Fritzsche, Phillip, "Punctuated Anytime Learning and the Xpilot-AI Combat Environment" (2011). Computer Science Honors Papers. 1.
http://digitalcommons.conncoll.edu/comscihp/1

http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscihp?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscihp?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscihp/1?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu


 

	   	  

C o n n e c t i c u t 	   C o l l e g e 	   C o m p u t e r 	   S c i e n c e 	   • 	   N e w 	   L o n d o n , 	   C T 	  

Punctuated	   Anytime	   Learning	   and	   the	  

Xpilot-‐AI	  Combat	  Environment	  

Phil	  Fritzsche;	  Advisor:	  Gary	  Parker	  

In	  this	  paper,	  research	  is	  presented	  on	  an	  application	  of	  Punctuated	  Anytime	  Learning	  with	  Fitness	  

Biasing,	   a	   type	   of	   computational	   intelligence	   and	   evolutionary	   learning,	   for	   real-‐time	   learning	   of	  

autonomous	  agents	  controllers	  in	  the	  space	  combat	  game	  Xpilot.	  Punctuated	  Anytime	  Learning	  was	  

originally	  developed	  as	  a	  means	  of	  effective	  learning	  in	  the	  field	  of	  evolutionary	  robotics.	  An	  analysis	  

was	   performed	   on	   the	   game	   environment	   to	   determine	   optimal	   environmental	   settings	   for	   use	  

during	  learning,	  and	  Fitness	  Biasing	  is	  employed	  using	  this	  information	  to	  learn	  intelligent	  behavior	  

for	   a	   video	   game	   agent	   controller	   in	   real-‐time.	   Xpilot-‐AI,	   an	   Xpilot	   add-‐on	   designed	   for	   testing	  

learning	  systems,	   is	  used	  alongside	  evolutionary	   learning	  techniques	  to	  evolve	  optimal	  behavior	   in	  

the	   background	   while	   periodic	   checks	   in	   normal	   game	   play	   are	   used	   to	   compensate	   for	   errors	  

produced	   by	   running	   the	   system	   at	   a	   high	   frame	   rate.	   The	   resultant	   learned	   controllers	   are	  

comparable	   to	   our	   best	   hand-‐coded	   Xpilot-‐AI	   agents,	   display	   complex	   behavior	   that	   resemble	  

human	   strategies,	   and	   are	   capable	   of	   adapting	   to	   a	   changing	   enemy	   in	   real-‐time.	   The	   work	  

presented	   in	  this	  paper	   is	  also	  general	  enough	  to	  further	  the	  development	  of	  Punctuated	  Anytime	  

Learning	  in	  evolutionary	  robotic	  systems.	  
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Introduction	  

The objective of this research is to develop a robust method for real-time learning using 

evolutionary computation. The methods are applied to an autonomous agent in the Xpilot-AI 

game environment, but are applicable to the development of techniques that can be useful in 

advancing many areas of computational and artificial intelligence. An important issue faced by 

artificially intelligent systems is that they are limited in effectiveness without a method for being 

adaptable. They can often perform well in specific situations but do not have the ability to cope 

when an unanticipated element is introduced. Though the systems may be intelligent, their 

intelligence is only applicable to these specific situations. This issue makes the use of many such 

systems impractical in the real, or even virtual worlds, simply because of the unpredictable 

nature of any complex environment. It is impossible to predict everything that will happen in real 

life, so writing a program that can only work in specific situations can easily be rendered 

ineffective by a simple change that was not anticipated. A real-time learning system, such as the 

one being developed in this research, is capable of adapting to changes in its environment in real-

time. Such systems constantly learn, so any significant changes that might affect the behavior of 

the system are recognized and taken into account in the learning process. This allows the system 

to stay up to date and effective in all situations, no matter how variable. 

Real-time learning is of particular importance in the development of control systems for 

autonomous robots as well as in interactive video games. Autonomous robots capable of real-

time learning can be used to help solve dozens of significant real-world problems. One of the 

main applications of autonomous robots is for exploration in unknown or dangerous situations, 

for example with space exploration or rescue situations. Consider a robot that, upon being sent to 

a new planet, was not only able to explore its surroundings but also adapt to the unknowns it 
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would likely encounter. In such an environment, there is no way the robot’s software designers 

could account for every situation the robot could encounter simply because the designers are not 

familiar enough with the environment. For the robot to be effective in the long term, it is 

imperative that it learns quickly so that fast changing or unknown environments do not cause 

problems. Another beneficial use for robots capable of real-time learning is in disaster scenarios. 

In the aftermath of a large-scale natural disaster, search and rescue efforts are undertaken to find 

and aid those in danger. Would it not be beneficial to send in a robot, capable of adapting to any 

new dangers it may encounter in its environment, rather than sending in teams of people and 

putting more lives at risk? 

Of interest in the video game industry is the ability to produce human-like agents for 

opponents. One characteristic of humans is their ability to learn and adapt to the manner of play 

of others in the game. This is a large part of what makes video games enjoyable. Creating 

artificially intelligent systems that are capable of doing this in real-time is an important aspect, as 

well as one of the most difficult aspects, in game development (Yannakakis and Hallam). 

Computer controlled game agents, labeled “bots”, have existed for years as opponents, especially 

in combat-related games. It is only recently that they have started to behave somewhat 

intelligently, and there is still plenty of room for improvement. 

To conduct research in methods for addressing this issue, Xpilot-AI, a complex testing 

environment for autonomous agent learning, was selected. Video games in general and Xpilot in 

particular provide a rigorous testing environment for artificial intelligence research. Its intricate 

nature has the capability to test agent control programs in different scenarios made possible by 

the variable parameters of the game. 
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In order to test methods for providing agent learning in real-time in an environment, it is 

beneficial to first show that a static learning system can produce a controller that behaves 

intelligently. This has been done in the Xpilot environment using genetic algorithms, a type of 

learning in the field of computational intelligence, to evolve parameters for a rule-based system 

(Parker and Parker, The evolution of multi-layer neural networks for the control of Xpilot 

agents). In this system, a rule-based system-controlled agent was modified to work with a genetic 

algorithm. The algorithm evolved optimal parameters for the rules of the rule-based system. 

Other methods have also been used to demonstrate learning in Xpilot. For example, a genetic 

algorithm was used to evolve the weights for an agent controlled by neural network, another type 

of computational intelligence, (Parker and Parker, Evolving parameters for Xpilot combat 

agents) and a cyclic genetic algorithm was used to directly evolve a control program for an agent 

(Parker and Parker, Evolving parameters for Xpilot combat agents). These learning systems, 

while useful, learned control behaviors before the agent was active and as a result had no means 

of adapting to changes in capabilities or the enemy’s behavior once the agent was put into play. 

Though these methods used a genetic algorithm to learn an effective controller, the final 

products are lacking the ability to adapt to changes in enemy behavior in real-time. In previous 

research, dynamic programming-based reinforcement learning techniques, such as Q-learning, 

were used to produce an Xpilot agent capable of real-time learning, but the controllers learned 

were for a very simple environment. Reinforcement learning is a type of machine learning that 

relies on training by way of exposure to different situations. Agents implemented in this manner 

are given rewards or disincentives for every action they take and the subsequent situations they 

end up in. These rewards are remembered and used for future decision-making. The Q-learning 

method requires an accurate model of the agent’s environment to be successful. Since the Xpilot 
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combat environment is very complicated, this method was applied only to a limited scenario 

containing a single agent in a simple environment with no opponents (Allen, Dirmaier and 

Parker). Though it was a successful implementation of real-time learning, it was determined to 

not be as scalable as desired. As the complexity of the environment increases, such a system’s 

ability to cope rapidly deteriorates. One possible solution for this issue is described by Lucas’ 

paper on DynaQ, a form of Q-learning, which updates the agent’s model of the environment as it 

explores. Doing so could allow an agent to more adeptly adapt to the large and constantly 

changing Xpilot environment. In another attempt to demonstrate real-time learning in Xpilot, 

evolutionary strategies, another type of computational intelligence learning, were used to learn 

agent controllers (Parker and Probst, Using evolutionary strategies for the real-time learning of 

controllers for autonomous agents in Xpilot-AI). Though capable of real-time learning, their 

reliance on mutations of a single chromosome to evolve led to slower learning and a system that 

was only partially effective. 

For other games, a number of different strategies have been used to attempt real-time 

learning. For the DEFCON computer game, researchers applied decision-tree learning and case-

based reasoning combined with simulated annealing methods with the intention of creating 

human-like behavior (Baumgarten, Colton and Morris). Others applied evolutionary techniques 

to neural networks by starting with simple networks then slowly adding nodes and connections 

while the game is running to make the agent learn increasingly complex behavior in real-time 

(Stanley, Bryant and Karpov). While both of these do learn in real-time, they also both rely on 

past knowledge and pre-defined courses of action. Others have used a genetic algorithm 

approach, attempting to learn competitive, human-like behavior in the video game Quake 

(Priesterjahn, Kramer and Weimer). 
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While useful, none of the above systems were able to fully solve the problem of creating 

a real-time learning system in the interactive game environment. Although genetic algorithms 

have been used successfully to generate controllers for interactive game environments, they have 

not been used in a real-time learning system since they require each individual of the population 

to be tested. In order to be able to adapt to an opponent’s play in real-time, these tests would 

have to be done by playing the opponent. In addition, the genetic algorithm typically starts with a 

random population of solutions. This would make particularly poor play for someone attempting 

to enjoy the game. What is needed is to be able to do the learning on a model of the game with 

periodic checks to make sure the model represents the actual play. 

In the study of learning in robotics, systems have been created to solve the issue of real-

time learning with genetic algorithms. One such example is Anytime Learning developed by 

Grefenstette and Ramsey. Anytime Learning places a learning module in a robot and uses an 

observer module to learn from the robot’s environment. The information gathered is used to 

influence the learning processes so that there is a link between the actual robot and environment 

to the simulation. As the learning system is on-board the robot, it has the potential to learn 

indefinitely. As long as the robot is running, it will continue to attempt to improve the controller. 

Anytime Learning worked well for robots with the capability to carry the learning system 

on the robot. However, this is not always practical. For example, if the robot’s environment is 

highly dangerous, it may be more practical to use several less expensive and expendable robots 

as opposed to one to complete the mission. Rather than having each robot carry an expensive on-

board learning system, it would be more practical to have one off-board learning system used for 

all of the robots. One other issue with anytime learning is that the observer module had to 

recognize and categorize changes in the environment, a task that requires extensive computation. 
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Punctuated Anytime Learning (PAL), which was originally developed for evolving robot 

controllers (Parker, Punctuated Anytime Learning for Hexapod Gait Generation), is a 

modification of Anytime Learning that was developed to address these issues. In this paper, PAL 

is used to create a real-time learning system for control of agents in Xpilot-AI. One of the major 

benefits of PAL is its flexibility. In this work it is being applied to a learning problem pertaining 

to a video game combat environment, but that is not the only situation in which this system is 

useful. PAL has been implemented in the past on a robot, but the tests required a researcher to 

manually record measurements as a part of the system’s learning process (Parker and Larochelle, 

Punctuated Anytime Learning for Evolutionary Robotics). PAL has never been implemented in a 

fully automated manner. One of the goals of this work is to do just that, and in doing so, help 

demonstrate the viability of this system not only for virtual environments but for real world ones 

as well. Showing that PAL is a practical automated system in an environment as complex as 

Xpilot is beneficial for evolutionary robotic research as well as video game research by helping 

show the realistic capabilities of the system. 

Xpilot	  

Xpilot is an open source, multiplayer, two-dimensional space combat game. Players 

navigate triangular ships through custom-made maps collecting power ups, avoiding traps, and 

attempting to shoot down their opponents in order to be the last ship alive. It was first released in 

1992 by a group of developers that included Bjørn Stabell, Ken Ronny Schouten, Bert Gÿsbers, 

and Dick Balaska (Stabell and Schouten). Since its initial release, the Xpilot project has been 

split into multiple development lines, each with their own differences in style and gameplay. 
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Currently, the game is available for use on Windows, OS X, and Linux, as well as on the Apple 

iOS platform (XPilot Development). 

Xpilot consists primarily of two components: the server and the client (Figure 1). The 

server is used to configure settings for a game. For example, it can change the number of frames 

per second (FPS) in a game and the map being used. It is also the server’s responsibility to track 

the players playing the game, their scores, and other information. All communication between 

clients is routed through the server. Rather than having each client send information directly to 

each other, they send and receive information to and from the server. The centralized nature of 

the game helps to improve reliability and efficiency during gameplay involving multiple users. 

Figure 1 The Xpilot game environment. 
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To play the game, users control the client. The client is a simple application, capable of running 

on any operating system (Windows, Mac OS X, Linux, etc.), that when launched allows the user 

to control a single agent in the Xpilot environment. Specific keystrokes enable the users to 

control their ships by thrusting, turning, and shooting. Pressing shift, for example, thrusts, while 

the arrow keys on the keyboard turn the ship. Some of the Xpilot development lines include the 

ability to interact with various objects on the map – for example in Xpilot NG there are shields 

and bombs available on the map for use. 

In order to join a game of Xpilot being hosted on the internet, the client can connect to 

the Xpilot meta server. The meta server is an informational server whose purpose is to maintain 

an up to date list of all active Xpilot game servers. From this list, the client can obtain the 

address of a specific server and connect to it to begin gameplay. Multiple clients from different 

locations can use the meta server to connect to the same game server. As a result, it is easy to 

have players from all around the world playing together on one server. 

The Xpilot environment contains relatively realistic physics. Forces such as inertia and 

gravity are present and interact with agents on the map as one might expect in the real world. 

Agents explode if they run into a wall too fast, but will merely bounce off and lose some speed if 

they run into a wall at a slow speed. Since the environment is in a frictionless space setting, an 

agent can glide without continued thrusting and still maintain constant velocity. When an agent 

fires a bullet, it will not instantaneously hit its target regardless of distance but must travel there, 

allowing time for an opponent to dodge an incoming bullet. Further still, firing a bullet has an 

effect on the ship. When a ship fires, it is pushed backwards, or slowed down if it is moving fast 

enough. As a result, properly controlling the ship both in the correct direction and at the correct 

speed is difficult and requires skill and practice. 
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Xpilot is seen as a robust environment for artificial intelligence research for a number of 

reasons. The game has a large number of gameplay modes, each of which provide their own 

unique sets of challenges and scenarios. This flexibility provides programmers with great 

freedom when designing advanced tests for their agents. Xpilot requires minimal system 

resources. As the game was initially designed in 1992 and has not changed much since in regards 

to how much computation the game requires to run, any modern day computer can not only run 

the game easily but can run multiple clients and servers simultaneously. Because it can run 

multiple clients at once, Xpilot allows researchers to test multiple theories at the same time or 

run teams of agents all on one machine without requiring expensive supercomputers. It can also 

lead to a decrease in time required for an agent to learn – a computer that has multiple servers 

running can process multiple trials at the same time, allowing the algorithm to more quickly 

develop intelligent behavior. Thanks to the realistic nature of the physics present in the game, it 

is also a useful platform for developing autonomous robot learning systems, which are required 

for robots to function in highly complex environments. 

Xpilot-‐AI 	  

Xpilot-AI is an add-on to the Xpilot game that allows users to write programs to control 

Xpilot agents. It is one of the development lines created as a result of the initial Xpilot project. In 

its current form, it modifies Xpilot Classic, the original version of Xpilot, by building in the 

necessary functionality for these agent control programs to work. Programs can be used to 

implement computational and artificial intelligence techniques in the game. As a result, Xpilot-

AI has become a powerful testing ground for researchers in these fields to develop learning 

methodologies. Agents controlled by programs can play along with other program-controlled 
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agents, humans, or server-controlled robots on any standard Xpilot server. To a user playing the 

game, a program-controlled agent appears no different than any other player on the server. This 

is not the case when dealing with pre-programmed agents that come as part of the Xpilot game, 

which use different ship icons during gameplay to differentiate themselves as simplistic 

computer coded agents. 

The Xpilot-AI client, built into the standard Xpilot client, serves as a filter between the 

server and standard client. Normally, the server would send information directly to the client, 

which would then respond with the actions taken by the user at the keyboard. With Xpilot-AI 

installed, a program written by the researcher receives this information and is allowed to respond 

with actions as the client. This allows a script to programmatically send commands to the server, 

as if a user had been sitting at the keyboard controlling the agent. Xpilot-AI provides support for 

a number of common programming languages, specifically C, Java, Python, and Scheme. 

Programmers in each of these languages are given direct access to information required for 

making intelligent decisions as it is received from the server. This includes the agent’s current 

location and bearing and the location of opponents on the map. All of the commonly used key 

presses a user might make are built into the Xpilot-AI library. The programmer defines a 

function, a specific block of code, that will be called once every frame of the game. In a game 

running at a standard FPS of 16, this means that the function will be called 16 times every 

second. 

This provides an interesting opportunity to test autonomous agents by running them 

against both other computer-learned agents as well as human players. Seeing the agent perform 

in both situations can not only increase our understanding of what behavior is being learned but 

also make sure that it is able to compete against all types of opponents. Thanks to this capability, 
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combined with the fact that Xpilot itself is already an exceedingly complex environment, Xpilot-

AI allows for rigorous testing of artificial intelligence techniques in a broad range of scenarios 

against a broad range of opponents. Because of the scope and flexibility with which the 

environment can be used effectively, it is the primary development tool for this research. 

Rule-‐Based	  Systems	  

 Rule-based systems, commonly known as expert systems, serve as a method of 

automating the problem-solving process in such a way as to emulate the know-how of human 

experts (Hayes-Roth). A rule-based system is comprised of a set of facts or assertions and a set 

of rules that specify how the system should react based on the current set of facts. The facts and 

assertions form the system’s working memory – they represent all that the system knows about 

its environment that will help it make a decision to solve its current problem. The rules are a set 

of guides that, given the system’s working memory, emulate the same behavior a human expert 

would follow in attempting to solve a similar problem. Each rule has two components: the 

antecedent and the consequent. The antecedent is a condition or conditions that, based on the 

system’s working memory, evaluate to true or false. If all of the conditions in a particular rule’s 

antecedent are true, then the rule is said to have been fired and the consequent occurs. The 

consequent can add to, change, or subtract from the working memory, cause the system to take 

an action, or both. 

 Each rule-based system contains a number of rules, potentially dozens if not more. One 

of the largest issues for such systems is the method with which they are used. Developers of 

these systems often overlap rules where appropriate. Though they will not have all of the same 

conditions necessary to take action, it is not uncommon to see rules that have a few of the same 
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conditions. This can lead to multiple rules having true firing conditions at the same time. It is 

possible that rules that fire could have conflicting consequents. One rule might say turn left while 

another rule might say turn right – obviously both of these cannot occur simultaneously, thus 

causing a problematic conflict. As a result, conflict resolution strategies must be implemented to 

insure that appropriate actions are taken based on the system’s current working memory. There 

are five such strategies that are commonly used: first applicable, random, most specific, least 

recently used, and “best” rule (Rule-based systems and identification trees). 

 The first applicable resolution strategy is implemented by placing the system’s rules in a 

specific order. The system goes through the set of rules from start to finish in the same order 

every time. The first rule found that is true is used, and no other rules further down the list are 

checked once one has been used. A system using a random conflict resolution strategy will 

randomly choose one of the rules that are found to be usable. If only one usable rule is found, 

then that rule is used. The most specific conflict resolution method fires whichever rule is the 

most specific. As different rules have different numbers of required conditions to fire, the rule 

that requires the highest number of true conditions is considered to be the most specific. The 

least recently used rule conflict resolution method chooses the rule that has fired the least 

frequently, in effect making sure that every rule is used close to the same number of times when 

a conflict occurs. Finally, the “best” rule conflict resolution method is implemented by assigning 

each rule in the system a specific weight that is used to determine its importance. When multiple 

rules are fired simultaneously, only the one with the heaviest weight is actually used. 

 Consider a simple rule-based system to control an Xpilot agent. Some of the primary 

concerns at any given moment for an agent to be used for combat are: where is the enemy, does 

the agent have a clear shot on the enemy, is the agent in danger of being hit by a bullet, and is the 
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agent in danger of running into a wall? A small sample set of rules for an agent to survive might 

look like this: 

1. IF agent is in danger of being shot THEN turn 180º AND thrust. 

2. IF agent is near a wall AND agent is moving too fast THEN turn 180º AND thrust. 

3. IF agent can see its opponent AND has at least a good chance of hitting its enemy THEN 

calculate where to shoot AND turn in that direction AND shoot. 

4. IF agent can see its opponent AND has at least a mediocre chance of hitting its enemy 

THEN turn towards opponent AND thrust. 

5. IF the agent cannot see its opponent THEN pick a bearing not aimed at a wall AND 

thrust. 

These rules are intended to be read in order and takes advantage of the first applicable method of 

conflict resolution mentioned above, though hard coded into that order is the method of most 

specific. Per the order defined in Figure 2, if starting at the node on top, the system would first 

gather information on its current state. Suppose that in its first frame, the opponent is not in 

danger of being shot, is not near a wall, and has a good chance of hitting its opponent. It would 

check rules one and two, in order, determining that their conditions for action are not true. Then 

once it hits rule three, it would see that the agent can see its opponent and has a good chance, 

causing rule three to fire. The agent would calculate an appropriate angle to turn and shoot. Rule 

four would not fire, though, even though it is equally as true as rule three, due to the conflict 

resolution method being used. 
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 Suppose that the random method of conflict resolution was being used instead of first 

applicable. In this situation, it would be possible for the system to randomly select rule four, 

even though rule three would be a better choice in this current situation. As a result, the agent 

would thrust towards its enemy but would not shoot even though it has a clear shot. While the 

random method can be useful, this is one example in which it is not. For a rule-based system to 

be effective, the methods of implementation must be examined and designed to work well with 

each environment in which the system is being deployed. In this research, the first applicable 

method is used in order to give greater control over what actions the agent takes and when. 

Given that it is learning in a combat environment, consistency is more useful when the 

occasional act of randomness could result in the death of the agent. 

Figure 2 A visual representation of the actions taken by a rule-based system 
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Computational	  Intelligence	  

 Computational intelligence describes three broad nature-inspired methodologies whose 

purpose is to solve complex problems that other arguably simpler and previously developed 

methods are unable to solve. The field of computational intelligence is a sub area of artificial 

intelligence and generally is utilized to solve the same problems. It primarily consists of fuzzy 

logic, neural networks, and evolutionary computation. Fuzzy logic, introduced in 1965 by L. A. 

Zadeh, is a tool used to formally represent the concept of human reasoning. Neural networks, 

initially introduced in the 1940s, though not fully developed until the 1980s, are designed to 

mimic the neural connections in the brain. Using mathematical processes modeled after the ways 

in which neurons connect and communicate with each other, neural networks attempt to 

computationally reproduce the signals neurons create. Evolutionary computation is a 

comprehensive term that is used to represent a number of different kinds of algorithms, all of 

which revolve around an iterative process designed to mimic the biological process of evolution. 

 As a whole, these three sub-fields that make up computational intelligence are areas of 

study for those wishing to design intelligent agents. Artificial intelligence, as a field, has to do 

with the intelligence of machines. It is defined as the “study and design of intelligent agents” 

(Poole, Mackworth and Goebel), where an intelligent agent is any kind of system that acts 

intelligently. The field, though it does promote the idea of systems that use active reasoning to do 

so, does not require it. Many subfields of artificial intelligence explicitly rely on the fact that 

their systems only appear intelligent, even if the processes driving such apparent intellect can not 

reason as a human would. One of the main hypotheses of computational intelligence, on the 

other hand, is that reasoning is fundamental to an intelligent system, as displayed by the nature of 

the three methodologies associated with the field.  
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A. Fuzzy	  Logic	  

Fuzzy logic is a subset of many-valued logic, a kind of propositional calculus, which is a 

formal system for representing logic and statements as propositions. In traditional propositional 

calculus, a statement may be either true or false; it deals with discrete terms. Many-valued logic 

deals with the idea that a statement may have more than two values of truth (true or false). Fuzzy 

logic is a system of reasoning where statements can have an infinite number of values in regards 

to truth. Fuzzy logic reasoning is dynamic rather than discrete. Consider the idea of describing a 

man’s height. Using crisp logic, one might say a particular man is either tall or not. Applying 

such a limited view to an autonomous agent can be a bit cumbersome. In order for a computer to 

properly understand and identify the difference between a tall man and a short man, the computer 

must be given defined values for when the man becomes tall, or should no longer be considered 

so. Is 5’ 11” considered tall? Or is the man not tall until he is over 6’? If 6’ is considered the 

barrier, what happens to a man who is 5’ 11.5”? He is, by this logic, not tall, but he is certainly 

not short either. Fuzzy logic exists to help represent the concept of, for example, a man being tall 

in such a way that a computer would be able to understand it while still making sense to a human 

as well. In a fuzzy logic based system, the man could be tall, very tall, short, or even of average 

height. Fuzzy logic sets are defined to represent the different categories possible. In this case, tall 

is one set, medium height is another, and short is a third. The man who is 6’ 6” is entirely in the 

tall fuzzy set, while the man who is 5’ 11” is tall, but also a member of the medium height fuzzy 

set. Fuzzy logic does not deal with discrete terms, allowing for greater flexibility and an 

unlimited number of ways to describe a particular concept. It allows a computer to both store 

exact data, such as the fact that the man is 5’ 11.5” tall, while still being able to communicate 
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and reason in the abstract, by saying the man is somewhat tall, in a manner similar to that which 

we humans use. 

Fuzzy logic works by breaking down a specific concept into the components it is made of. 

Consider the concept of a glass of water. The water can either be cold, neutral, or hot. In order to 

determine which it is, a fuzzy logic system must first break each of these values into a 

mathematical function, used to represent the varying degrees of truth to each value. Figure 3 

shows an example of one such graph. The vertical line represents water that is somewhere in 

between neutral and hot. A fuzzy logic system would say that the glass of water at that 

temperature is 70% neutral, 30% hot, and 0% cold. Because of this, it could deduce that the glass 

is not cold, but is instead neutral and a little bit hot, or warm. Each temperature line on the graph 

represents a mathematical breakdown of the linguistic variables of this particular fuzzy logic 

system. Linguistic variables are the general values being used to describe the item in question – 

in this case, the linguistic variables being used are “cold”, “neutral”, and “hot”. Each linguistic 

variable is given its own mathematical function that represents the temperature range at which 

the water is 100% cold, neutral, or hot, as well as the range during which it becomes no longer so 

Figure 3 A sample fuzzy logic graph of temperatures from hot to cold 
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and how fast the change occurs. This breakdown of temperature into ranges like cold, neutral, 

and hot can be extended further to create a more finely detailed gradient of temperatures. The 

linguistic variables could easily have been cold, cool, neutral, warm, hot, and so on. 

Fuzzy systems are convenient in that they are easily adapted to work with other types of 

systems. Typically, a fuzzy logic system is implemented by way of a rule-based system. 

Consider a simple rule used to avoid walls for an Xpilot agent. It could be stated as follows: IF 

the agent is less than 100 pixels from the wall AND is traveling greater than 10 pixels per second 

THEN turn 180º AND thrust. The rule is relatively straightforward, but what if we could make it 

a bit simpler – suppose the rule was instead like this: IF the agent is near the wall AND is 

traveling fast THEN turn around AND thrust. Not only does this make more immediate sense 

when reading it, but it is also possible for the computer to understand it to. Using fuzzy logic, a 

rule based system could make decisions based on specifics without being forced to resort to 

exact numbers. This allows the system to be more flexible while maintaining the accuracy 

needed to make intelligent decisions. Unlike in a rule-based system, is possible to have more 

than one related rule fire in a fuzzy system. This way, when multiple conditions partially apply to 

a situation, as is the point with a fuzzy system, then their respective rules can each fire. Once this 

is done, the outputs are combined and a process called defuzzification is applied to deliver the 

outcome. 

One point worthy of mention with fuzzy systems is that they are heavily influenced by their 

designers. Choices must be made as to when certain linguistic variables become true or false and 

how quickly these changes occur. Developers must determine at what temperature a glass of 

water is no longer considered to be cold – these concepts are subjective at best and as such the 

systems that result will often vary based on who developed them and for what purpose. That said, 
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this is not necessarily a bad or even a strange concept. It simply means that each fuzzy system 

will view things a little bit differently, which is precisely what happens when humans interact 

with each other. Further still, if consistency is required then all a developer must do is gather 

data on how others view the problem in question. Given a multitude of opinions, an average 

opinion can be found and applied to the fuzzy system. One of the main drawbacks of this system, 

though, also relates to the fact that the specific ways in which a fuzzy logic system is broken 

down. The fact that they are hard coded by their designers also means that these systems do not 

themselves have a method for learning. If the problem in question changes, the system will not 

change with it, effectively ending its usefulness. A lack of learning means that it must be 

regularly kept up to date to reflect changes in the environment, causing an arguably unnecessary 

increase in amount of work required to deploy such a system. A form of evolutionary 

computation can be used for learning in a fuzzy logic system, but using evolutionary 

computation for learning on a rule-based system is more straight forward and can typically result 

in acceptable solutions. 

B. Neural	  Networks	  

The term neural network refers to a computational model whose design is motivated by the 

structure and functional aspects of the biological neural networks found in a brain. Neural 

networks are comprised of artificial neurons that have been connected together to promote 

communication for the purpose of solving a specific problem. Artificial neural networks are used 

to determine patterns in large amounts of data as well as find ways of representing complex data. 

There are several types of neural networks, some considerably more complex than others. Simple 

neural networks are often represented as having layers: the network will have n nodes in the 

input layer and m nodes in the output layer. The nodes in the input layer accept data then send 
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the data to the output layer, performing transformations on the way to generate the desired output. 

These transformations occur by multiplying the inputs by specific weights, associated with each 

neuron. For representing more complex data, additional layers are often used. These extra layers 

are called “hidden layers”, given that they are used by the system but do not directly interact with 

the user as they produce no viewable output of their own and only receive input from other 

neurons in the system. 

One example of a simple neural network is the Perceptron, developed in 1957 by Frank 

Rosenblatt (Rosenblatt). The Perceptron is a single-layer neural network, meaning it has only 

one input layer and one output layer (Figure 4), and is capable of learning models for the simpler 

range of problems accessible by a neural network. It is limited to certain data models as it is only 

capable of producing output that is linearly related to the input data. A simple example of one 

Figure 4 A visualization of the nodes in a single-layer Perceptron containing two inputs and one output neuron. 
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model the Perceptron could easily learn is the logical AND. This would be accomplished by 

implementing a Perceptron with two nodes in the input layer and one neuron on the output layer. 

If the two input nodes receive the inputs “true” and “true”, then the output would also be “true”. 

If, however, the inputs were “true” and “false”, then the definition of the logical AND states that 

the output should be “false”. The Perceptron would need to be trained, but, once it is, the system 

is self-sufficient and can respond with the appropriate output based on the training it previously 

received given any input.  

The Perceptron (a single-layer network) as well as multi-layer networks, train by inputting 

data for which the output is known, using a method called delta learning. Delta learning works 

by calculating the difference between the actual output and the expected output for each output 

neuron in the system. It multiplies this information by the neuron’s input and again by a learning 

constant α. The resultant value is called the delta weight (∆w). The delta is added to the weight 

of the current neuron, and the sum of those two numbers is stored as the new weight for that 

neuron. Neural networks that contain multiple layers use a method called back propagation, of 

which delta learning is a specific case, to achieve learning. Once the output has been calculated 

and the weights for the output nodes are adjusted, the new information is propagated back 

through the network to the start, updating each neuron along the way. This process is repeated 

many times with large datasets in order to fully train a network. These datasets consist of several 

different expected input and output pairs. 

Neural networks have been proven to be quite effective, but they do have their limitations in 

that they must be supplied with extensive training sets of data in order to effectively learn how to 

solve their given problem. For complex systems, or systems designed for unknown environments, 

this can be problematic, if not impossible, simply because it is not safe to assume that you will 
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always know what the output should be for any given problem. An ideal intelligent system would 

be able to, given no a priori knowledge, learn how to solve a problem. Unfortunately, neural 

networks are currently not capable of this. Though these systems have great potential, especially 

when combined with other computational intelligence techniques, in this regard neural networks 

are lacking. 

C. Evolutionary	  Computation	  

Evolutionary computation is a relatively broad term. It covers a number of different 

computational intelligence techniques, including genetic programming, evolutionary strategies, 

and genetic algorithms, among others. Each of these methods are iterative in nature and are 

modeled after biological evolution. They each break down the problem such that the solutions 

can be represented as a chromosome. In many cases, this means turning the problem into a 

binary string. The system then creates a large set, or population, of randomly generated 

chromosomes to solve the problem. These individual solutions are then tested and evaluated so 

as to determine how well they perform. As they are tested, the system refines the population over 

time by removing weaker individuals and generating newer stronger ones by manipulating the 

already existing stronger individuals in the population. The ways in which the population is 

improved over time vary between each of the three methods mentioned above. 

Genetic algorithms are one of the most common forms of evolutionary computation. The 

chromosomes that they work with are generally key numeric parameters that can be inserted into 

a control program for use. These parameters can vary greatly and subsequently affect greatly the 

quality of a particular solution to a problem. The algorithm refines these parameters over time, 

allowing the program they are used in to benefit as they improve. Genetic algorithms progress in 

large part due to the way they generate new individuals. Once every individual in the population 



  Fritzsche 25 

has been evaluated, the algorithm mimics sexual reproduction by joining together chromosomes 

to create offspring to be inserted into the next generation. Individuals are chosen at random from 

the current population to generate a new population that will replace the old, with the higher 

performing individuals getting a higher chance of being chosen. To generate an offspring from 

the two selected parents, the system uses a method called crossover. Two individuals are selected 

and merged together to produce one offspring containing part of the solution from both parents. 

The offspring is subjected to possible mutation and added to the new population. This process is 

repeated enough to replace every member in the current population. Genetic algorithms will be 

discussed in greater detail in the next section. 

Genetic programming is similar to genetic algorithms in how the learning process 

happens, but instead tries to solve problems by generating entire functions rather than bits of 

information. Each individual of a population in a genetic programming system is a portion 

computer program potentially capable of solving the given task. The individuals are represented 

in a tree structure for ease of manipulation. Each individual is tested and once all of the 

individuals of a population have been tested, the refinement period begins. This works in much 

the same way as with genetic algorithms, with the difference primarily resting in how two 

selected parents are joined. To merge the two individuals, a branch from one individual is 

replaced with a branch of the other tree. The resultant individual is then inserted into the new 

generation. This process is repeated until the entire first generation has been replaced with a new 

one. At this point, the new generation is evaluated in the same manner as the old generation, and 

the whole process repeats itself with every generation improving over the last. 

Evolutionary strategies are similar, but often rely on a different method for producing 

offspring that mimics asexual reproduction. Rather than crossing two parents together, single 
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parent mutation is used to create new children. When it is time to create a new individual, a 

mutation procedure goes through the individual randomly altering it in such a way as to emulate 

the unexpected mutation that can occur in real life. In general, mutation leads to changes that are 

negative but can occasionally cause a change that will spark a leap in quality.  

Genetic	  Algorithms	  

A genetic algorithm is a programming technique designed to be a problem-solving 

method for complex problems by mimicking the biological process of evolution. It is a type of 

evolutionary computation, which is a type of computational intelligence, a subset of artificial 

intelligence. Genetic algorithms emulate the evolutionary process in a means that a computer can 

understand, allowing problems to be solved by evolving an optimal solution rather than trying to 

develop one outright. Standard genetic algorithms use chromosomes built of binary strings, ones 

and zeros, to represent particular parameters of a problem. These chromosomes are used to 

represent the building blocks of DNA. Just as DNA chromosomes are built of strands of adenine, 

cytosine, guanine, and thymine, the binary chromosomes employed by genetic algorithms are 

built of zeros and ones.  

A. The	  Chromosome	  

To learn, the algorithm starts by generating a population of randomly created 

chromosomes. Population sizes can vary greatly from problem to problem, though a typical 

population size will be in the low 100s. In this research, each chromosome is divided up into 

sections of binary that are then evaluated by their binary values. For example, a chromosome of 

the form “01100001” could be used to represent two specific parameters. In this case, the first 

half, “0110”, would be used to represent the first parameter while the second half “0001” is used 
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to represent the second parameter. In decimal notation, the binary value “0110” equates to the 

number 6, while “0001” equates to the number 1. Choosing how to represent your problem’s 

solution as a string of binary is one of the most difficult design problems when developing a 

genetic algorithm-based system. In this research, the method above is used, though it is not the 

only solution. When dealing with robots, the different bits could pertain to signals to various legs 

or sensors or to timings on when to activate certain commands. 

B. Genetic	  Operators	  

These chromosomes are then evaluated in a test environment representing the problem 

one by one to produce a fitness value for each. The fitness value is simply a measure of quality. 

For example if trying to learn a control program for an Xpilot agent, the chromosome that allows 

its agent to defeat its opponent the highest number of times will be awarded the highest fitness. 

Once the fitness has been determined for all chromosomes in the population, this information 

will be used for selection during the coming “mating” process. 

Selection for the mating process can be handled in many different ways. In general, 

chromosomes are selected from the current generation at random, with a higher chance of being 

selected given to chromosomes that have a higher fitness. Two chromosomes are selected at a 

time. They then go through crossover and mutation to produce a new chromosome. Two example 

methods for selecting the chromosomes to be used for mating are the heroes method and the 

roulette wheel method. The heroes method randomly selects two chromosomes from the top 

performing 25% of all chromosomes and splices them together. The roulette wheel method 

stochastically selects two chromosomes. In this method, it is best imagined by placing each 

chromosome on a roulette wheel. Each chromosome’s slice of the wheel is then grown or shrunk 

to be relative to its fitness value in proportion to the sum of all fitnesses. A chromosome with a 
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very high fitness has a larger portion of the wheel while a chromosome with a very low fitness 

has a very small portion of the wheel. Once the two parents have been selected, they are mated 

together. The classic way to do this is called a single or double point crossover. In a single point 

crossover, a random point is selected in the chromosome. The algorithm then takes the section of 

one of the chromosomes up until this point and combines it with the section of the remaining 

chromosome from that point until the end of the chromosome. In a double point crossover, two 

points are selected rather than one. The start and end of one chromosome are then joined with the 

middle of the other chromosome. 

After two parents have been mated together and produce a child, it goes through a 

mutation process. In a standard genetic algorithm, each bit of the chromosome has a small 

chance of being changed. This is to model the process of mutation that occurs naturally in the 

biological genome. In general, the changes made by mutation are small and often have 

detrimental effects. On occasion, though, the changes can lead to leaps in evolution that are 

beneficial to the population once introduced. 

This selection, mating, and mutation process is then repeated until the entire population 

has been replaced. Each generated population is known as one generation. Each replacement of 

the population represents another new generation. A genetic algorithm will continue running 

through generations until some stop criterion has been reached. This stop criterion may happen 

when you have reached a specific target fitness or, if no target fitness is available, when the 

fitness levels off. Generally, genetic algorithms learn quickly at the start and plateau as 

generations go on, in logarithmic fashion. After a certain period of time, the learning gains are 

minimal when compared to the amount of time required to continue increasing. At this point, it is 

safe to stop running the algorithm as it will not learn much more. In Xpilot-AI, approximately 
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100 generations was generally enough to achieve an acceptable amount of learning. For some 

problems, a genetic algorithm may require thousands of generations to achieve optimal behavior, 

while with other problems this number may be as low as 50.  

C. Genetic	  Algorithms	  Applied	  to	  Xpilot-‐AI	  

In this research, genetic algorithms were selected to be used for learning. The most effective 

method so far for writing genetic algorithm-based agents in Xpilot-AI has been by using rule-

based systems for the framework. One of the benefits of such an agent is that rule-based systems 

must use numerical data to determine whether or not specific conditions are true. For example, is 

an agent considered to be in danger of being shot when a bullet is 100 pixels away, or is it only 

in danger once the bullet is 20 pixels away? Such questions are easily approximated, but it is not 

an easy task to find optimal values for such parameters without exorbitant amounts of trial and 

error by the researcher. As a result, using a genetic algorithm is ideal to determine the best values 

for the parameters to be used for the rules dictating the agent’s behavior thanks to its iterative 

nature and ability to optimize numbers for large systems. 

Because of the past success of rule-based systems using genetic algorithms to learn, this 

research uses such a system as a basis for testing real-time learning. In the first step of the 

research, an agent was developed solely as a rule-based system. It contained 31 rules and was 

inspired by the genetic algorithm-based agent present in Parker and Parker’s “Evolving 

parameters for Xpilot combat agents.” Upon completion, all numeric parameters present in the 

rules that had potential for optimization were removed and replaced with genetic algorithm-

driven parameters. In effect, they were replaced with programmed placeholders to be filled in by 

the genetic algorithm as it learned. Figure 5 details the parameters used for this purpose. 
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When developing such a program to communicate with Xpilot, the developer must specify a 

block of code for the Xpilot-AI library to call. Once every frame, this block of code is run by 

Xpilot-AI. Because of this, the learning algorithm had to be set up to work on demand. When a 

chromosome needs to be evaluated, the chromosome is queued up in the program that interacts 

with Xpilot-AI. Upon the next reset of the game, which happens whenever an agent is killed, the 

new chromosome is loaded and evaluated for a certain period of time. Once the time has run out, 

the game sends the fitness score for the chromosome back to the learning algorithm, which 

records the information and continues onto the next chromosome.  

• span – the angle between the line from the agent’s nose to a target location and the edge of the nearest wall. Used to 
determine if the agent is blocked from a bullet by a wall.  

• offset_inc – indicates the increments used to determine the optimal direction to turn to avoid crashing into a wall 
• same_spread – the difference allowed between the distances returned by two wall feelers which would result in 

considering them equal. 
• wall_span1 – the angle off the ship’s track used to feel for the closest wall.  
• wall_span2 – the angle off the ship’s track used to feel for the second closest wall. 
• vd_bullet_dist – determines the bullet alert value required to consider the bullet very dangerous. 
• d_bullet_dist – determines the bullet alert value required to consider the bullet dangerous. 
• vd_dodge_bullet_angle – the angle the ship will turn away from a bullet considered very dangerous in order to dodge it.   
• d_dodge_bullet_angle – the angle the ship will turn away from a bullet considered dangerous in order to dodge it.    
• close_wall_speed – the speed of the ship in relation to the distance to the closest wall. Used to determine if the ship should 

take action to avoid the wall.  
• medium_wall_speed – similar to close_wall_speed, but for walls that are farther from the agent.  
• c_angle_before_thrust – the angle of the ship’s heading away from the closest wall before the ship will thrust.  
• m_angle_before_thrust – similar to c_angle_before_thrust, but used in a rule with lower priority 
• wall_avoid_angle – how small the angle has to be between the ship’s heading and its desired track to avoid a wall before it 

will thrust.  
• screen_thrust_speed – if the ship’s speed is lower than this and it is turning to attack an enemy on the screen, it will thrust.   
• radar_no_thrust_speed – if the ship’s speed is lower than this and it is turning to attack an enemy on radar, it will thrust.  
• ship_error_to_shoot – the maximum angular difference between the desired aim direction and the ship’s heading before it 

will shoot at an enemy on the screen.  
• radar_error_to_shoot – the maximum angular difference between the desired aim direction and the ship’s heading before it 

will shoot at an enemy on radar.  
• wall_turn_angleR – the angle between the ship’s track and heading that the ship turns to avoid colliding with a wall when 

responding to a right feeler indicating a wall that is too close.  
• wall_turn_angleL – the angle between the ship’s track and heading that the ship turns to avoid colliding with a wall when 

responding to a left feeler indicating a wall that is too close.  
• wall_turn_angleB – the angle between the ship’s track and heading that the ship turns to avoid colliding with a wall when 

responding to an equal distance from both walls.   
• shoot_dir_rand – the angular range that the ship will use to randomly affect its direction to aim.  

Figure 5 A list of the parameters from the control program that the genetic algorithm learned for the Xpilot combat agent 
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Punctuated	  Anytime	  Learning	  

Punctuated Anytime Learning is a modification of Anytime Learning, a way of learning 

in evolutionary robotics. It is a method of automated learning for systems where the agent is not 

best served by housing the learning system as well as its control program on board the agent. 

Anytime Learning as a system, described for evolutionary robotics by Grefenstette and Ramsey, 

is split up into two major components: the execution system and the learning system (Figure 6). 

The execution system handles everything essential to running the agent in its environment. It 

runs the decision maker, which is responsible for deciding how the agent should react in a given 

situation. The knowledge base acts as a current strategy for the decision maker as it instructs the 

agent to execute actions in its environment. Also in the execution system is a monitor, which is 

Figure 6 Anytime Learning System (replicated from Grefenstette and Ramsey) 
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responsible for gathering information about the agent’s environment. It identifies and remembers 

changes in the environment, then sends this information to the learning system. 

The learning system uses the information sent to it by the execution system to alter the 

simulation model to more accurately represent the actual environment. A model of the decision 

maker also works in simulation to facilitate the learning process. It relies on a test knowledge 

base, separate from the active knowledge base in the execution system. The learning method 

works to increase the strength of the system and sends information to the active knowledge base 

whenever something new and improved is learned. Anytime Learning worked well for on-board 

learning in evolutionary robotics and was successful in actual tests. That said, one of the largest 

potential issues with this system is the monitor. Accurately and dynamically determining 

changes in the environment to update the simulation is a difficult task. It requires careful 

programming, well-performing sensors, and significant computational power. Another issue with 

Anytime Learning is that it requires the learning system to be onboard the robot. This is not 

always possible when it is desirable to have multiple less expensive robots perform the task. It is 

also often not ideal because robots break; legs, for example, can become weak and break with 

time. If the robot houses a large amount of expensive computing equipment, it is more wasteful 

when something does happen to the robot. Losing one of many small robots is better than losing 

one big robot, especially when it is the only one running. 

Punctuated Anytime Learning, an extension of Anytime Learning, was developed to 

address these issues (Parker, Punctuated Anytime Learning for Hexapod Gait Generation). 

Rather than requiring the monitor to observe the entire environment and remember any changes, 

it is instead required only to track the performance of the agent. This simpler task leaves less 

room for error. In addition, the learning system is designed to be off-board the agent. 
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Disconnecting the two systems makes it easier to integrate additional agents to a single learning 

system and, as a result, increase the robustness of the system by allowing the same learning 

process to continue on even if one agent fails. There are two types of Punctuated Anytime 

Learning: Fitness Biasing and Co-Evolution of Model Parameters. 

These two systems differ in one key factor: the way they handle the problem of trying to 

model the agent’s environment. Currently, a computer model of the real world is not capable of 

representing every single detail in the real world. It cannot predict random phenomena and 

would require vast amounts of computational power to do nothing more than accurately keep a 

3-D model of a robot’s surroundings in the computer’s memory for use during learning. The 

amount of work required to keep a model for use in learning entirely up to date is often 

prohibitive. Fitness Biasing, rather than trying to do that, simply keeps up to date the necessary 

information to insure effective learning without going through the work necessary to keep a 

complex model up to date. Co-Evolution of Model Parameters instead leverages the power 

learning capabilities present in the Punctuated Anytime Learning system to evolve the 

simulation’s model of the environment with the hope of maintaining an accurate model without 

requiring excess work on the part of the developer. 

A. Fitness	  Biasing	  

A Punctuated Anytime Learning system using Fitness Biasing works by keeping the 

fitnesses received in simulation in line with the fitnesses received while on the real world agent. 

It primarily exists to address the issues that arise from the fact that simulations are never perfect. 

Throughout the learning process, as described in the previous section on genetic algorithms, 

individual chromosomes that are used in learning are given fitness scores to evaluate their 

performance on a regular basis. In a Punctuated Anytime Learning system, all of the learning 
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happens in simulation while running on an imperfect model. As a result, the fitness scores that 

the learning system receives are rarely in sync with how well the agent would perform on the 

actual agent. To combat this, the Fitness Biasing system periodically tests out the learning 

system’s current generation of individuals on the actual agent to analyze how well they perform 

in relation to the tests in the simulation. The differences between the fitnesses received in 

simulation and the fitnesses received on the actual agent are recorded by dividing the actual 

agent’s fitness by the simulation agent’s fitness. From that point on, whenever a chromosome 

receives a fitness in simulation, it is multiplied by the amount resulting from this division, thus 

altering the fitness by the same ratio as the one tested against the actual agent. When two agents 

are mated to produce a new offspring, their respective biases are averaged together to calculate a 

bias for the new chromosome. This allows the biases to be represented as the population evolves 

from generation to generation while stopping them from having too heavy of an influence on 

each chromosome. If a highly valued chromosome mates with a low valued chromosome, it 

would not be ideal for either one’s bias value to continue through without averaging them. In 

either situation, the new chromosome would either be biased too heavily upwards or too heavily 

downwards. 

B. Co-‐Evolution	  of	  Model	  Parameters	  

Co-Evolution of Model Parameters tries to tackle the same problem as Fitness Biasing but in 

quite a different way. While Fitness Biasing avoids the idea of updating the learning system’s 

model, Co-Evolution of Model Parameters works to do just that. This method stores two 

populations, each learning independently: one representing solutions for the problem and the 

other representing the model parameters. The solutions evolved by the learning system are 

periodically tested on the actual agent in order to “co-evolve the accuracy of the robot’s model” 
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(Parker, Punctuated Anytime Learning for Hexapod Gait Generation). Three agents (the best, the 

worst, and a randomly selected chromosome) are tested. Once they have been properly evaluated 

on the actual agent, each of the three individuals are tested on each of the individuals in the 

population learning the model parameters. The fitnesses of these agents are evaluated based on a 

comparison of three individuals’ fitnesses on the actual agent and their fitnesses received against 

the individuals in the model parameter population. 

Optimizing	  Xpilot-‐AI	  Learning	  Speeds	  

 One of the most limiting factors in using Xpilot-AI for learning controllers is the amount 

of time required for a genetic algorithm to learn. All possible solutions in the population must be 

tested, which could require a significant amount of time. In Xpilot, the normal speed of play is 

16 frames per second (FPS). In order to speed up learning in past research, Xpilot was run at 64 

FPS as a genetic algorithm needs to perform many experiments in order to develop intelligent 

behavior. Observationally, 64 FPS appeared to be the fastest the system could run without 

encountering adverse effects on the quality of learning. A few attempts were made at 128 FPS, 

but the agent’s performance was worse than expected. When compared to the agent learned at 64 

FPS, it appeared considerably worse. Agents running at such high speeds lacked intelligence and 

coordination. In observing them, it seemed as if there was a communication gap between the 

client and the server, causing agents to not be able to properly respond to their current situation. 

Reactions were delayed, if they came at all. As a result, the learning system was learning on an 

inaccurate model of the environment. The Xpilot world at 128 FPS is simply not the same as it is 

at 16 FPS. Consequently, it was determined that frame rates above 64 FPS were not effective. 



  Fritzsche 36 

However, since experimental testing was not performed, part of this research was to analyze the 

effects of varying frame rates on Xpilot agent learning. 

 In an ideal situation, Xpilot would be able to be run at considerably higher speeds, thus 

improving the rate of learning while making better use of modern computers. Though a game 

learning at 64 FPS is a four-fold increase over the human-playable speed of 16 FPS, it can still 

take days for an agent to achieve near optimal behavior. At 64 FPS, Xpilot is not taking full 

advantage of the power of any modern day computer, which runs at low capacity even with 

multiple Xpilot servers and agents running simultaneously. For this research, a genetic algorithm 

evolving agents for combat play was tested at a sequence of increasing FPS to experimentally 

determine the realistic break point for increased speeds in Xpilot. The intent is to determine if 64 

FPS is the top speed where an agent can learn with acceptable degradation. 

 In addition to exploring the effects of FPS to find the maximum feasible rate for use with 

a genetic algorithm, this will also help in the development of a Punctuated Anytime Learning 

system for real-time learning in Xpilot. The maximum acceptable speed for Punctuated Anytime 

Learning can be higher than for a typical genetic algorithm since it is designed to compensate for 

discrepancies in the simulation. Any oddities that arise from an increased FPS can be worked 

through just as any other discrepancies that might arise during learning. Determining the max 

FPS usable for Punctuated Anytime Learning will assist in the development of such a system by 

allowing the system to learn faster and as a result perform better. For the purposes of testing the 

various FPS, the genetic algorithm will be tested at higher FPS. Once the agent has optimized a 

control program for each of the tested FPS, all agents will be compared at the standard game 

speed of 16 FPS. 
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A. Experiment	  

In order to determine the best FPS for learning, a standard genetic algorithm was used to 

do learning at different speeds. The genetic algorithm optimized parameters in the rules for an 

expert system used to control an Xpilot combat agent. These parameters were shown previously 

in Figure 5. Code for this genetic algorithm and its corresponding Xpilot agent are shown in 

Appendices A and B. This type of learning was shown to be successful in the past (Parker and 

Parker, Evolving parameters for Xpilot combat agents) with the model agent running at 64 FPS. 

To calculate the fitness for a given control program, each agent was allowed to engage in combat 

for two minutes on an Xpilot server against a robust hand-coded expert agent named Sel. During 

its time in battle, the learning agent would receive one point of fitness for every frame it was 

alive and gain 1000 points of fitness for every time it killed its opponent. In addition, whenever it 

died, it would lose 20 seconds off of its total time. 

The genetic algorithm was run on various Xpilot servers set at varying frames per second, 

starting at 16 FPS up through 1024 FPS. Each agent was allowed to learn for 115 generations. 

Once learning was completed, the best agents from the 50th and 100th generations were 

individually taken and placed against Sel while running on a 16 FPS server. This was done to 

determine if the results stayed consistent when playing on a normal server after learning. If the 

agents only appear to learn less while running at higher frame rates but still perform equally as 

well as those that learned at slower frame rates when placed in matches at the same FPS, then 

Xpilot would only have the appearance of a degradation of quality at higher frame rates. On the 

other hand, if those agents that appear to learn poorly at higher frame rates also perform poorly 

when placed in lower frames per seconds, then it is clearer that the higher frame rates have a 

negative effect on the quality of learning. 
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B. Results	  

Five test runs using five randomly generated populations at each of the tested frames per 

second were run for a total of 115 generations each. Tests included agents running at frames per 

seconds ranging from 16 through 1024. Figure 7 shows the fitness of the agents over time as they 

evolved at their respective frames per seconds. Based on the data, it can be observed that there 

was a great discrepancy in the quality of learning as the FPS changed. As the FPS increased, the 

amount learned by the agents drastically decreased. For the agents running at 16 FPS, their 

fitnesses grew at an average of 18.6 points per generation. Meanwhile, the agents running at 

1024 FPS actually lost fitness by the end, shrinking at a rate of 0.213 fitness per generation on 

average as can be observed on the graph. The agents learning at 128 FPS and above all 

Figure 7 Growth curves for the GA learning with the game running at varying frames per second. The average of the 
population for five tests at each speed are shown. 
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performed a minimal amount of learning.  

In addition, observations of the agents’ behaviors were made from 16 to 64 FPS. They 

appeared normal and behaved intelligently. At speeds above 64 FPS, it appeared that agents were 

incapable of reacting properly to the events occurring around them. They would have a higher 

chance of a running directly into walls they would otherwise have avoided when running at 

slower speeds. If an enemy agent were to come into a learning agent’s vicinity, it would be less 

likely to fire and often not seem to register that anything was different. At the highest speeds, the 

agent was effectively incapable of reacting to anything at all. It would spend most of its time 

thrusting directly into the nearest wall immediately upon appearing. 

Figure 8 The average of the best individuals produced by the genetic algorithm after 50 and 100 generations. Each 
column represents the average of five agents, each of which were evaluated 30 times for a total of 150 data points. 
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To further analyze the data, the best agents from each trial were analyzed after 50 and 

100 generations. Each agent was evaluated in a test environment running at 16 FPS, regardless of 

the FPS the agent learned at, in the same way their fitnesses were evaluated during learning. 

Each agent from the five different trials was tested in 30 separate trials, yielding a total of 150 

trials for each FPS learning speed at each of the two generations, 50 and 100. Figure 8 shows the 

averaged fitnesses of these trials. This data shows similar trends to that of the average fitnesses 

learned by the agents, with the agents learning at 16 FPS performed the best while the agents 

performing at 1024 FPS were clearly the worst. However, the best individual tests shown in 

Figure 8 show that the 128 through 512 FPS learning speeds may have merit. Even though they 

show less effective learning than the slower speeds, they still show some level of improvement. 

There is notable improvement from 50 to 100 generations in all cases, except at 1024 FPS. It’s 

clear that a GA running at this speed produces little or no improvement in the Xpilot controller. 

The above empirical data can also be confirmed by observation. At the beginning of the 

learning process for the lower FPS agents, the agents would regularly make obvious mistakes in 

combat. For example, some control programs would thrust while turning to avoid a wall and as a 

result run directly into the wall rather than avoid it or simply not turn sharply enough to avoid a 

bullet. However, by the end of the learning process, these mistakes were correct in the majority 

of the learned control programs. They exhibited intelligent behavior that was capable of 

defeating their opponent in the majority of situations. Meanwhile, the agents running at higher 

FPS generally displayed unintelligent behavior. For example, during the learning process, they 

would often thrust directly into the wall immediately upon spawning or aim incorrectly at 

opponents while firing. Even after learning was completed, these traits still remained strong in 

the majority, if not all, of the population. 
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Another observation that can be made from this graph (Figure 8) is a comparison of 

fitnesses from differing learning speeds at 50 and 100 generations. One can compare 16 FPS 

after 50 generations with 32 FPS after 100 generations, as the learning will take about the same 

time. With this in mind, consider 16 FPS at 50 generations versus 32 FPS at 100 generations. 

Since the fitness of 32 FPS at 100 generations is higher than 16 FPS at 50 generations, it can be 

concluded that 32 FPS is a better learning speed than 16 FPS. Now consider 32 FPS at 50 

generations and 64 FPS at 100 generations. These fitnesses are close to the same with 32 FPS 

slightly better than 64 FPS. Considering 64 FPS at 50 generations and 128 FPS at 100 

generations shows that 64 FPS has the clear advantage. 

C. Conclusions	  

Based on the collected data, it can be deduced that learning at a considerably higher FPS 

has a significant negative impact on the quality of learning produced. That said, running at 16 

FPS is not necessarily the ideal solution either. Agents that learned at 16 FPS had the best results 

per generation, but those that learned at 32 FPS had the best results over time, since they were 

effectively learning at twice the speed. In Xpilot, learning algorithms often produce a large 

variation in their results due to the nature of the environment. As a result, even though the 

average fitness within the population run at 32 FPS is noticeably lower than that of the 

population run at 16 FPS, the average of the best agents is quite comparable. Given the increased 

of speed of learning due to the faster FPS, it makes sense to use 32 FPS for learning. In addition, 

since the 64 FPS versus 32 FPS results are nearly equal, 64 FPS is also a reasonable choice for 

learning. Speeds at 128 FPS and above are not recommended for standard GA learning. 

Another conclusion that can be drawn from the data is what range of FPS is acceptable 

and useful for learning in PAL. When determining an appropriate speed for the simulation server, 
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the ideal FPS would still learn but need not be adequate if learning on its own. Running Xpilot at 

64 FPS would be a safe bet, but higher speeds are also possible. Agents are still able to learn and 

improve over time, but when compared to the 16 to 64 FPS agents, do not learn nearly as well or 

as fast. Although running PAL at 64 FPS would be sure to yield good results, depending on the 

goals of the research, running the simulation at FPS between 128 and 512 would also be 

acceptable given that they still improve and learn over time. They show a larger disconnect from 

the ideal FPS of 16 and as a result would not learn effectively on their own. However, if 

combined with PAL they could serve well as the simulation server speed. Any agent running at 

or above 1024 FPS, though, is ineffective. Algorithms run at this speed show neither intelligence 

nor improvement over time. 

These tests will help in determining the FPS that we can use to test the limits of the 

Punctuated Anytime Learning system. In future work, PAL will be tested with the simulation 

running at 512 FPS. The higher the FPS the system is capable of learning at, the better it will be 

at improving game agents during play and dealing with inaccuracies in robot models for actual 

robot real-time learning. 

Fitness	  Biasing	  Applied	  to	  Xpilot-‐AI	  

Based on the results presented in the previous section, 128 FPS was determined to be the 

fastest FPS that showed consistent aspects of continued learning. Despite the degradation in 

behavior due to high FPS, it was selected for testing the application of Fitness Biasing to Xpilot-

AI. In past experiments using standard genetic algorithms, tests were run primarily at 64 FPS as 

that was the fastest Xpilot could be run at without losing too much in the way of performance. 
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Here, an attempt is made to learn at these faster speeds using Fitness Biasing to help compensate 

for the discrepancies in the system. 

A. Fitness	  Biasing	  versus	  Co-‐Evolution	  of	  Model	  Parameters	  in	  Xpilot-‐AI	  

In the field of evolutionary robotics, Co-Evolution of Model Parameters is a powerful system 

capable of fast and efficient learning with demonstrated results (Parker, Punctuated Anytime 

Learning for Hexapod Gait Generation). Fitness Biasing, though also useful in evolutionary 

computation, has characteristics that make it not as effective as the Co-Evolution of Model 

Parameters for many problems. In Punctuated Anytime Learning, every punctuated generation 

involves runs on the actual agent as opposed to just on the learning system’s simulation. When 

using a Fitness Biasing-based Punctuated Anytime Learning system, the entire population is 

tested on the actual agent. With the Co-Evolution of Model Parameters, on the other hand, only 

three agents are tested. When dealing with a robot that is hundreds of times slower than a 

simulation and is subject to malfunctions when overused, any excess use of the robot should be 

avoided. However, Co-Evolution of Model Parameters requires that an evolvable model of the of 

the robot be produced. This is not always possible, so sometimes the use of Fitness Biasing is the 

only option. In a video game where the degradation in the system is due to a high frame rate, an 

evolvable model would be hard to produce and since multiple runs result in minimal cost, Fitness 

Biasing is a good choice. Running an entire population on the actual agent in Xpilot, even at a 

slow speed of 16 FPS, is not prohibitively slow. There is also no physical cost; an Xpilot agent 

has no physical moving parts that are capable of breaking or wearing down with time. It is an 

unchanging entity. 
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B. Experiment	  

To run Punctuated Anytime Learning, the previously created genetic algorithm-agent was 

modified into two forms: one to act as the simulation and one to act as the agent. The simulation 

would run just as the normal genetic algorithm did with two key additions: while calculating 

fitnesses, it would bias them as previously described. In addition, every 15 generations it would 

connect to the agent to test all the individuals in the genetic algorithm population to calculate 

new biases. While doing this, the genetic algorithm would halt itself and discontinue learning 

until the new biases were received. The modified genetic algorithm code can be found in 

Appendix C. 

The client running the actual agent would run separately but simultaneously with the 

genetic algorithm. The client continued to play at all times, whether or not it was currently 

running tests for the learning system. It had a communication system that ran indefinitely, 

waiting for the learning system to signal it with a new population to test (code for this can be 

found in Appendix D). When a new population was communicated to the actual agent for testing, 

it would run each chromosome of the population on the agent, record their fitnesses, calculate 

their biases, and then send the new information back to the learning system. At this point it 

would continue to play using the best of the chromosomes for its controller. 

Upon receiving results from the agent, the learning system would overwrite its own 

collection of biases with the new information and continue learning in simulation until another 

15 generations had passed. This process is repeated until stopped by the researcher, or some 

predetermined stopping point has been reached (i.e. stop after a certain number of generations).  
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C. Results	  

Five tests runs using five randomly generated populations were run for 115 generations 

each. Based on this data, it is clear that the fitness biasing produced favorable results. The system 

tested the current population on the agent to generate new biases every 15 generations. Every 5 

generations, the average fitness of the population was recorded. Figure 9 shows the average 

fitness over time as the population is evolving. Based on this data, it can be observed that there 

was great improvement in the fitness of the agent throughout the learning period. In the 

beginning, the fitness averaged at approximately 350 and rose to an average of approximately 

3,840 by the end of testing. 

Of additional importance is a comparison of controller quality related to the amount of 

time spent playing on the agent. In the genetic algorithm controlled agents, the entire game is 

Figure 9 Fitness biased agent compared to a standard GA run at both 16 FPS and at 128 FPS 
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played live against competitors in order to learn in real time. After five generations, its fitness 

averaged at about 2,100. In the fitness-biased agent, though it had learned over the course of 35 

generations in our testing, only two of these generations were spent on the agent playing against 

Sel. After these two generations, the fitness biasing system’s average fitness is already higher 

than that of the fifth generation genetic algorithm-controlled agent and is approximately equal to 

the tenth generation. This is an important factor for real-time learning because it is learning faster 

per games played against its opponent. 

The above empirical data can also be confirmed by observation. At the start of the 

learning process, the agent regularly made clear mistakes in combat. For example, some control 

programs would not turn sharply enough to avoid a bullet or a wall, not thrust to avoid a bullet, 

or aim incorrectly at its opponent when firing. However, towards the end, these mistakes were 

corrected in the majority of the learned control programs. The agent would adeptly dodge enemy 

bullets while responding quicker and firing back with greater accuracy. This increase in optimal 

behavior can be attributed to the learning that took place as a result of the Fitness Biasing system. 

By the end of training, all five trials produced individuals with intelligent behavior that were able 

to consistently beat Sel both in fitness and by the scoring system Xpilot uses to measure player 

kills and deaths.  

D. Conclusions	  

Fitness Biasing when applied to Xpilot-AI agents can be used to evolve exceptional 

controllers that are highly competitive when facing opponents. The agents show the ability to 

learn effective combat behavior that appears complex to an observer. Throughout testing, the 

fitness biasing system showed a clear improvement over the quality of learning reached by other 
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agents, especially in the speed at which the learning took place. It has been shown to be a viable 

platform for effective learning.  

Live	  Fitness	  Biasing	  Experimentation	  

 One of the primary arguments in favor of Punctuated Anytime Learning as the primary 

learning system for this research is its ability to adapt in real-time to changing environments. In 

the video game industry, in order for a computer-controlled bot to be considered truly intelligent, 

it must be able to react and improve based on the skills of the human players it is challenging. 

Likewise, in the field of evolutionary robotics, the mark of a quality learning system is one that 

is capable of handling unexpected environmental changes or degradations in capabilities of the 

robot without issue. Fitness Biasing is ideal for creating this behavior because of the frequency 

with which the system’s biases are updated. If an environmental change occurs, it does not take 

long for the system to recognize this and update the fitnesses’ biases accordingly. The following 

experiment demonstrates this behavior and how well the fitness biasing implementation performs 

in such a scenario.  

A. Experiment	  

The purpose of this experiment is to compare the quality of learning in a fitness biasing 

system to that of a standard genetic algorithm-based agent while encountering changes in the 

behavior of their opponents. A genetic algorithm running on a simulation at 128 FPS was 

allowed to learn for 100 generations with Sel, the standard opponent used for learning in this 

research. After 100 generations, learning had tapered off and was negligible, indicating that a 

near-optimal solution had probably been reached. This experiment starts at the 100th generation 

with the agent still competing against Sel. After 15 generations, Sel was removed from the game 
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and another agent, named Morton 5GA6 was introduced to the combat. Morton 5GA6 is the 

result of ongoing research by Parker. It was developed using a genetic algorithm to learn the 

parameters for a rule-based system as described in this paper, but the rule-based system was 

different. After 15 generations of combat, the agent’s opponent was switched back to Sel. Fifteen 

generations later, it was placed in combat against an agent named Morton, a simplistic rule-based 

bot that was not the result of learning, and finally after 15 more generations the agent fought Sel 

one last time. 

The Fitness Biasing system was run through the same set of opponents for the same periods 

of time. Its learning system was also run at 128 FPS to maintain consistency, and throughout the 

test the learning system’s opponent in the simulation was always Sel, regardless of which 

opponent the actual agent was facing. Using the same model opponent throughout testing, 

regardless of what the actual agent is experiencing, allows the system to demonstrate the 

effectiveness of Fitness Biasing for the purposes of learning even with an incorrect model. To 

insure that both the fitness biasing agent and the genetic algorithm agent started at the same point, 

the population from the 100th generation of the genetic algorithm was stored and subsequently 

loaded into the fitness biasing system. Starting these tests with the two systems using the same 

population helps demonstrate the differences in learning capabilities of these systems as they are 

forced to react to changes in their opponents. It also insures that they are both starting at the 

same point – neither system is given an advantage over the other due to prior learning. Both will 

have learned an equal amount at the start of these trials as a result. The fitness biasing system 

started by testing the current population on the actual agent to attain a set of valid biases and 

repeated this process every 15 generations for the duration of the trials. The result of this is that 
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every time a new opponent was introduced, new biases were calculated for the fitness biasing 

system. 

B. Results	  

Fifteen tests using fifteen randomly generated populations were run for 100 generations each 

in the genetic algorithm. Fitness data was recorded every fifth generation of learning. Each of 

these fifteen populations were then trained against each of the five agents (Sel, Morton 5GA6, 

Sel, Morton, and Sel) in succession. The same 15 populations used to train the genetic algorithm 

were also used for the fitness biasing system. Figure 10 shows the averages of the best agents 

from each of the 15 trials. Based on this data, it is clear that the fitness biasing system is 

favorable compared to the genetic algorithm-based agent. By the 100th generation, the genetic 

Figure 10 Fitness biased against compared to a standard genetic algorithm-based agent in trials against the following 
five agents in succession: Sel, Morton 5GA6, Sel, Morton, Sel 
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algorithm was effectively unable to continue learning. Its fitness remained static simply because 

it had already learned as much as it was capable of learning. The Fitness Biasing agent, on the 

other hand, showed steady improvement, in particular whenever a change in opponent occurred. 

Though the standard genetic algorithm often started at or above the fitness of the Fitness Biasing 

agent upon facing a new opponent, it did not improve. The fitness biasing system, though, after 

re-calculating its biases to match the new opponent showed constant improvement. By the end of 

each 15 generation period, the fitness biasing system was clearly performing better overall. 

C. Conclusions	  

This experiment clearly shows that fitness biasing is capable of both effective learning, as 

also shown in the previous section, and in adaptive learning. While the genetic algorithm-based 

agent struggled with a more challenging opponent and failed to improve on any one particular 

opponent, the fitness biasing system largely improved on each opponent shortly after the 

opponent was introduced to combat. Further still, even while facing an incorrect model the 

system continued to learn once the biases had been updated for each opponent. 

Conclusions	  

 In this research, three primary experiments have been performed that serve to improve 

our understanding of the Xpilot-AI combat game and learning environment as well to 

demonstrate the effectiveness of Punctuated Anytime Learning. Each experiment was successful 

and conclusive, while also opening doors to new and future work that builds on the work shown 

here. The primary contributions are the determination of what the optimal game speeds are for 

learning in Xpilot, the demonstration that Fitness Biasing is a viable means for evolving combat 
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control programs, and the execution of experiments that show it is capable of effective and 

efficient real-time learning in changing environments. 

 In the past, research in Xpilot-AI has been performed at a game speed of 64 FPS. This 

was done in order to speed up the rate of learning in the game but was never justified through 

experimentation. Until now, at no point has work been done to analyze the effects of game speed 

on genetic algorithm-based learning in Xpilot controllers. This is important knowledge since 

high speeds are needed for efficient learning, but result in detrimental effects on the quality of 

learning. Based on the results of this work, it has been shown that while 64 FPS is a reasonable 

choice for learning, it may not be the best choice. Although it shows consistent improvement in 

learning without large negative effects, it does suffer degradation due to information loss during 

server-client communication. Results show that learning in Xpilot at 32 FPS performed 

marginally better in the same time period, despite the decrease in gameplay speed. This 

experiment has the added benefit of determining an optimal speed for a learning system based on 

Punctuated Anytime Learning. It was shown that agents learning at 128 FPS still showed signs of 

continued learning throughout the learning process. Though there were also significant issues 

with the quality of learning while running at that speed, it was not enough to prevent it from 

being usable. This proved to be quite useful because a Punctuated Anytime Learning system is 

particularly applicable when the learning system’s simulation is not perfect. 

 Using this information, an agent was implemented using Fitness Biasing, a subset of 

Punctuated Anytime Learning, as its learning system. Results demonstrated a strong learning 

curve that was able to outmatch all other systems in speed. At its highest fitness, after 115 

generations in the learning system, the Fitness Biasing system was nearly matching the fitness of 

a genetic algorithm-based agent running at 16 FPS, which would take significantly longer. Given 
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that agents learning at 16 FPS were shown to be the most effective learners, this shows a clear 

ability for a Fitness Biasing system to learn effectively. This is also interesting because, though 

the learning system had run 115 generations, in reality only seven of those generations had been 

performed on the actual agent, given that the periodic bias updating generations only occur every 

15 generations. The 15 generations run on the learning system takes place at highly increased 

speed over that of the agent running at 16 FPS. By analyzing how long each algorithm took to 

get to their respective fitnesses, after the 7 punctuated fitness biasing generations, the system was 

already outmatching the fitnesses being produced by the genetic algorithm-based agent running 

at 16 FPS. 

 Further still, once Fitness Biasing had been shown to be a feasible system for learning, 

experiments were conducted to test its ability to adapt to changing environments. When 

introduced to new agents, both ones that were more and less advanced than the previous agent, it 

not only adapted to the change quickly but showed continued learning in response to each new 

agent as well. While the genetic algorithm remained static and did not continue learning, the 

Fitness Biasing agent constantly improved. This shows that the agent is capable of real-time 

learning, in large part due to the time with which the agent reacted to its new opponents. One 

fitness biasing generation for each new opponent was enough to allow the system to return to its 

former fitness and remain competitive. 

 Due to these experiments, it is clear that Fitness Biasing and, as a result, Punctuated 

Anytime Learning is a powerful learning methodology in the Xpilot-AI game environment. 

Demonstrating that it works well in this environment, because of the complexity of Xpilot, 

implies that it will be successful in other environments as well. One other major application of 

such a system is in the field of evolutionary robotics. One of the most important aspects of an 
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intelligent autonomous system is the ability to react in real-time to changes in its environment. 

The real world is constantly changing and robots need to be able to adapt appropriately. Robots 

are often sent in to unknown or dangerous environments that are too dangerous to send in 

humans. It is in these situations that an effective real-time learning system would be most useful. 

 Consider the idea of space exploration. One of the largest applications for the field of 

robotics is going places where, at this time, no human can. What if we could, rather than sending 

one or two robots to a new planet, as is the case with the Mars Rover, instead send dozens of 

small robots? Punctuated Anytime Learning is highly useful in such a scenario because the bulk 

of the computing required for learning takes place off-line. The robot does not need the 

expensive computing equipment received for learning; all it needs is a small computer capable of 

running the control program. The learning can take place elsewhere, on a computer in a safe 

environment. In the case of space exploration, the learning system could be as far away as a 

satellite orbiting the planet in space. While dozens of inexpensive and easier to build robots are 

scouring the surface, the satellite is perfectly safe as it continues learning for the robots on the 

ground. When changes occur in the environment on the planet, the satellite will be able to update 

the control programs present on the robots on the ground to help them adapt and survive longer. 

The applications of such a system are vast, both for simple areas like video game development 

and complex and far reaching areas like search and discovery in new environments.  

A. Future	  Work	  

There are a number of different areas where this work can lead. In future work, the system 

will be tested against human opponents. Rather than having the actual agent in the Fitness 

Biasing system play against a computer controlled agent, such as Sel, imagine it running on a 

server hosted on the internet for anyone to join. The agent would be able to play against 
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countless opponents, each of which could have their own unique play style. It would prove to be 

a challenging and unique opportunity to test the robustness of the Fitness Biasing system while at 

the same time promoting a fun experiment for those who wish to get involved. If successful, it 

would only further reinforce the idea that this system would be useful if implemented in 

commercial video games. In addition, it would give further evidence that Punctuated Anytime 

Learning with Fitness Biasing is a viable system for the real-time learning of controllers of 

autonomous agents, both those in video games and those that are robots. 

Appendix	  

A. Standard	  genetic	  algorithm	  used	  for	  optimizing	  Xpilot-‐AI	  learning	  speeds	  

1. #	  Copyright	  2010-‐2011,	  Connecticut	  College	  Computer	  Science	  	  	  
2. """Classic	  genetic	  algorithm,	  generalized	  to	  work	  with	  any	  problem."""	  	  	  
3. 	  	  	  
4. __author__	  =	  'Phil	  Fritzsche	  <pfritzsche@gmail.com>'	  	  	  
5. 	  	  	  
6. import	  random	  	  	  
7. import	  sys	  	  	  
8. import	  time	  	  	  
9. 	  	  	  
10. import	  gabot_timed	  	  	  
11. from	  gabot_timed	  import	  xpai	  	  	  
12. 	  	  	  
13. sys.setcheckinterval(0)	  	  	  
14. 	  	  	  
15. fps	  =	  len(sys.argv[1])	  ==	  2	  and	  '0%s'	  %	  sys.argv[1]	  or	  sys.argv[1]	  	  	  
16. 	  	  	  
17. OUTPUT_POP_FILE	  =	  'fps_trials/%s/output_pop_'	  %	  fps	  	  	  
18. OUTPUT_BESTS_FILE	  =	  'fps_trials/%s/output_best_chroms'	  %	  fps	  	  	  
19. OUTPUT_FIT_FILE	  =	  'fps_trials/%s/output_fitnesses'	  %	  fps	  	  	  
20. OUTPUT_EXT	  =	  '.txt'	  	  	  
21. 	  	  	  
22. 	  	  	  
23. class	  Struct(dict):	  	  	  
24. 	  	  	  	  """A	  dictionary	  whose	  values	  can	  also	  be	  accessed	  as	  attributes."""	  	  	  
25. 	  	  	  	  def	  __init__(self,	  **kwargs):	  	  	  
26. 	  	  	  	  	  	  	  	  self.update(kwargs)	  	  	  
27. 	  	  	  
28. 	  	  	  	  def	  __getattr__(self,	  name):	  	  	  
29. 	  	  	  	  	  	  	  	  """Retrieves	  the	  value	  for	  the	  given	  name,	  if	  it	  exists.	  Returns	  	  
30. 	  	  	  	  	  	  	  	  None	  if	  it	  does	  not."""	  	  	  
31. 	  	  	  	  	  	  	  	  if	  name	  in	  self:	  	  	  
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32. 	  	  	  	  	  	  	  	  	  	  	  	  return	  self[name]	  	  	  
33. 	  	  	  
34. 	  	  	  	  def	  __setattr__(self,	  name,	  value):	  	  	  
35. 	  	  	  	  	  	  	  	  """Sets	  the	  value	  for	  the	  given	  name	  to	  the	  given	  value."""	  	  	  
36. 	  	  	  	  	  	  	  	  self[name]	  =	  value	  	  	  
37. 	  	  	  
38. 	  	  	  
39. def	  avg(seq):	  	  	  
40. 	  	  	  	  """Calculates	  the	  average	  of	  a	  sequence."""	  	  	  
41. 	  	  	  	  return	  sum(seq)	  /	  len(seq)	  	  	  
42. 	  	  	  
43. 	  	  	  
44. def	  comp(x,	  y):	  	  	  
45. 	  	  	  	  """Compares	  two	  tuples	  based	  on	  the	  second	  item	  in	  each.	  Returns	  1	  if	  	  
46. 	  	  	  	  x	  >	  y,	  0	  if	  x	  ==	  y,	  and	  -‐1	  if	  x	  <	  y."""	  	  	  
47. 	  	  	  	  if	  x[1]	  >	  y[1]:	  	  	  
48. 	  	  	  	  	  	  	  	  return	  1	  	  	  
49. 	  	  	  	  elif	  x[1]	  ==	  y[1]:	  	  	  
50. 	  	  	  	  	  	  	  	  return	  0	  	  	  
51. 	  	  	  	  else:	  	  	  
52. 	  	  	  	  	  	  	  	  return	  -‐1	  	  	  
53. 	  	  	  
54. 	  	  	  
55. class	  GA(object):	  	  	  
56. 	  	  	  	  def	  __init__(self,	  mutate_rate,	  chrom_size=72,	  pop_size=128,	  pop_file='',	  	  	  
57. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  chrom_set=[0,	  1]):	  	  	  
58. 	  	  	  	  	  	  	  	  """Public	  constructor."""	  	  	  
59. 	  	  	  	  	  	  	  	  self.mutate_rate	  =	  mutate_rate	  	  	  
60. 	  	  	  	  	  	  	  	  self.chrom_size	  =	  chrom_size	  	  	  
61. 	  	  	  	  	  	  	  	  self.pop_size	  =	  pop_size	  	  	  
62. 	  	  	  	  	  	  	  	  self.chrom_set	  =	  chrom_set	  	  	  
63. 	  	  	  	  	  	  	  	  gabot_timed.launch(fps)	  	  	  
64. 	  	  	  	  	  	  	  	  if	  not	  pop_file:	  	  	  
65. 	  	  	  	  	  	  	  	  	  	  	  	  self.pop	  =	  self.generate_init_pop()	  	  	  
66. 	  	  	  	  	  	  	  	  else:	  	  	  
67. 	  	  	  	  	  	  	  	  	  	  	  	  self.pop	  =	  self.read_pop(pop_file)	  	  	  
68. 	  	  	  
69. 	  	  	  	  def	  learn(self):	  	  	  
70. 	  	  	  	  	  	  	  	  """Primary	  learning	  loop	  of	  the	  GA.	  Performs	  the	  following	  actions	  	  
71. 	  	  	  	  	  	  	  	  in	  an	  infinite	  loop:	  	  
72. 	  	  	  	  	  	  	  	  	  	  
73. 	  	  	  	  	  	  	  	  	  	  	  	  1.	  Every	  5	  iterations,	  saves	  the	  current	  fitness	  information.	  	  
74. 	  	  	  	  	  	  	  	  	  	  	  	  2.	  Every	  50	  iterations,	  save	  the	  best	  chromosome	  and	  the	  current	  	  
75. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  population	  to	  a	  file.	  	  
76. 	  	  	  	  	  	  	  	  	  	  	  	  3.	  Calculates	  new	  fitnesses	  for	  every	  chromosome	  in	  the	  population.	  	  
77. 	  	  	  	  	  	  	  	  	  	  	  	  4.	  Stochastically	  generates	  a	  new	  population.	  	  
78. 	  	  	  	  	  	  	  	  	  	  	  	  5.	  Gets	  the	  current	  best	  chromosome."""	  	  	  
79. 	  	  	  	  	  	  	  	  iterations	  =	  0	  	  	  
80. 	  	  	  	  	  	  	  	  self.best	  =	  Struct(fitness=0,	  chrom='')	  	  	  
81. 	  	  	  	  	  	  	  	  while	  True:	  	  	  
82. 	  	  	  	  	  	  	  	  	  	  	  	  iterations	  +=	  1	  	  	  
83. 	  	  	  	  	  	  	  	  	  	  	  	  if	  not	  iterations	  %	  5:	  	  	  
84. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  self.save_fitness_information(iterations)	  	  	  
85. 	  	  	  	  	  	  	  	  	  	  	  	  if	  not	  iterations	  %	  50:	  	  	  
86. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  self.save_best_and_pop(iterations)	  	  	  
87. 	  	  	  	  	  	  	  	  	  	  	  	  self.fitnesses	  =	  self.calc_fitnesses()	  	  	  
88. 	  	  	  	  	  	  	  	  	  	  	  	  self.pop	  =	  self.generate_new_pop()	  	  	  
89. 	  	  	  	  	  	  	  	  	  	  	  	  self.best	  =	  self.get_best_chrom()	  	  	  
90. 	  	  	  
91. 	  	  	  	  def	  get_best_chrom(self):	  	  	  
92. 	  	  	  	  	  	  	  	  """Sorts	  the	  population	  by	  fitness	  and	  returns	  the	  best	  chromosome."""	  	  	  
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93. 	  	  	  	  	  	  	  	  gen	  =	  zip(self.pop,	  self.fitnesses)	  	  	  
94. 	  	  	  	  	  	  	  	  gen.sort(comp)	  	  	  
95. 	  	  	  	  	  	  	  	  n	  =	  len(gen)	  -‐	  1	  	  	  
96. 	  	  	  	  	  	  	  	  return	  Struct(chrom=gen[n][0],	  fitness=gen[n][1])	  	  	  
97. 	  	  	  
98. 	  	  	  	  def	  generate_init_pop(self):	  	  	  
99. 	  	  	  	  	  	  	  	  """Generates	  an	  initial	  random	  population."""	  	  	  
100. 	  	  	  	  	  	  	  	  pop	  =	  []	  	  	  
101. 	  	  	  	  	  	  	  	  for	  i	  in	  range(self.pop_size):	  	  	  
102. 	  	  	  	  	  	  	  	  	  	  	  	  chrom	  =	  ''	  	  	  
103. 	  	  	  	  	  	  	  	  	  	  	  	  for	  j	  in	  range(self.chrom_size):	  	  	  
104. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  chrom	  +=	  str(random.choice(self.chrom_set))	  	  	  
105. 	  	  	  	  	  	  	  	  	  	  	  	  pop.append(chrom)	  	  	  
106. 	  	  	  	  	  	  	  	  return	  pop	  	  	  
107. 	  	  	  
108. 	  	  	  	  def	  read_pop(self,	  filename):	  	  	  
109. 	  	  	  	  	  	  	  	  """Reads	  in	  a	  population	  from	  the	  specified	  file."""	  	  	  
110. 	  	  	  	  	  	  	  	  fin	  =	  open(filename,	  'r')	  	  	  
111. 	  	  	  	  	  	  	  	  file_text	  =	  fin.read()	  	  	  
112. 	  	  	  	  	  	  	  	  return	  file_text.split()	  	  	  
113. 	  	  	  
114. 	  	  	  	  def	  calc_fitnesses(self):	  	  	  
115. 	  	  	  	  	  	  	  	  """Calculates	  the	  fitness	  of	  every	  chromosome	  in	  the	  population."""	  	  	  
116. 	  	  	  	  	  	  	  	  fits	  =	  []	  	  	  
117. 	  	  	  	  	  	  	  	  for	  chrom	  in	  self.pop:	  	  	  
118. 	  	  	  	  	  	  	  	  	  	  	  	  gabot_timed.set_reset(chrom)	  	  	  
119. 	  	  	  	  	  	  	  	  	  	  	  	  #xpai.talk('waiting')	  	  	  
120. 	  	  	  	  	  	  	  	  	  	  	  	  gabot_timed.is_done.wait()	  	  	  
121. 	  	  	  	  	  	  	  	  	  	  	  	  #xpai.talk('done	  waiting')	  	  	  
122. 	  	  	  	  	  	  	  	  	  	  	  	  fits.append(gabot_timed.get_fitness())	  	  	  
123. 	  	  	  	  	  	  	  	  return	  fits	  	  	  
124. 	  	  	  
125. 	  	  	  	  def	  generate_new_pop(self):	  	  	  
126. 	  	  	  	  	  	  	  	  """Generates	  a	  new	  population	  of	  chromosomes	  by	  doing	  the	  following	  	  
127. 	  	  	  	  	  	  	  	  enough	  times	  to	  replace	  every	  chromosome	  in	  the	  current	  population:	  	  
128. 	  	  
129. 	  	  	  	  	  	  	  	  	  	  	  	  1.	  Chooses	  crossover	  point	  for	  the	  two	  parents.	  	  
130. 	  	  	  	  	  	  	  	  	  	  	  	  2.	  Chooses	  two	  parents.	  	  
131. 	  	  	  	  	  	  	  	  	  	  	  	  3.	  Mates	  the	  parents	  together.	  	  
132. 	  	  	  	  	  	  	  	  	  	  	  	  4.	  [Possibly]	  mutates	  the	  children.	  	  
133. 	  	  	  	  	  	  	  	  	  	  	  	  5.	  Adds	  the	  new	  child	  to	  the	  new	  population."""	  	  	  
134. 	  	  	  	  	  	  	  	  new_pop	  =	  []	  	  	  
135. 	  	  	  	  	  	  	  	  for	  i	  in	  range(self.pop_size):	  	  	  
136. 	  	  	  	  	  	  	  	  	  	  	  	  cross	  =	  random.randrange(self.chrom_size)	  	  	  
137. 	  	  	  	  	  	  	  	  	  	  	  	  parents	  =	  self.select_parents()	  	  	  
138. 	  	  	  	  	  	  	  	  	  	  	  	  child	  =	  self.mate_parents(parents,	  cross)	  	  	  
139. 	  	  	  	  	  	  	  	  	  	  	  	  mutated_child	  =	  self.mutate(child,	  self.mutate_rate)	  	  	  
140. 	  	  	  	  	  	  	  	  	  	  	  	  new_pop.append(mutated_child)	  	  	  
141. 	  	  	  	  	  	  	  	  return	  new_pop	  	  	  
142. 	  	  	  
143. 	  	  	  	  def	  select_parents(self,	  bin_count=10000):	  	  	  
144. 	  	  	  	  	  	  	  	  """Uses	  a	  roulette-‐wheel	  style	  selection	  to	  choose	  two	  new	  parents	  	  
145. 	  	  	  	  	  	  	  	  based	  on	  their	  fitnesses."""	  	  	  
146. 	  	  	  	  	  	  	  	  parents	  =	  Struct()	  	  	  
147. 	  	  	  	  	  	  	  	  partial_sum	  =	  0	  	  	  
148. 	  	  	  	  	  	  	  	  total_fitness	  =	  sum(self.fitnesses)	  	  	  
149. 	  	  	  	  	  	  	  	  p_mom	  =	  random.randrange(total_fitness)	  	  	  
150. 	  	  	  	  	  	  	  	  p_dad	  =	  random.randrange(total_fitness)	  	  	  
151. 	  	  	  	  	  	  	  	  for	  chrom,	  fit	  in	  zip(self.pop,	  self.fitnesses):	  	  	  
152. 	  	  	  	  	  	  	  	  	  	  	  	  partial_sum	  +=	  fit	  	  	  
153. 	  	  	  	  	  	  	  	  	  	  	  	  if	  not	  parents.mom	  and	  p_mom	  <	  partial_sum:	  	  	  
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154. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  parents.mom	  =	  chrom	  	  	  
155. 	  	  	  	  	  	  	  	  	  	  	  	  if	  not	  parents.dad	  and	  p_dad	  <	  partial_sum:	  	  	  
156. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  parents.dad	  =	  chrom	  	  	  
157. 	  	  	  	  	  	  	  	  	  	  	  	  if	  parents.dad	  and	  parents.mom:	  	  	  
158. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  return	  parents	  	  	  
159. 	  	  	  
160. 	  	  	  	  def	  mate_parents(self,	  parents,	  cross):	  	  	  
161. 	  	  	  	  	  	  	  	  """Returns	  a	  new	  child	  resulting	  from	  the	  passed	  in	  parents."""	  	  	  
162. 	  	  	  	  	  	  	  	  return	  parents.mom[:cross]	  +	  parents.dad[cross:]	  	  	  
163. 	  	  	  
164. 	  	  	  	  def	  mutate(self,	  chrom,	  mutate_rate):	  	  	  
165. 	  	  	  	  	  	  	  	  """Goes	  through	  every	  bit	  of	  the	  child	  determining	  if	  mutation	  	  
166. 	  	  	  	  	  	  	  	  should	  occur.	  If	  so,	  performs	  the	  mutation	  and	  returns	  the	  new	  	  
167. 	  	  	  	  	  	  	  	  child	  when	  finished."""	  	  	  
168. 	  	  	  	  	  	  	  	  new_chrom	  =	  ''	  	  	  
169. 	  	  	  	  	  	  	  	  for	  i	  in	  range(len(chrom)):	  	  	  
170. 	  	  	  	  	  	  	  	  	  	  	  	  if	  random.random()	  <=	  mutate_rate:	  	  	  
171. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  choices	  =	  list(set(self.chrom_set)	  -‐	  set(chrom[i]))	  	  	  
172. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  new_chrom	  +=	  str(random.choice(choices))	  	  	  
173. 	  	  	  	  	  	  	  	  	  	  	  	  else:	  	  	  
174. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  new_chrom	  +=	  chrom[i]	  	  	  
175. 	  	  	  	  	  	  	  	  return	  new_chrom	  	  	  
176. 	  	  	  
177. 	  	  	  	  def	  save_fitness_information(self,	  its):	  	  	  
178. 	  	  	  	  	  	  	  	  """Saves	  the	  current	  fitness	  information	  to	  a	  file."""	  	  	  
179. 	  	  	  	  	  	  	  	  fout	  =	  open(OUTPUT_FIT_FILE	  +	  OUTPUT_EXT,	  'a')	  	  	  
180. 	  	  	  	  	  	  	  	  fout.write('%d,	  %d,	  %.3f\n'	  %	  (	  	  	  
181. 	  	  	  	  	  	  	  	  	  	  	  	  its,	  self.best.fitness,	  avg(self.fitnesses)))	  	  	  
182. 	  	  	  	  	  	  	  	  fout.close()	  	  	  
183. 	  	  	  
184. 	  	  	  	  def	  save_best_and_pop(self,	  its):	  	  	  
185. 	  	  	  	  	  	  	  	  """Saves	  the	  current	  best	  agent	  and	  population	  to	  a	  file."""	  	  	  
186. 	  	  	  	  	  	  	  	  fout	  =	  open(OUTPUT_BESTS_FILE	  +	  OUTPUT_EXT,	  'a')	  	  	  
187. 	  	  	  	  	  	  	  	  fout.write('%d,	  %s\n'	  %	  (its,	  self.best.chrom))	  	  	  
188. 	  	  	  	  	  	  	  	  fout.close()	  	  	  
189. 	  	  	  
190. 	  	  	  	  	  	  	  	  fout	  =	  open(OUTPUT_POP_FILE	  +	  str(its)	  +	  OUTPUT_EXT,	  'w')	  	  	  
191. 	  	  	  	  	  	  	  	  for	  chrom	  in	  self.pop:	  	  	  
192. 	  	  	  	  	  	  	  	  	  	  	  	  fout.write('%s\n'	  %	  chrom)	  	  	  
193. 	  	  	  	  	  	  	  	  fout.close()	  	  	  
194. 	  	  	  
195. def	  main():	  	  	  
196. 	  	  	  	  mutate_rate	  =	  0.01	  	  	  
197. 	  	  	  	  ga	  =	  GA(mutate_rate)	  	  	  
198. 	  	  	  	  ga.learn()	  	  	  
199. 	  	  	  
200. main()	  	  	  

 

B. Agent	  used	  in	  coordination	  with	  the	  genetic	  algorithm	  in	  appendix	  A	  

1. #	  Copyright	  2010-‐2011,	  Connecticut	  College	  Computer	  Science	  	  	  
2. """GA	  bot	  for	  use	  in	  PAL	  thesis	  research."""	  	  	  
3. 	  	  	  
4. __author__	  =	  'Phil	  Fritzsche	  <pfritzsche@gmail.com>'	  	  	  
5. 	  	  	  
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6. import	  math	  	  	  
7. import	  sys	  	  	  
8. import	  thread	  	  	  
9. import	  threading	  	  	  
10. import	  time	  	  	  
11. 	  	  	  
12. import	  xpai	  	  	  
13. 	  	  	  
14. sys.setcheckinterval(0)	  	  	  
15. 	  	  	  
16. MAX_TURN	  =	  20	  	  	  
17. 	  	  	  
18. #chromosome	  =	  '100100111100011000101100000011111101101001010100000000100100000110011110

'	  	  	  
19. chromosome	  =	  '000000000000000000000000000000000000000000000000000000000000000000000000'

	  	  	  
20. 	  	  	  
21. class	  Struct(dict):	  	  	  
22. 	  	  	  	  """A	  dictionary	  whose	  values	  can	  also	  be	  accessed	  as	  attributes."""	  	  	  
23. 	  	  	  	  def	  __init__(self,	  **kwargs):	  	  	  
24. 	  	  	  	  	  	  	  	  self.update(kwargs)	  	  	  
25. 	  	  	  
26. 	  	  	  	  def	  __getattr__(self,	  name):	  	  	  
27. 	  	  	  	  	  	  	  	  """Retrieves	  the	  value	  for	  the	  given	  name,	  if	  it	  exists.	  Returns	  	  
28. 	  	  	  	  	  	  	  	  None	  if	  it	  does	  not."""	  	  	  
29. 	  	  	  	  	  	  	  	  if	  name	  in	  self:	  	  	  
30. 	  	  	  	  	  	  	  	  	  	  	  	  return	  self[name]	  	  	  
31. 	  	  	  
32. 	  	  	  	  def	  __setattr__(self,	  name,	  value):	  	  	  
33. 	  	  	  	  	  	  	  	  """Sets	  the	  value	  for	  the	  given	  name	  to	  the	  given	  value."""	  	  	  
34. 	  	  	  	  	  	  	  	  self[name]	  =	  value	  	  	  
35. 	  	  	  
36. 	  	  	  
37. def	  gene_to_num(gene):	  	  	  
38. 	  	  	  dec_num	  =	  0	  	  	  
39. 	  	  	  for	  i	  in	  gene:	  	  	  
40. 	  	  	  	  	  	  	  dec_num	  =	  (dec_num	  <<	  1)	  |	  int(i)	  	  	  
41. 	  	  	  return	  dec_num	  	  	  
42. 	  	  	  
43. 	  	  	  
44. gene	  =	  Struct()	  	  	  
45. def	  load_gene(chromosome):	  	  	  
46. 	  	  	  	  xpai.talk(str(chromosome))	  	  	  
47. 	  	  	  	  global	  gene	  	  	  
48. 	  	  	  	  gene	  =	  Struct(	  	  	  
49. 	  	  	  	  	  	  	  	  span=gene_to_num(chromosome[0:4]),	  	  	  
50. 	  	  	  	  	  	  	  	  offset_inc=gene_to_num(chromosome[4:8])	  +	  1,	  	  	  
51. 	  	  	  	  	  	  	  	  samespread=gene_to_num(chromosome[8:12]),	  	  	  
52. 	  	  	  	  	  	  	  	  wall_span1=gene_to_num(chromosome[12:16])	  *	  4,	  	  	  
53. 	  	  	  	  	  	  	  	  wall_span2=gene_to_num(chromosome[16:20])	  *	  4,	  	  	  
54. 	  	  	  	  	  	  	  	  vd_bullet_dist=gene_to_num(chromosome[20:24])	  *	  4,	  	  	  
55. 	  	  	  	  	  	  	  	  close_wall_speed=gene_to_num(chromosome[24:28])	  *	  2,	  	  	  
56. 	  	  	  	  	  	  	  	  c_angle_before_thrust=gene_to_num(chromosome[28:32])	  *	  10,	  	  	  
57. 	  	  	  	  	  	  	  	  d_bullet_dist=(gene_to_num(chromosome[32:36])	  *	  4)	  +	  \	  	  	  
58. 	  	  	  	  	  	  	  	  	  	  	  	  (gene_to_num(chromosome[20:24])	  *	  4),	  	  	  
59. 	  	  	  	  	  	  	  	  medium_wall_speed=gene_to_num(chromosome[36:40])	  *	  4,	  	  	  
60. 	  	  	  	  	  	  	  	  m_angle_before_thrust=gene_to_num(chromosome[40:44])	  *	  10,	  	  	  
61. 	  	  	  	  	  	  	  	  wall_avoid_angle=gene_to_num(chromosome[44:48]),	  	  	  
62. 	  	  	  	  	  	  	  	  screen_thrust_speed=gene_to_num(chromosome[48:52]),	  	  	  
63. 	  	  	  	  	  	  	  	  radar_no_thrust_speed=gene_to_num(chromosome[52:56]),	  	  	  
64. 	  	  	  	  	  	  	  	  ship_error_to_shoot=gene_to_num(chromosome[56:60])	  *	  2,	  	  	  
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65. 	  	  	  	  	  	  	  	  radar_error_to_shoot=gene_to_num(chromosome[60:64])	  *	  2,	  	  	  
66. 	  	  	  	  	  	  	  	  vd_dodge_bullet_angle=gene_to_num(chromosome[64:68])	  *	  10,	  	  	  
67. 	  	  	  	  	  	  	  	  d_dodge_bullet_angle=gene_to_num(chromosome[68:72])	  *	  10	  	  	  
68. 	  	  	  	  )	  	  	  
69. 	  	  	  
70. 	  	  	  
71. def	  wall_feeler(range,	  degree):	  	  	  
72. 	  	  	  	  """Checks	  for	  walls	  within	  the	  given	  range	  at	  the	  given	  degree	  from	  the	  	  
73. 	  	  	  	  ship's	  current	  position.	  Uses	  absolute	  scale	  for	  degrees."""	  	  	  
74. 	  	  	  	  delta_x	  =	  xpai.self_x()	  +	  range	  *	  math.cos(math.radians(degree))	  	  	  
75. 	  	  	  	  delta_y	  =	  xpai.self_y()	  +	  range	  *	  math.sin(math.radians(degree))	  	  	  
76. 	  	  	  	  res	  =	  xpai.wallbetween(xpai.self_x(),	  xpai.self_y(),	  delta_x,	  delta_y)	  	  	  
77. 	  	  	  	  return	  res	  ==	  -‐1	  and	  range	  or	  res	  	  	  
78. 	  	  	  
79. 	  	  	  
80. def	  is_shot_behind_wall(n,	  span):	  	  	  
81. 	  	  	  	  c1	  =	  bool(wall_feeler(	  	  	  
82. 	  	  	  	  	  	  	  	  xpai.shot_dist(n),	  xpai.shot_xdir(n))	  <	  xpai.shot_dist(n))	  	  	  
83. 	  	  	  	  c2	  =	  bool(wall_feeler(	  	  	  
84. 	  	  	  	  	  	  	  	  xpai.shot_dist(n),	  xpai.angleadd(	  	  	  
85. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.shot_xdir(n),	  span))	  <	  xpai.shot_dist(n))	  	  	  
86. 	  	  	  	  c3	  =	  bool(wall_feeler(	  	  	  
87. 	  	  	  	  	  	  	  	  xpai.shot_dist(n),	  xpai.angleadd(	  	  	  
88. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.shot_xdir(n),	  -‐span))	  <	  xpai.shot_dist(n))	  	  	  
89. 	  	  	  	  return	  c1	  and	  c2	  and	  c3	  	  	  
90. 	  	  	  
91. 	  	  	  
92. def	  is_ship_behind_wall(n):	  	  	  
93. 	  	  	  	  return	  bool(wall_feeler(	  	  	  
94. 	  	  	  	  	  	  	  	  xpai.ship_dist(n),	  xpai.ship_xdir(n))	  <	  xpai.ship_dist(n))	  	  	  
95. 	  	  	  
96. 	  	  	  
97. def	  is_radar_ship_behind_wall(n):	  	  	  
98. 	  	  	  	  return	  bool(wall_feeler(	  	  	  
99. 	  	  	  	  	  	  	  	  xpai.radar_dist(n),	  xpai.radar_xdir(n))	  <	  xpai.radar_dist(n))	  	  	  
100. 	  	  	  
101. 	  	  	  
102. def	  wall_avoid_turn_dir_ship(n,	  offset_inc):	  	  	  
103. 	  	  	  	  range	  =	  xpai.ship_dist(n)	  	  	  
104. 	  	  	  	  degree	  =	  xpai.ship_xdir(n)	  	  	  
105. 	  	  	  	  return	  wall_avoid_turn_dir_helper(range,	  degree,	  0,	  offset_inc)	  	  	  
106. 	  	  	  
107. 	  	  	  
108. def	  wall_avoid_turn_dir_radar(n,	  offset_inc):	  	  	  
109. 	  	  	  	  range	  =	  xpai.radar_dist(n)	  	  	  
110. 	  	  	  	  degree	  =	  xpai.radar_xdir(n)	  	  	  
111. 	  	  	  	  return	  wall_avoid_turn_dir_helper(range,	  degree,	  0,	  offset_inc)	  	  	  
112. 	  	  	  
113. 	  	  	  
114. def	  wall_avoid_turn_dir_helper(rng,	  deg,	  os,	  os_inc):	  	  	  
115. 	  	  	  	  if	  os	  >	  180:	  	  	  
116. 	  	  	  	  	  	  	  	  return	  -‐1000	  	  	  
117. 	  	  	  	  elif	  wall_feeler(rng,	  deg	  +	  os)	  ==	  rng:	  	  	  
118. 	  	  	  	  	  	  	  	  return	  deg	  +	  os	  	  	  
119. 	  	  	  	  elif	  wall_feeler(rng,	  deg	  -‐	  os)	  ==	  rng:	  	  	  
120. 	  	  	  	  	  	  	  	  return	  deg	  -‐	  os	  	  	  
121. 	  	  	  	  return	  wall_avoid_turn_dir_helper(rng,	  deg,	  os	  +	  os_inc,	  os_inc)	  	  	  
122. 	  	  	  
123. 	  	  	  
124. def	  screen_enemy_num(n):	  	  	  	  
125. 	  	  	  	  """Returns	  the	  number	  of	  the	  nearest	  enemy	  on	  screen,	  or	  -‐1	  if	  no	  	  
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126. 	  	  	  	  enemy	  is	  currently	  on	  screen."""	  	  	  
127. 	  	  	  	  if	  xpai.ship_x(n)	  ==	  -‐1:	  	  	  
128. 	  	  	  	  	  	  	  	  return	  -‐1	  	  	  
129. 	  	  	  	  elif	  xpai.teamplay()	  ==	  1	  and	  xpai.self_team()	  !=	  xpai.ship_team(n):	  	  	  
130. 	  	  	  	  	  	  	  	  return	  n	  	  	  
131. 	  	  	  	  return	  screen_enemy_num(n	  +	  1)	  	  	  
132. 	  	  	  
133. def	  screen_enemy_num2(n,	  first):	  	  	  
134. 	  	  	  	  if	  first	  <	  0:	  	  	  
135. 	  	  	  	  	  	  	  	  return	  -‐1	  	  	  
136. 	  	  	  	  elif	  xpai.ship_x(n)	  ==	  -‐1:	  	  	  
137. 	  	  	  	  	  	  	  	  return	  -‐1	  	  	  
138. 	  	  	  	  elif	  (n	  !=	  first	  and	  xpai.teamplay	  ==	  1	  and	  	  	  
139. 	  	  	  	  	  	  	  	  	  	  xpai.self_team()	  !=	  xpai.ship_team(n)):	  	  	  
140. 	  	  	  	  	  	  	  	  return	  n	  	  	  
141. 	  	  	  	  return	  screen_enemy_num(n	  +	  1)	  	  	  
142. 	  	  	  
143. def	  radar_enemy_num2(n,	  first):	  	  	  
144. 	  	  	  	  if	  first	  <	  0:	  	  	  
145. 	  	  	  	  	  	  	  	  return	  -‐1	  	  	  
146. 	  	  	  	  elif	  xpai.radar_x(n)	  ==	  -‐1:	  	  	  
147. 	  	  	  	  	  	  	  	  return	  -‐1	  	  	  
148. 	  	  	  	  elif	  n	  !=	  first	  and	  xpai.radar_xdir(n)	  !=	  -‐1:	  	  	  
149. 	  	  	  	  	  	  	  	  return	  n	  	  	  
150. 	  	  	  	  return	  radar_enemy_num(n	  +	  1)	  	  	  
151. 	  	  	  
152. 	  	  	  
153. def	  is_same(x,	  y,	  spread):	  	  	  
154. 	  	  	  	  return	  abs(x	  -‐	  y)	  <=	  spread	  	  	  
155. 	  	  	  
156. 	  	  	  
157. def	  radar_enemy_num(n):	  	  	  
158. 	  	  	  	  """Returns	  the	  number	  of	  the	  nearest	  enemy	  on	  radar,	  or	  -‐1	  if	  no	  	  
159. 	  	  	  	  enemy	  currently	  exists	  on	  radar."""	  	  	  
160. 	  	  	  	  if	  xpai.radar_x(n)	  ==	  -‐1:	  	  	  
161. 	  	  	  	  	  	  	  	  return	  -‐1	  	  	  
162. 	  	  	  	  elif	  xpai.radar_xdir(n)	  !=	  -‐1:	  	  	  
163. 	  	  	  	  	  	  	  	  return	  n	  	  	  
164. 	  	  	  	  return	  radar_enemy_num(n	  +	  1)	  	  	  
165. 	  	  	  
166. 	  	  	  
167. def	  change_heading(dir):	  	  	  
168. 	  	  	  	  """Turns	  the	  ship	  relative	  to	  its	  heading."""	  	  	  
169. 	  	  	  	  xpai.self_turn(xpai.anglediff(xpai.self_heading(),	  dir))	  	  	  
170. 	  	  	  
171. 	  	  	  
172. current_score	  =	  xpai.self_score()	  	  	  
173. reset_flag	  =	  False	  	  	  
174. frames	  =	  0	  	  	  
175. kills	  =	  0	  	  	  
176. final_fitness	  =	  0	  	  	  
177. start_time	  =	  time.time()	  	  	  
178. pre_life	  =	  True	  	  	  
179. is_done	  =	  threading.Event()	  	  	  
180. 	  	  	  
181. def	  reset_all():	  	  	  
182. 	  	  	  	  global	  current_score	  	  	  
183. 	  	  	  	  global	  frames	  	  	  
184. 	  	  	  	  global	  kills	  	  	  
185. 	  	  	  	  global	  final_fitness	  	  	  
186. 	  	  	  	  global	  is_done	  	  	  



  Fritzsche 61 

187. 	  	  	  	  global	  reset_flag	  	  	  
188. 	  	  	  	  global	  start_time	  	  	  
189. 	  	  	  	  current_score	  =	  xpai.self_score()	  	  	  
190. 	  	  	  	  frames	  =	  0	  	  	  
191. 	  	  	  	  kills	  =	  0	  	  	  
192. 	  	  	  	  final_fitness	  =	  0	  	  	  
193. 	  	  	  	  start_time	  =	  time.time()	  	  	  
194. 	  	  	  	  is_done.clear()	  	  	  
195. 	  	  	  	  reset_flag	  =	  False	  	  	  
196. 	  	  	  
197. def	  ai_main():	  	  	  
198. 	  	  	  	  """Main	  function	  for	  the	  script;	  called	  once	  every	  frame	  of	  the	  game."""	  	  	  
199. 	  	  	  	  global	  is_done	  	  	  
200. 	  	  	  	  global	  pre_life	  	  	  
201. 	  	  	  	  if	  pre_life	  and	  not	  xpai.self_alive():	  	  	  
202. 	  	  	  	  	  	  	  	  return	  	  	  
203. 	  	  	  	  pre_life	  =	  False	  	  	  
204. 	  	  	  
205. 	  	  	  	  global	  current_score	  	  	  
206. 	  	  	  	  if	  xpai.self_score()	  >	  current_score	  and	  not	  is_done.isSet():	  	  	  
207. 	  	  	  	  	  	  	  	  global	  kills	  	  	  
208. 	  	  	  	  	  	  	  	  kills	  +=	  1	  	  	  
209. 	  	  	  	  elif	  xpai.self_score()	  <	  current_score	  and	  not	  is_done.isSet():	  	  	  
210. 	  	  	  	  	  	  	  	  global	  start_time	  	  	  
211. 	  	  	  	  	  	  	  	  start_time	  -‐=	  20	  	  	  
212. 	  	  	  	  current_score	  =	  xpai.self_score()	  	  	  
213. 	  	  	  
214. 	  	  	  	  #print	  'is_done:	  %r'	  %	  is_done	  	  	  
215. 	  	  	  	  #print	  'final_fitness:	  %r'	  %	  final_fitness	  	  	  
216. 	  	  	  	  #print	  'kills:	  %r'	  %	  kills	  	  	  
217. 	  	  	  	  #print	  'frames:	  %r'	  %	  frames	  	  	  
218. 	  	  	  	  if	  xpai.self_alive():	  	  	  
219. 	  	  	  	  	  	  	  	  global	  frames	  	  	  
220. 	  	  	  	  	  	  	  	  frames	  +=	  1	  	  	  
221. 	  	  	  
222. 	  	  	  	  	  	  	  	  ship_num	  =	  screen_enemy_num(0)	  	  	  
223. 	  	  	  	  	  	  	  	  ship_num2	  =	  screen_enemy_num2(0,	  ship_num)	  	  	  
224. 	  	  	  	  	  	  	  	  radar_ship_num	  =	  radar_enemy_num(0)	  	  	  
225. 	  	  	  	  	  	  	  	  radar_ship_num2	  =	  radar_enemy_num2(0,	  radar_ship_num)	  	  	  
226. 	  	  	  
227. 	  	  	  	  	  	  	  	  wf_r1	  =	  wall_feeler(600,	  xpai.angleadd(	  	  	  
228. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_track(),	  -‐gene.wall_span1))	  	  	  
229. 	  	  	  	  	  	  	  	  wf_l1	  =	  wall_feeler(600,	  xpai.angleadd(	  	  	  
230. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_track(),	  gene.wall_span1))	  	  	  
231. 	  	  	  	  	  	  	  	  wf_r2	  =	  wall_feeler(600,	  xpai.angleadd(	  	  	  
232. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_track(),	  -‐gene.wall_span2))	  	  	  
233. 	  	  	  	  	  	  	  	  wf_l2	  =	  wall_feeler(600,	  xpai.angleadd(	  	  	  
234. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_track(),	  gene.wall_span2))	  	  	  
235. 	  	  	  
236. 	  	  	  	  	  	  	  	  #	  Dodge	  bullet	  if	  very	  close	  	  	  
237. 	  	  	  	  	  	  	  	  #print	  'alive'	  	  	  
238. 	  	  	  	  	  	  	  	  if	  (xpai.shot_alert(0)	  >	  -‐1	  and	  	  	  
239. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.shot_alert(0)	  <	  gene.vd_bullet_dist	  and	  	  	  
240. 	  	  	  	  	  	  	  	  	  	  	  	  not	  is_shot_behind_wall(0,	  gene.span)):	  	  	  
241. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'bullet	  vd'	  	  	  
242. 	  	  	  
243. 	  	  	  	  	  	  	  	  	  	  	  	  added_ang	  =	  xpai.angleadd(xpai.shot_idir(0),	  	  	  
244. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  gene.vd_dodge_bullet_angle)	  	  	  
245. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(added_ang)	  	  	  
246. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_thrust(1)	  	  	  
247. 	  	  	  
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248. 	  	  	  	  	  	  	  	  elif	  (xpai.shot_alert(1)	  >	  -‐1	  and	  	  	  
249. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.shot_alert(1)	  <	  gene.vd_bullet_dist	  and	  	  	  
250. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  not	  is_shot_behind_wall(1,	  gene.span)):	  	  	  
251. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'bullet2	  vd'	  	  	  
252. 	  	  	  
253. 	  	  	  	  	  	  	  	  	  	  	  	  added_ang	  =	  xpai.angleadd(xpai.shot_idir(1),	  	  	  
254. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  gene.vd_dodge_bullet_angle)	  	  	  
255. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(added_ang)	  	  	  
256. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_thrust(1)	  	  	  
257. 	  	  	  
258. 	  	  	  	  	  	  	  	  #	  Two	  wall	  feelers	  are	  close	  	  	  
259. 	  	  	  	  	  	  	  	  elif	  (is_same(wf_r1,	  wf_l1,	  gene.samespread)	  and	  	  	  
260. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  wf_r1	  <	  gene.close_wall_speed	  *	  xpai.self_vel()	  and	  	  	  
261. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_vel()	  >	  1):	  	  	  
262. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'both	  wall	  feelers	  close'	  	  	  
263. 	  	  	  
264. 	  	  	  	  	  	  	  	  	  	  	  	  turn_amt	  =	  xpai.angleadd(180,	  xpai.self_track())	  	  	  
265. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(turn_amt)	  	  	  
266. 	  	  	  	  	  	  	  	  	  	  	  	  if	  (abs(xpai.anglediff(xpai.self_heading(),	  turn_amt))	  <	  	  	  
267. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  gene.c_angle_before_thrust):	  	  	  
268. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_thrust(1)	  	  	  
269. 	  	  	  	  	  	  	  	  	  	  	  
270. 	  	  	  	  	  	  	  	  #	  Right	  wall	  feeler	  is	  closer	  than	  the	  left	  	  	  
271. 	  	  	  	  	  	  	  	  elif	  (wf_r1	  <	  wf_l1	  and	  	  	  
272. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  wf_r1	  <	  gene.close_wall_speed	  *	  xpai.self_vel()	  and	  	  	  
273. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_vel()	  >	  1):	  	  	  
274. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'right	  wall	  feeler	  close'	  	  	  	  	  
275. 	  	  	  
276. 	  	  	  	  	  	  	  	  	  	  	  	  turn_amt	  =	  xpai.angleadd(180,	  xpai.angleadd(	  	  	  
277. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  -‐gene.wall_span1,	  xpai.self_track()))	  	  	  
278. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(turn_amt)	  	  	  
279. 	  	  	  	  	  	  	  	  	  	  	  	  if	  (abs(xpai.anglediff(xpai.self_heading(),	  turn_amt))	  <	  	  	  
280. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  gene.c_angle_before_thrust):	  	  	  
281. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_thrust(1)	  	  	  
282. 	  	  	  	  
283. 	  	  	  	  	  	  	  	  #	  Left	  wall	  feeler	  is	  closer	  than	  the	  right	  	  	  	  
284. 	  	  	  	  	  	  	  	  elif	  (wf_r1	  >	  wf_l1	  and	  	  	  
285. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  wf_l1	  <	  gene.close_wall_speed	  *	  xpai.self_vel()	  and	  	  	  
286. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_vel()	  >	  1):	  	  	  
287. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'left	  wall	  feeler	  close'	  	  	  
288. 	  	  	  
289. 	  	  	  	  	  	  	  	  	  	  	  	  turn_amt	  =	  xpai.angleadd(180,	  xpai.angleadd(	  	  	  
290. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  gene.wall_span1,	  xpai.self_track()))	  	  	  
291. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(turn_amt)	  	  	  
292. 	  	  	  	  	  	  	  	  	  	  	  	  if	  (abs(xpai.anglediff(xpai.self_heading(),	  turn_amt))	  <	  	  	  
293. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  gene.c_angle_before_thrust):	  	  	  
294. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_thrust(1)	  	  	  
295. 	  	  	  
296. 	  	  	  	  	  	  	  	  #	  Dodge	  bullet	  if	  close	  [but	  not	  very]	  	  	  
297. 	  	  	  	  	  	  	  	  elif	  (xpai.shot_alert(0)	  >	  -‐1	  and	  	  	  
298. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.shot_alert(0)	  <	  gene.d_bullet_dist	  and	  	  	  
299. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  not	  is_shot_behind_wall(0,	  gene.span)):	  	  	  
300. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'bullet	  d'	  	  	  
301. 	  	  	  
302. 	  	  	  	  	  	  	  	  	  	  	  	  added_ang	  =	  xpai.angleadd(xpai.shot_idir(0),	  	  	  
303. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  gene.d_dodge_bullet_angle)	  	  	  
304. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(added_ang)	  	  	  
305. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_thrust(1)	  	  	  
306. 	  	  	  
307. 	  	  	  	  	  	  	  	  elif	  (xpai.shot_alert(1)	  >	  -‐1	  and	  	  	  
308. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.shot_alert(1)	  <	  gene.d_bullet_dist	  and	  	  	  
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309. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  not	  is_shot_behind_wall(1,	  gene.span)):	  	  	  
310. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'bullet2	  d'	  	  	  
311. 	  	  	  
312. 	  	  	  	  	  	  	  	  	  	  	  	  added_ang	  =	  xpai.angleadd(xpai.shot_idir(1),	  	  	  
313. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  gene.d_dodge_bullet_angle)	  	  	  
314. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(added_ang)	  	  	  
315. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_thrust(1)	  	  	  
316. 	  	  	  
317. 	  	  	  	  	  	  	  	  #	  Two	  wall	  feelers	  are	  at	  medium	  distance	  	  	  
318. 	  	  	  	  	  	  	  	  elif	  (is_same(wf_r2,	  wf_l2,	  gene.samespread)	  and	  	  	  
319. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  wf_r2	  <	  gene.medium_wall_speed	  *	  xpai.self_vel()	  and	  	  	  
320. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_vel()	  >	  1):	  	  	  
321. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'both	  wall	  feelers	  medium'	  	  	  
322. 	  	  	  
323. 	  	  	  	  	  	  	  	  	  	  	  	  turn_amt	  =	  xpai.angleadd(180,	  xpai.self_track())	  	  	  
324. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(turn_amt)	  	  	  
325. 	  	  	  	  	  	  	  	  	  	  	  	  if	  (abs(xpai.anglediff(xpai.self_heading(),	  turn_amt))	  <	  	  	  
326. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  gene.m_angle_before_thrust):	  	  	  
327. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_thrust(1)	  	  	  
328. 	  	  	  
329. 	  	  	  	  	  	  	  	  #	  Right	  wall	  feeler	  is	  closer	  than	  the	  left	  	  	  
330. 	  	  	  	  	  	  	  	  elif	  (wf_r2	  <	  wf_l2	  and	  	  	  
331. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  wf_r2	  <	  gene.medium_wall_speed	  *	  xpai.self_vel()	  and	  	  	  
332. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_vel()	  >	  1):	  	  	  
333. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'right	  wall	  feeler	  medium'	  	  	  
334. 	  	  	  
335. 	  	  	  	  	  	  	  	  	  	  	  	  turn_amt	  =	  xpai.angleadd(180,	  xpai.angleadd(	  	  	  
336. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  -‐gene.wall_span2,	  xpai.self_track()))	  	  	  
337. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(turn_amt)	  	  	  
338. 	  	  	  	  	  	  	  	  	  	  	  	  if	  (abs(xpai.anglediff(xpai.self_heading(),	  turn_amt))	  <	  	  	  
339. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  gene.m_angle_before_thrust):	  	  	  
340. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_thrust(1)	  	  	  
341. 	  	  	  
342. 	  	  	  	  	  	  	  	  #	  Left	  wall	  feeler	  is	  closer	  than	  the	  right	  	  	  
343. 	  	  	  	  	  	  	  	  elif	  (wf_l2	  <	  wf_r2	  and	  	  	  
344. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  wf_l2	  <	  gene.medium_wall_speed	  *	  xpai.self_vel()	  and	  	  	  
345. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_vel()	  >	  1):	  	  	  
346. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'left	  wall	  feeler	  medium'	  	  	  
347. 	  	  	  
348. 	  	  	  	  	  	  	  	  	  	  	  	  turn_amt	  =	  xpai.angleadd(180,	  xpai.angleadd(	  	  	  
349. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  gene.wall_span2,	  xpai.self_track()))	  	  	  
350. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(turn_amt)	  	  	  
351. 	  	  	  	  	  	  	  	  	  	  	  	  if	  (abs(xpai.anglediff(xpai.self_heading(),	  turn_amt))	  <	  	  	  
352. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  gene.m_angle_before_thrust):	  	  	  
353. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_thrust(1)	  	  	  
354. 	  	  	  
355. 	  	  	  	  	  	  	  	  #	  Turn	  towards	  nearest	  enemy	  ship	  on	  screen	  	  	  
356. 	  	  	  	  	  	  	  	  elif	  ship_num	  >	  -‐1	  and	  not	  is_ship_behind_wall(ship_num):	  	  	  
357. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'turn	  towards	  nearest	  enemy	  ship	  on	  screen'	  	  	  
358. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(xpai.ship_aimdir(ship_num))	  	  	  
359. 	  	  	  
360. 	  	  	  	  	  	  	  	  #	  Turn	  towards	  second	  nearest	  enemy	  ship	  on	  screen	  	  	  
361. 	  	  	  	  	  	  	  	  elif	  ship_num2	  >	  -‐1	  and	  not	  is_ship_behind_wall(ship_num2):	  	  	  
362. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'turn	  towards	  nearest	  enemy	  ship2	  on	  screen'	  	  	  
363. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(xpai.ship_aimdir(ship_num2))	  	  	  
364. 	  	  	  
365. 	  	  	  	  	  	  	  	  #	  Turn,	  thrust	  towards	  nearest	  enemy	  	  	  
366. 	  	  	  	  	  	  	  	  elif	  (ship_num	  >	  -‐1	  and	  	  	  
367. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  not	  wall_avoid_turn_dir_ship(ship_num,	  gene.offset_inc)	  ==	  -‐

1000):	  	  	  
368. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'turn	  and	  thrust	  towards	  nearest	  enemy'	  	  	  
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369. 	  	  	  	  	  	  	  	  	  	  	  	  turn_dir	  =	  wall_avoid_turn_dir_ship(ship_num,	  gene.offset_inc)	  	  	  
370. 	  	  	  	  	  	  	  	  	  	  	  	  turn_amt	  =	  xpai.anglediff(xpai.self_heading(),	  turn_dir)	  	  	  
371. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_turn(turn_amt)	  	  	  
372. 	  	  	  	  	  	  	  	  	  	  	  	  if	  (abs(turn_amt)	  <	  gene.wall_avoid_angle	  and	  	  	  
373. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_vel()	  <	  gene.screen_thrust_speed):	  	  	  
374. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_thrust(1)	  	  	  
375. 	  	  	  
376. 	  	  	  	  	  	  	  	  #	  Turn,	  thrust	  towards	  nearest	  enemy	  	  	  
377. 	  	  	  	  	  	  	  	  elif	  (ship_num2	  >	  -‐1	  and	  	  	  
378. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  not	  wall_avoid_turn_dir_ship(ship_num2,	  gene.offset_inc)	  ==	  -‐

1000):	  	  	  
379. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'turn	  and	  thrust	  towards	  nearest	  enemy2'	  	  	  
380. 	  	  	  	  	  	  	  	  	  	  	  	  turn_dir	  =	  wall_avoid_turn_dir_ship(ship_num2,	  gene.offset_inc)	  	  	  
381. 	  	  	  	  	  	  	  	  	  	  	  	  turn_amt	  =	  xpai.anglediff(xpai.self_heading(),	  turn_dir)	  	  	  
382. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_turn(turn_amt)	  	  	  
383. 	  	  	  	  	  	  	  	  	  	  	  	  if	  (abs(turn_amt)	  <	  gene.wall_avoid_angle	  and	  	  	  
384. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_vel()	  <	  gene.screen_thrust_speed):	  	  	  
385. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_thrust(1)	  	  	  
386. 	  	  	  
387. 	  	  	  	  	  	  	  	  #	  Turn	  to	  radar	  ship,	  thrust	  if	  not	  going	  too	  fast.	  Otherwise,	  shoot.	  	  	  
388. 	  	  	  	  	  	  	  	  elif	  (radar_ship_num	  >	  -‐1	  and	  	  	  
389. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  not	  is_radar_ship_behind_wall(radar_ship_num)	  and	  	  	  
390. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_vel()	  >	  gene.radar_no_thrust_speed):	  	  	  
391. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'turn	  to	  radar	  ship	  and	  thrust	  if	  not	  going	  too	  fast	  1'	  	  	  
392. 	  	  	  	  	  	  	  	  	  	  	  	  #	  enemy	  0	  on	  radar,	  no	  wall	  and	  currently	  moving	  fast	  	  	  
393. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(xpai.radar_xdir(radar_ship_num))	  	  	  
394. 	  	  	  
395. 	  	  	  	  	  	  	  	  elif	  (radar_ship_num	  >	  -‐1	  and	  	  	  
396. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  not	  is_radar_ship_behind_wall(radar_ship_num)):	  	  	  
397. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'turn	  to	  radar	  ship	  and	  thrust	  if	  not	  going	  too	  fast	  2'	  	  	  
398. 	  	  	  	  	  	  	  	  	  	  	  	  #	  enemy	  0	  on	  radar,	  no	  wall,	  and	  not	  currently	  moving	  fast	  	  	  
399. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(xpai.radar_xdir(radar_ship_num))	  	  	  
400. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_thrust(1)	  	  	  
401. 	  	  	  
402. 	  	  	  	  	  	  	  	  elif	  (radar_ship_num2	  >	  -‐1	  and	  	  	  
403. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  not	  is_radar_ship_behind_wall(radar_ship_num2)	  and	  	  	  
404. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_vel()	  >	  gene.radar_no_thrust_speed):	  	  	  
405. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'turn	  to	  radar	  ship	  and	  thrust	  if	  not	  going	  too	  fast	  3'	  	  	  
406. 	  	  	  	  	  	  	  	  	  	  	  	  #	  enemy	  1	  is	  on	  radar,	  no	  wall,	  and	  currently	  moving	  fast	  	  	  
407. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(radar_ship_num2)	  	  	  
408. 	  	  	  
409. 	  	  	  	  	  	  	  	  elif	  (radar_ship_num2	  >	  -‐1	  and	  	  	  
410. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  not	  is_radar_ship_behind_wall(radar_ship_num2)):	  	  	  
411. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'turn	  to	  radar	  ship	  and	  thrust	  if	  not	  going	  too	  fast	  4'	  	  	  
412. 	  	  	  	  	  	  	  	  	  	  	  	  #	  enemy	  1	  on	  radar,	  no	  wall,	  and	  not	  currently	  moving	  fast	  	  	  
413. 	  	  	  	  	  	  	  	  	  	  	  	  change_heading(xpai.radar_xdir(radar_ship_num2))	  	  	  
414. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_thrust(1)	  	  	  
415. 	  	  	  
416. 	  	  	  	  	  	  	  	  elif	  (radar_ship_num	  >	  -‐1	  and	  	  	  
417. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  wall_avoid_turn_dir_radar(radar_ship_num,	  gene.offset_inc)	  !=	  -‐

1000):	  	  	  
418. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'turn	  to	  radar	  ship	  and	  thrust	  if	  not	  going	  too	  fast	  5'	  	  	  
419. 	  	  	  	  	  	  	  	  	  	  	  	  #	  enemy	  0	  on	  radar	  and	  behind	  wall	  	  	  
420. 	  	  	  	  	  	  	  	  	  	  	  	  turn_dir	  =	  wall_avoid_turn_dir_radar(radar_ship_num,	  gene.offset_inc

)	  	  	  
421. 	  	  	  	  	  	  	  	  	  	  	  	  turn_amt	  =	  xpai.anglediff(xpai.self_heading(),	  turn_dir)	  	  	  
422. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_turn(turn_amt)	  	  	  
423. 	  	  	  	  	  	  	  	  	  	  	  	  if	  abs(turn_amt)	  <	  5	  and	  xpai.self_vel()	  <	  20:	  	  	  
424. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_thrust(1)	  	  	  
425. 	  	  	  
426. 	  	  	  
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427. 	  	  	  	  	  	  	  	  angle_to_ship_diff	  =	  xpai.anglediff(	  	  	  
428. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_heading(),	  xpai.ship_aimdir(ship_num))	  	  	  
429. 	  	  	  	  	  	  	  	  shoot_cond1	  =	  bool(	  	  	  
430. 	  	  	  	  	  	  	  	  	  	  	  	  ship_num	  >	  -‐1	  and	  	  	  
431. 	  	  	  	  	  	  	  	  	  	  	  	  abs(angle_to_ship_diff)	  <	  gene.ship_error_to_shoot	  and	  	  	  
432. 	  	  	  	  	  	  	  	  	  	  	  	  not	  is_ship_behind_wall(ship_num))	  	  	  
433. 	  	  	  	  	  	  	  	  #print	  'shoot	  cond1'	  	  	  
434. 	  	  	  
435. 	  	  	  	  	  	  	  	  angle_to_ship2_diff	  =	  xpai.anglediff(	  	  	  
436. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_heading(),	  xpai.ship_aimdir(ship_num2))	  	  	  
437. 	  	  	  	  	  	  	  	  shoot_cond2	  =	  bool(	  	  	  
438. 	  	  	  	  	  	  	  	  	  	  	  	  ship_num2	  >	  -‐1	  and	  	  	  
439. 	  	  	  	  	  	  	  	  	  	  	  	  abs(angle_to_ship2_diff)	  <	  gene.ship_error_to_shoot	  and	  	  	  
440. 	  	  	  	  	  	  	  	  	  	  	  	  not	  is_ship_behind_wall(ship_num2))	  	  	  
441. 	  	  	  	  	  	  	  	  #print	  'shoot	  cond2'	  	  	  
442. 	  	  	  
443. 	  	  	  	  	  	  	  	  angle_to_rship_diff	  =	  xpai.anglediff(	  	  	  
444. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_heading(),	  xpai.radar_xdir(radar_ship_num))	  	  	  
445. 	  	  	  	  	  	  	  	  shoot_cond3	  =	  bool(	  	  	  
446. 	  	  	  	  	  	  	  	  	  	  	  	  radar_ship_num	  >	  -‐1	  and	  	  	  
447. 	  	  	  	  	  	  	  	  	  	  	  	  abs(angle_to_rship_diff)	  <	  gene.radar_error_to_shoot	  and	  	  	  
448. 	  	  	  	  	  	  	  	  	  	  	  	  not	  is_radar_ship_behind_wall(radar_ship_num))	  	  	  
449. 	  	  	  	  	  	  	  	  #print	  'shoot	  cond3'	  	  	  
450. 	  	  	  
451. 	  	  	  	  	  	  	  	  angle_to_rship2_diff	  =	  xpai.anglediff(	  	  	  
452. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_heading(),	  xpai.radar_xdir(radar_ship_num2))	  	  	  
453. 	  	  	  	  	  	  	  	  shoot_cond4	  =	  bool(	  	  	  
454. 	  	  	  	  	  	  	  	  	  	  	  	  radar_ship_num2	  >	  -‐1	  and	  	  	  
455. 	  	  	  	  	  	  	  	  	  	  	  	  abs(angle_to_rship2_diff)	  <	  gene.radar_error_to_shoot	  and	  	  	  
456. 	  	  	  	  	  	  	  	  	  	  	  	  not	  is_radar_ship_behind_wall(radar_ship_num2))	  	  	  
457. 	  	  	  	  	  	  	  	  #print	  'shoot	  cond4'	  	  	  
458. 	  	  	  
459. 	  	  	  	  	  	  	  	  if	  shoot_cond1	  or	  shoot_cond2	  or	  shoot_cond3	  or	  shoot_cond4:	  	  	  
460. 	  	  	  	  	  	  	  	  	  	  	  	  #print	  'shooting'	  	  	  
461. 	  	  	  	  	  	  	  	  	  	  	  	  xpai.self_shoot(1)	  	  	  
462. 	  	  	  	  	  	  	  	  #print	  'after	  shooting'	  	  	  
463. 	  	  	  	  elif	  reset_flag:	  	  	  
464. 	  	  	  	  	  	  	  	  reset_all()	  	  	  
465. 	  	  	  	  	  	  	  	  pre_life	  =	  True	  	  	  
466. 	  	  	  	  elif	  not	  is_done.isSet()	  and	  abs(time.time()	  -‐	  start_time)	  >	  120:	  	  	  
467. 	  	  	  	  	  	  	  	  global	  final_fitness	  	  	  
468. 	  	  	  	  	  	  	  	  final_fitness	  =	  frames	  +	  (1000	  *	  kills)	  	  	  
469. 	  	  	  	  	  	  	  	  pre_life	  =	  True	  	  	  
470. 	  	  	  	  	  	  	  	  is_done.set()	  	  	  
471. 	  	  	  	  else:	  	  	  
472. 	  	  	  	  	  	  	  	  xpai.talk(str(frames))	  	  	  
473. 	  	  	  	  	  	  	  	  xpai.talk(str(abs(time.time()	  -‐	  start_time)))	  	  	  
474. 	  	  	  	  	  	  	  	  pre_life	  =	  True	  	  	  
475. 	  	  	  
476. def	  set_reset(chrom):	  	  	  
477. 	  	  	  	  global	  reset_flag	  	  	  
478. 	  	  	  	  global	  is_done	  	  	  
479. 	  	  	  	  load_gene(chrom)	  	  	  
480. 	  	  	  	  reset_flag	  =	  True	  	  	  
481. 	  	  	  	  is_done.clear()	  	  	  
482. 	  	  	  
483. def	  get_fitness():	  	  	  
484. 	  	  	  	  xpai.talk(str(final_fitness))	  	  	  
485. 	  	  	  	  return	  final_fitness	  	  	  
486. 	  	  	  
487. def	  launch(fps):	  	  	  
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488. 	  	  	  	  #	  Initialize	  XPilot	  	  	  
489. 	  	  	  	  xpai.set_AImain(ai_main)	  	  	  
490. 	  	  	  	  xpai.setmaxturn(MAX_TURN)	  	  	  
491. 	  	  	  	  xpai.setargs('-‐join	  localhost	  -‐port	  45%s	  -‐name	  Expert'	  %	  fps)	  	  	  
492. 	  	  	  	  load_gene(chromosome)	  	  	  
493. 	  	  	  	  thread.start_new_thread(xpai.launch,	  ())	  	  	  

 

C. Fitness	  Biasing	  genetic	  algorithm	  and	  PAL	  meta	  controller	  

1. #	  Copyright	  2010-‐2011,	  Connecticut	  College	  Computer	  Science	  	  	  
2. """PAL	  GA"""	  	  	  
3. 	  	  	  
4. __author__	  =	  'Phil	  Fritzsche	  <pfritzsche@gmail.com>'	  	  	  
5. 	  	  	  
6. import	  random	  	  	  
7. import	  sys	  	  	  
8. import	  time	  	  	  
9. 	  	  	  
10. import	  gabot_timed	  	  	  
11. from	  gabot_timed	  import	  xpai	  	  	  
12. 	  	  	  
13. sys.setcheckinterval(0)	  	  	  
14. 	  	  	  
15. OUTPUT_POP_FILE	  =	  'pal_results/output_pop_'	  	  	  
16. OUTPUT_BESTS_FILE	  =	  'pal_results/output_best_chroms'	  	  	  
17. OUTPUT_FIT_FILE	  =	  'pal_results/output_fitnesses'	  	  	  
18. OUTPUT_EXT	  =	  '.txt'	  	  	  
19. 	  	  	  
20. 	  	  	  
21. class	  Struct(dict):	  	  	  
22. 	  	  	  	  """A	  dictionary	  whose	  values	  can	  also	  be	  accessed	  as	  attributes."""	  	  	  
23. 	  	  	  	  def	  __init__(self,	  **kwargs):	  	  	  
24. 	  	  	  	  	  	  	  	  self.update(kwargs)	  	  	  
25. 	  	  	  
26. 	  	  	  	  def	  __getattr__(self,	  name):	  	  	  
27. 	  	  	  	  	  	  	  	  """Retrieves	  the	  value	  for	  the	  given	  name,	  if	  it	  exists.	  Returns	  	  
28. 	  	  	  	  	  	  	  	  None	  if	  it	  does	  not."""	  	  	  
29. 	  	  	  	  	  	  	  	  if	  name	  in	  self:	  	  	  
30. 	  	  	  	  	  	  	  	  	  	  	  	  return	  self[name]	  	  	  
31. 	  	  	  
32. 	  	  	  	  def	  __setattr__(self,	  name,	  value):	  	  	  
33. 	  	  	  	  	  	  	  	  """Sets	  the	  value	  for	  the	  given	  name	  to	  the	  given	  value."""	  	  	  
34. 	  	  	  	  	  	  	  	  self[name]	  =	  value	  	  	  
35. 	  	  	  
36. 	  	  	  
37. def	  avg(seq):	  	  	  
38. 	  	  	  	  """Calculates	  the	  average	  of	  a	  sequence."""	  	  	  
39. 	  	  	  	  return	  sum(seq)	  /	  len(seq)	  	  	  
40. 	  	  	  
41. 	  	  	  
42. def	  comp(x,	  y):	  	  	  
43. 	  	  	  	  """Compares	  two	  tuples	  based	  on	  the	  second	  item	  in	  each.	  Returns	  1	  if	  	  
44. 	  	  	  	  x	  >	  y,	  0	  if	  x	  ==	  y,	  and	  -‐1	  if	  x	  <	  y."""	  	  	  
45. 	  	  	  	  if	  x[1]	  >	  y[1]:	  	  	  
46. 	  	  	  	  	  	  	  	  return	  1	  	  	  
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47. 	  	  	  	  elif	  x[1]	  ==	  y[1]:	  	  	  
48. 	  	  	  	  	  	  	  	  return	  0	  	  	  
49. 	  	  	  	  else:	  	  	  
50. 	  	  	  	  	  	  	  	  return	  -‐1	  	  	  
51. 	  	  	  
52. 	  	  	  
53. class	  GA(object):	  	  	  
54. 	  	  	  	  def	  __init__(self,	  mutate_rate,	  chrom_size=72,	  pop_size=128,	  pop_file='',	  	  	  
55. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  chrom_set=[0,	  1]):	  	  	  
56. 	  	  	  	  	  	  	  	  """Public	  constructor."""	  	  	  
57. 	  	  	  	  	  	  	  	  self.mutate_rate	  =	  mutate_rate	  	  	  
58. 	  	  	  	  	  	  	  	  self.chrom_size	  =	  chrom_size	  	  	  
59. 	  	  	  	  	  	  	  	  self.pop_size	  =	  pop_size	  	  	  
60. 	  	  	  	  	  	  	  	  self.chrom_set	  =	  chrom_set	  	  	  
61. 	  	  	  	  	  	  	  	  self.fitnesses	  =	  [0]	  *	  self.pop_size	  	  	  
62. 	  	  	  	  	  	  	  	  self.biases	  =	  [1]	  *	  self.pop_size	  	  	  
63. 	  	  	  	  	  	  	  	  gabot_timed.launch()	  	  	  
64. 	  	  	  	  	  	  	  	  if	  not	  pop_file:	  	  	  
65. 	  	  	  	  	  	  	  	  	  	  	  	  self.pop	  =	  self.generate_init_pop()	  	  	  
66. 	  	  	  	  	  	  	  	  else:	  	  	  
67. 	  	  	  	  	  	  	  	  	  	  	  	  self.pop	  =	  self.read_pop(pop_file)	  	  	  
68. 	  	  	  
69. 	  	  	  	  def	  learn(self):	  	  	  
70. 	  	  	  	  	  	  	  	  """Primary	  learning	  loop	  of	  the	  GA.	  Performs	  the	  following	  actions	  	  
71. 	  	  	  	  	  	  	  	  in	  an	  infinite	  loop:	  	  
72. 	  	  	  	  	  	  	  	  	  	  
73. 	  	  	  	  	  	  	  	  	  	  	  	  1.	  Every	  5	  iterations,	  saves	  the	  current	  fitness	  information.	  	  
74. 	  	  	  	  	  	  	  	  	  	  	  	  2.	  Every	  50	  iterations,	  save	  the	  best	  chromosome	  and	  the	  current	  	  
75. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  population	  to	  a	  file.	  	  
76. 	  	  	  	  	  	  	  	  	  	  	  	  3.	  Calculates	  new	  fitnesses	  for	  every	  chromosome	  in	  the	  population.	  	  
77. 	  	  	  	  	  	  	  	  	  	  	  	  4.	  Stochastically	  generates	  a	  new	  population.	  	  
78. 	  	  	  	  	  	  	  	  	  	  	  	  5.	  Gets	  the	  current	  best	  chromosome."""	  	  	  
79. 	  	  	  	  	  	  	  	  iterations	  =	  0	  	  	  
80. 	  	  	  	  	  	  	  	  self.best	  =	  Struct(fitness=0,	  chrom='')	  	  	  
81. 	  	  	  	  	  	  	  	  while	  True:	  	  	  
82. 	  	  	  	  	  	  	  	  	  	  	  	  iterations	  +=	  1	  	  	  
83. 	  	  	  	  	  	  	  	  	  	  	  	  if	  not	  iterations	  %	  5:	  	  	  
84. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  self.save_fitness_information(iterations)	  	  	  
85. 	  	  	  	  	  	  	  	  	  	  	  	  if	  not	  iterations	  %	  15:	  	  	  
86. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  self.world_sync()	  	  	  
87. 	  	  	  	  	  	  	  	  	  	  	  	  if	  not	  iterations	  %	  50:	  	  	  
88. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  self.save_best_and_pop(iterations)	  	  	  
89. 	  	  	  	  	  	  	  	  	  	  	  	  self.calc_fitnesses()	  	  	  
90. 	  	  	  	  	  	  	  	  	  	  	  	  self.pop,	  self.biases	  =	  self.generate_new_pop()	  	  	  
91. 	  	  	  	  	  	  	  	  	  	  	  	  self.best	  =	  self.get_best_chrom()	  	  	  
92. 	  	  	  	  	  	  	  	  	  	  	  	  info_file	  =	  open('DEBUG_DATA',	  'a')	  	  	  
93. 	  	  	  	  	  	  	  	  	  	  	  	  info_file.write('ITERATIONS	  %s\n'	  %	  iterations)	  	  	  
94. 	  	  	  	  	  	  	  	  	  	  	  	  info_file.write('%s\n'	  %	  self.fitnesses)	  	  	  
95. 	  	  	  	  	  	  	  	  	  	  	  	  info_file.write('\n%s\n==============================\n'	  %	  self.biases)	  	  	  
96. 	  	  	  	  	  	  	  	  	  	  	  	  info_file.close()	  	  	  
97. 	  	  	  
98. 	  	  	  	  def	  world_sync(self):	  	  	  
99. 	  	  	  	  	  	  	  	  pop_out	  =	  open('population_out',	  'w')	  	  	  
100. 	  	  	  	  	  	  	  	  for	  chrom	  in	  self.pop:	  	  	  
101. 	  	  	  	  	  	  	  	  	  	  	  	  pop_out.write('%s\n'	  %	  chrom)	  	  	  
102. 	  	  	  	  	  	  	  	  pop_out.close()	  	  	  
103. 	  	  	  
104. 	  	  	  	  	  	  	  	  fits_out	  =	  open('fitnesses_out',	  'w')	  	  	  
105. 	  	  	  	  	  	  	  	  for	  fitness	  in	  self.fitnesses:	  	  	  
106. 	  	  	  	  	  	  	  	  	  	  	  	  fits_out.write('%s\n'	  %	  fitness)	  	  	  
107. 	  	  	  	  	  	  	  	  fits_out.close()	  	  	  
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108. 	  	  	  
109. 	  	  	  	  	  	  	  	  ok_file	  =	  open('to_world',	  'w')	  	  	  
110. 	  	  	  	  	  	  	  	  ok_file.write('READY')	  	  	  
111. 	  	  	  	  	  	  	  	  ok_file.close()	  	  	  
112. 	  	  	  
113. 	  	  	  	  	  	  	  	  ok_file	  =	  open('from_world',	  'r')	  	  	  
114. 	  	  	  	  	  	  	  	  while	  not	  'READY'	  in	  ok_file.read():	  	  	  
115. 	  	  	  	  	  	  	  	  	  	  	  	  ok_file.close()	  	  	  
116. 	  	  	  	  	  	  	  	  	  	  	  	  time.sleep(1)	  	  	  
117. 	  	  	  	  	  	  	  	  	  	  	  	  ok_file	  =	  open('from_world',	  'r')	  	  	  
118. 	  	  	  
119. 	  	  	  	  	  	  	  	  ok_file.close()	  	  	  
120. 	  	  	  	  	  	  	  	  ok_file	  =	  open('from_world',	  'w')	  	  	  
121. 	  	  	  	  	  	  	  	  ok_file.close()	  	  	  
122. 	  	  	  
123. 	  	  	  	  	  	  	  	  fits_in_file	  =	  open('fitnesses_in',	  'r')	  	  	  
124. 	  	  	  	  	  	  	  	  self.fitnesses	  =	  [float(f)	  for	  f	  in	  fits_in_file.read().split()]	  	  	  
125. 	  	  	  	  	  	  	  	  fits_in_file.close()	  	  	  
126. 	  	  	  
127. 	  	  	  	  	  	  	  	  biases_in_file	  =	  open('biases_in',	  'r')	  	  	  
128. 	  	  	  	  	  	  	  	  self.biases	  =	  [float(b)	  for	  b	  in	  biases_in_file.read().split()]	  	  	  
129. 	  	  	  	  	  	  	  	  biases_in_file.close()	  	  	  
130. 	  	  	  	  	  	  	  	  	  	  	  
131. 	  	  	  	  	  	  	  	  info_file	  =	  open('DEBUG_DATA',	  'a')	  	  	  
132. 	  	  	  	  	  	  	  	  info_file.write('FROM	  WORLD\n')	  	  	  
133. 	  	  	  	  	  	  	  	  info_file.write('%s\n'	  %	  self.fitnesses)	  	  	  
134. 	  	  	  	  	  	  	  	  info_file.write('\n%s\n==============================\n'	  %	  self.biases)	  

	  	  
135. 	  	  	  	  	  	  	  	  info_file.close()	  	  	  
136. 	  	  	  
137. 	  	  	  	  def	  get_best_chrom(self):	  	  	  
138. 	  	  	  	  	  	  	  	  """Sorts	  the	  population	  by	  fitness	  and	  returns	  the	  best	  chromosome."""	  	  	  
139. 	  	  	  	  	  	  	  	  gen	  =	  zip(self.pop,	  self.fitnesses)	  	  	  
140. 	  	  	  	  	  	  	  	  gen.sort(comp)	  	  	  
141. 	  	  	  	  	  	  	  	  n	  =	  len(gen)	  -‐	  1	  	  	  
142. 	  	  	  	  	  	  	  	  return	  Struct(chrom=gen[n][0],	  fitness=gen[n][1])	  	  	  
143. 	  	  	  
144. 	  	  	  	  def	  generate_init_pop(self):	  	  	  
145. 	  	  	  	  	  	  	  	  """Generates	  an	  initial	  random	  population."""	  	  	  
146. 	  	  	  	  	  	  	  	  pop	  =	  []	  	  	  
147. 	  	  	  	  	  	  	  	  for	  i	  in	  range(self.pop_size):	  	  	  
148. 	  	  	  	  	  	  	  	  	  	  	  	  chrom	  =	  ''	  	  	  
149. 	  	  	  	  	  	  	  	  	  	  	  	  for	  j	  in	  range(self.chrom_size):	  	  	  
150. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  chrom	  +=	  str(random.choice(self.chrom_set))	  	  	  
151. 	  	  	  	  	  	  	  	  	  	  	  	  pop.append(chrom)	  	  	  
152. 	  	  	  	  	  	  	  	  return	  pop	  	  	  
153. 	  	  	  
154. 	  	  	  	  def	  read_pop(self,	  filename):	  	  	  
155. 	  	  	  	  	  	  	  	  """Reads	  in	  a	  population	  from	  the	  specified	  file."""	  	  	  
156. 	  	  	  	  	  	  	  	  fin	  =	  open(filename,	  'r')	  	  	  
157. 	  	  	  	  	  	  	  	  file_text	  =	  fin.read()	  	  	  
158. 	  	  	  	  	  	  	  	  return	  file_text.split()	  	  	  
159. 	  	  	  
160. 	  	  	  	  def	  calc_fitnesses(self):	  	  	  
161. 	  	  	  	  	  	  	  	  """Calculates	  the	  fitness	  of	  every	  chromosome	  in	  the	  population."""	  	  	  
162. 	  	  	  	  	  	  	  	  for	  i	  in	  range(self.pop_size):	  	  	  
163. 	  	  	  	  	  	  	  	  	  	  	  	  gabot_timed.kills	  =	  0	  	  	  
164. 	  	  	  	  	  	  	  	  	  	  	  	  gabot_timed.frames	  =	  0	  	  	  
165. 	  	  	  	  	  	  	  	  	  	  	  	  gabot_timed.final_fitness	  =	  0	  	  	  
166. 	  	  	  	  	  	  	  	  	  	  	  	  gabot_timed.set_reset(self.pop[i])	  	  	  
167. 	  	  	  	  	  	  	  	  	  	  	  	  #xpai.talk('waiting')	  	  	  
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168. 	  	  	  	  	  	  	  	  	  	  	  	  gabot_timed.is_done.wait()	  	  	  
169. 	  	  	  	  	  	  	  	  	  	  	  	  #xpai.talk('done	  waiting')	  	  	  
170. 	  	  	  	  	  	  	  	  	  	  	  	  self.fitnesses[i]	  =	  self.biases[i]	  *	  gabot_timed.get_fitness()	  	  	  
171. 	  	  	  	  	  	  	  	  	  	  	  	  print	  self.biases[i]	  	  	  
172. 	  	  	  	  	  	  	  	  	  	  	  	  print	  self.fitnesses[i]	  	  	  
173. 	  	  	  
174. 	  	  	  	  def	  generate_new_pop(self):	  	  	  
175. 	  	  	  	  	  	  	  	  """Generates	  a	  new	  population	  of	  chromosomes	  by	  doing	  the	  following	  	  
176. 	  	  	  	  	  	  	  	  enough	  times	  to	  replace	  every	  chromosome	  in	  the	  current	  population:	  	  
177. 	  	  
178. 	  	  	  	  	  	  	  	  1.	  Chooses	  crossover	  point	  for	  the	  two	  parents.	  	  
179. 	  	  	  	  	  	  	  	  2.	  Chooses	  two	  parents.	  	  
180. 	  	  	  	  	  	  	  	  3.	  Mates	  the	  parents	  together.	  	  
181. 	  	  	  	  	  	  	  	  4.	  [Possibly]	  mutates	  the	  children.	  	  
182. 	  	  	  	  	  	  	  	  5.	  Adds	  the	  new	  child	  to	  the	  new	  population."""	  	  	  
183. 	  	  	  	  	  	  	  	  new_pop	  =	  []	  	  	  
184. 	  	  	  	  	  	  	  	  new_biases	  =	  []	  	  	  
185. 	  	  	  	  	  	  	  	  for	  i	  in	  range(self.pop_size):	  	  	  
186. 	  	  	  	  	  	  	  	  	  	  	  	  cross	  =	  random.randrange(self.chrom_size)	  	  	  
187. 	  	  	  	  	  	  	  	  	  	  	  	  parents	  =	  self.select_parents()	  	  	  
188. 	  	  	  	  	  	  	  	  	  	  	  	  child,	  bias	  =	  self.mate_parents(parents,	  cross)	  	  	  
189. 	  	  	  	  	  	  	  	  	  	  	  	  mutated_child	  =	  self.mutate(child,	  self.mutate_rate)	  	  	  
190. 	  	  	  	  	  	  	  	  	  	  	  	  new_pop.append(mutated_child)	  	  	  
191. 	  	  	  	  	  	  	  	  	  	  	  	  new_biases.append(bias)	  	  	  
192. 	  	  	  	  	  	  	  	  return	  new_pop,	  new_biases	  	  	  
193. 	  	  	  
194. 	  	  	  	  def	  select_parents(self,	  bin_count=10000):	  	  	  
195. 	  	  	  	  	  	  	  	  """Uses	  a	  roulette-‐wheel	  style	  selection	  to	  choose	  two	  new	  parents	  	  
196. 	  	  	  	  	  	  	  	  based	  on	  their	  fitnesses."""	  	  	  
197. 	  	  	  	  	  	  	  	  parents	  =	  Struct()	  	  	  
198. 	  	  	  	  	  	  	  	  partial_sum	  =	  0	  	  	  
199. 	  	  	  	  	  	  	  	  total_fitness	  =	  int(sum(self.fitnesses))	  	  	  
200. 	  	  	  	  	  	  	  	  p_mom	  =	  random.randrange(total_fitness)	  	  	  
201. 	  	  	  	  	  	  	  	  p_dad	  =	  random.randrange(total_fitness)	  	  	  
202. 	  	  	  	  	  	  	  	  for	  chrom,	  fit,	  bias	  in	  zip(self.pop,	  self.fitnesses,	  self.biases):	  	  	  
203. 	  	  	  	  	  	  	  	  	  	  	  	  partial_sum	  +=	  fit	  	  	  
204. 	  	  	  	  	  	  	  	  	  	  	  	  if	  not	  parents.mom	  and	  p_mom	  <	  partial_sum:	  	  	  
205. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  parents.mom	  =	  chrom	  	  	  
206. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  parents.bias_mom	  =	  bias	  	  	  
207. 	  	  	  	  	  	  	  	  	  	  	  	  if	  not	  parents.dad	  and	  p_dad	  <	  partial_sum:	  	  	  
208. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  parents.dad	  =	  chrom	  	  	  
209. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  parents.bias_dad	  =	  bias	  	  	  
210. 	  	  	  	  	  	  	  	  	  	  	  	  if	  parents.dad	  and	  parents.mom:	  	  	  
211. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  return	  parents	  	  	  
212. 	  	  	  
213. 	  	  	  	  def	  mate_parents(self,	  parents,	  cross):	  	  	  
214. 	  	  	  	  	  	  	  	  """Returns	  a	  new	  child	  resulting	  from	  the	  passed	  in	  parents."""	  	  	  
215. 	  	  	  	  	  	  	  	  new_bias	  =	  (parents.bias_mom	  +	  parents.bias_dad)	  /	  2	  	  	  
216. 	  	  	  	  	  	  	  	  return	  parents.mom[:cross]	  +	  parents.dad[cross:],	  new_bias	  	  	  
217. 	  	  	  
218. 	  	  	  	  def	  mutate(self,	  chrom,	  mutate_rate):	  	  	  
219. 	  	  	  	  	  	  	  	  	  	  	  	  """Goes	  through	  every	  bit	  of	  the	  child	  determining	  if	  mutation	  	  
220. 	  	  	  	  	  	  	  	  	  	  	  	  should	  occur.	  If	  so,	  performs	  the	  mutation	  and	  returns	  the	  new	  	  
221. 	  	  	  	  	  	  	  	  	  	  	  	  child	  when	  finished."""	  	  	  
222. 	  	  	  	  	  	  	  	  new_chrom	  =	  ''	  	  	  
223. 	  	  	  	  	  	  	  	  for	  i	  in	  range(len(chrom)):	  	  	  
224. 	  	  	  	  	  	  	  	  	  	  	  	  if	  random.random()	  <=	  mutate_rate:	  	  	  
225. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  choices	  =	  list(set(self.chrom_set)	  -‐	  set(chrom[i]))	  	  	  
226. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  new_chrom	  +=	  str(random.choice(choices))	  	  	  
227. 	  	  	  	  	  	  	  	  	  	  	  	  else:	  	  	  
228. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  new_chrom	  +=	  chrom[i]	  	  	  
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229. 	  	  	  	  	  	  	  	  return	  new_chrom	  	  	  
230. 	  	  	  
231. 	  	  	  	  def	  save_fitness_information(self,	  its):	  	  	  
232. 	  	  	  	  	  	  	  	  	  	  	  	  """Saves	  the	  current	  fitness	  information	  to	  a	  file."""	  	  	  
233. 	  	  	  	  	  	  	  	  fout	  =	  open(OUTPUT_FIT_FILE	  +	  OUTPUT_EXT,	  'a')	  	  	  
234. 	  	  	  	  	  	  	  	  fout.write('%d,	  %d,	  %.3f\n'	  %	  (	  	  	  
235. 	  	  	  	  	  	  	  	  	  	  	  	  its,	  self.best.fitness,	  avg(self.fitnesses)))	  	  	  
236. 	  	  	  	  	  	  	  	  fout.close()	  	  	  
237. 	  	  	  
238. 	  	  	  	  def	  save_best_and_pop(self,	  its):	  	  	  
239. 	  	  	  	  	  	  	  	  	  	  	  	  """Saves	  the	  current	  best	  agent	  and	  population	  to	  a	  file."""	  	  	  
240. 	  	  	  	  	  	  	  	  fout	  =	  open(OUTPUT_BESTS_FILE	  +	  OUTPUT_EXT,	  'a')	  	  	  
241. 	  	  	  	  	  	  	  	  fout.write('%d,	  %s\n'	  %	  (its,	  self.best.chrom))	  	  	  
242. 	  	  	  	  	  	  	  	  fout.close()	  	  	  
243. 	  	  	  
244. 	  	  	  	  	  	  	  	  fout	  =	  open(OUTPUT_POP_FILE	  +	  str(its)	  +	  OUTPUT_EXT,	  'w')	  	  	  
245. 	  	  	  	  	  	  	  	  for	  chrom	  in	  self.pop:	  	  	  
246. 	  	  	  	  	  	  	  	  	  	  	  	  fout.write('%s\n'	  %	  chrom)	  	  	  
247. 	  	  	  	  	  	  	  	  fout.close()	  	  	  
248. 	  	  	  
249. def	  main():	  	  	  
250. 	  	  	  	  mutate_rate	  =	  0.01	  	  	  
251. 	  	  	  	  ga	  =	  GA(mutate_rate)	  	  	  
252. 	  	  	  	  ga.learn()	  	  	  
253. 	  	  	  
254. main()	  	  	  

 

D. Communication	  script	  for	  PAL	  meta	  controller	  and	  non-‐simulation	  agent	  

1. #	  Copyright	  2010-‐2011,	  Connecticut	  College	  Computer	  Science	  	  	  
2. """PAL	  GA"""	  	  	  
3. 	  	  	  
4. __author__	  =	  'Phil	  Fritzsche	  <pfritzsche@gmail.com>'	  	  	  
5. 	  	  	  
6. import	  time	  	  	  
7. 	  	  	  
8. import	  world_bot_timed	  	  	  
9. 	  	  	  
10. world_bot_timed.launch()	  	  	  
11. 	  	  	  
12. def	  handle_communication():	  	  	  
13. 	  	  	  	  while	  1:	  	  	  
14. 	  	  	  	  	  	  	  	  ok_file	  =	  open('to_world',	  'r')	  	  	  
15. 	  	  	  	  	  	  	  	  while	  not	  'READY'	  in	  ok_file.read():	  	  	  
16. 	  	  	  	  	  	  	  	  	  	  	  	  ok_file.close()	  	  	  
17. 	  	  	  	  	  	  	  	  	  	  	  	  time.sleep(1)	  	  	  
18. 	  	  	  	  	  	  	  	  	  	  	  	  ok_file	  =	  open('to_world',	  'r')	  	  	  
19. 	  	  	  
20. 	  	  	  	  	  	  	  	  ok_file.close()	  	  	  
21. 	  	  	  	  	  	  	  	  ok_file	  =	  open('to_world',	  'w')	  	  	  
22. 	  	  	  	  	  	  	  	  ok_file.close()	  	  	  
23. 	  	  	  
24. 	  	  	  	  	  	  	  	  pop_file	  =	  open('population_out',	  'r')	  	  	  
25. 	  	  	  	  	  	  	  	  pop	  =	  pop_file.read().split()	  	  	  
26. 	  	  	  	  	  	  	  	  pop_file.close()	  	  	  
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27. 	  	  	  
28. 	  	  	  	  	  	  	  	  fits_file	  =	  open('fitnesses_out',	  'r')	  	  	  
29. 	  	  	  	  	  	  	  	  fits	  =	  [float(f)	  for	  f	  in	  fits_file.read().split()]	  	  	  
30. 	  	  	  	  	  	  	  	  fits_file.close()	  	  	  
31. 	  	  	  
32. 	  	  	  	  	  	  	  	  new_fits	  =	  []	  	  	  
33. 	  	  	  	  	  	  	  	  biases	  =	  []	  	  	  
34. 	  	  	  	  	  	  	  	  for	  i	  in	  range(len(pop)):	  	  	  
35. 	  	  	  	  	  	  	  	  	  	  	  	  print	  '%s,	  %s'	  %	  (i,	  pop[i])	  	  	  
36. 	  	  	  	  	  	  	  	  	  	  	  	  world_bot_timed.set_reset(pop[i])	  	  	  
37. 	  	  	  	  	  	  	  	  	  	  	  	  world_bot_timed.is_done.wait()	  	  	  
38. 	  	  	  	  	  	  	  	  	  	  	  	  fitness	  =	  world_bot_timed.get_fitness()	  	  	  
39. 	  	  	  	  	  	  	  	  	  	  	  	  bias	  =	  fitness	  /	  fits[i]	  	  	  
40. 	  	  	  	  	  	  	  	  	  	  	  	  if	  bias	  <	  1:	  	  	  
41. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  bias	  =	  1	  	  	  
42. 	  	  	  	  	  	  	  	  	  	  	  	  elif	  bias	  >	  2.5:	  	  	  
43. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  bias	  =	  2.5	  	  	  
44. 	  	  	  	  	  	  	  	  	  	  	  	  biases.append(bias)	  	  	  
45. 	  	  	  	  	  	  	  	  	  	  	  	  new_fits.append(fitness)	  	  	  
46. 	  	  	  
47. 	  	  	  	  	  	  	  	  fits_out_file	  =	  open('fitnesses_in',	  'w')	  	  	  
48. 	  	  	  	  	  	  	  	  for	  fitness	  in	  new_fits:	  	  	  
49. 	  	  	  	  	  	  	  	  	  	  	  	  fits_out_file.write('%s\n'	  %	  fitness)	  	  	  
50. 	  	  	  	  	  	  	  	  fits_out_file.close()	  	  	  
51. 	  	  	  
52. 	  	  	  	  	  	  	  	  biases_out_file	  =	  open('biases_in',	  'w')	  	  	  
53. 	  	  	  	  	  	  	  	  for	  bias	  in	  biases:	  	  	  
54. 	  	  	  	  	  	  	  	  	  	  	  	  biases_out_file.write('%s\n'	  %	  bias)	  	  	  
55. 	  	  	  	  	  	  	  	  biases_out_file.close()	  	  	  
56. 	  	  	  
57. 	  	  	  	  	  	  	  	  ok_file	  =	  open('from_world',	  'w')	  	  	  
58. 	  	  	  	  	  	  	  	  ok_file.write('READY')	  	  	  
59. 	  	  	  	  	  	  	  	  ok_file.close()	  	  	  
60. 	  	  	  
61. handle_communication()	  	  	  
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