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Abstract

Species distribution models (SDMs) are increasingly used to predict distributions of
invasive species. If successful, these models can help managers target limited resources
for monitoring and controlling invasive species to areas of high invasion risk. Model
accuracy is usually determined using current species distributions, but because invasive
species are not at equilibrium with the environment, high current accuracy may not
indicate high future accuracy. | used 1982 species distribution data from Bolleswood
Natural Area, Connecticut, USA, to create SDMs for two forest invaders, Celastrus
orbiculatus and Rosa multiflora. | then used more recent data, from 1992 and 2002, as
validation data sets to determine how model accuracy changed over time and if current
and future accuracy were related. | also tested if three alternative approaches — iterative
modeling, alternative methods of choosing suitability thresholds and using a risk
assessment framework — improved accuracy in predicting future distributions. Model
accuracy declined over time with greater declines for models of the species (Celastrus)
with the higher initial accuracy. By 2002, 49% of Celastrus and 85% of Rosa new
occurrences were correctly predicted by models. Neither iterative modeling nor
alternative thresholds improved accuracy of predicting 2002 occurrences, but a risk
assessment framework showed promise for guiding monitoring efforts. These results
suggest that measures of current accuracy may not indicate a model’s predictive accuracy
and must be used cautiously. Distinguishing between predictions of current and future
distributions is critical. While iterative models were not successful in this study, | argue
that using models in a risk assessment framework closely tied to monitoring will greatly

increase the utility of SDMs for managing invasive species.
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1. Introduction

Exotic plant species can greatly impact natural communities around the world
(Vitousek et al., 1997). Even forests, which have often been considered resistant to the
spread of exotic species, have been invaded (Martin et al., 2009). If managers of forest
reserves and other natural areas can determine where invasions are most likely to occur in
the future, they can focus monitoring and control efforts on those areas. Monitoring
invasive species is resource intensive (Rew et al., 2005), so being able to focus limited
resources is highly beneficial. Species distribution models (SDMs) have been
increasingly used to predict potential distributions of invasive species (Elith et al., 2010),
which can facilitate early detection of invasive species and maximize monitoring
efficiency. In recent years, there has been a proliferation of modeling approaches that can
be used to model invasive species (Elith et al., 2006).

There are important limitations to using SDMs to model potential distributions of
invasive species. The methods used to develop SDMs assume that species are in
equilibrium with their environment (Guisan and Zimmermann, 2000), meaning that they
occur in all suitable habitats. Invasive species, especially in early stages of invasion, may
occur only in a subset of habitats in which they can thrive, simply due to lack of dispersal

(Véclavik and Meentemeyer, 2012). As a result, models may not predict the full



distribution of potential invasions. While species might be expected to approach
equilibrium as time passes following initial invasion, it is usually not possible to tell how
close an invasive species is to equilibrium. In addition, many species are not in
equilibrium with climate even after centuries (Svenning and Skov, 2004) and given
ongoing changes in climate and land use, equilibrium may never occur. The degree to
which an invasive species is in equilibrium is also scale dependent. Even if a species is at
equilibrium in the invaded range as a whole, it may be far from equilibrium in smaller
areas within the invaded range, and vice-versa.

The problem of non-equilibrium in SDMs for invasive species has been widely
acknowledged (Thuiller et al., 2005; Véaclavik and Meentemeyer, 2009; Elith et al., 2010;
Véclavik and Meentemeyer, 2012) and several approaches have been developed to
address it, such as using native range data (Ibanez et al., 2009) or mechanistic niche
models (Kearney and Porter, 2009). Several recent studies have tested the effects of lack
of equilibrium by using only a subset of available records in a limited geographic area to
simulate earlier invasion stages (Thuiller et al., 2004; Dupin et al., 2011) or by using
simulated species (Vaclavik and Meentemeyer, 2012). All of these studies suggest that
models created during early stages of invasion will poorly predict future distributions of
invasive species as they expand. For example, Sutherst and Bourne (2009) showed
qualitatively that early models did not predict new areas of expansion of an invasive tick
in Africa, despite high model accuracy at the time models were created. However, no
study has quantitatively assessed how accuracy of a given model changes over time,

which would help us to understand how current models may fare in the future.



The implications of lack of equilibrium are further compounded by the methods used
to assess model accuracy. Most studies assess model accuracy by testing model results
with data left out during model creation (Fielding and Bell, 1997). This provides an
assessment of accuracy in predicting current distributions of the species. Predicting
current distributions differs significantly from predicting future distributions, but these
are often not clearly distinguished (see Vaclavik and Meentemeyer, 2009 for discussion).
Predicting future distributions is often the stated objective of the models, but seldom can
be directly assessed (Elith et al., 2010). Because invasive species are not in equilibrium
with the environment, accuracy in predicting current distributions and future distributions
may not correspond. The implicit assumption in many studies seems to be that models
that best predict the current distribution will also best predict the future distribution, but
this assumption has not been tested. If this is not the case, then measures of current
accuracy are not useful for determining which models will best predict future
distributions.

When historical data on the spread of invasive species are available, the relationship
between current and future predictions can be evaluated directly (Elith et al., 2010).
Earlier data can be used to create models and more recent data can be used to test the
ability of the models to predict new occurrences over time. The use of historical data can
also allow evaluation of possible methods to improve predictions of future distributions.
There are many potential approaches for improving predictions including: (i) iterative
modeling, (ii) alternative methods for setting suitability thresholds, and (iii) using a risk

assessment framework rather than threshold based predictions.



An iterative modeling framework may improve the ability of models to predict future
distributions of species that are expanding their range. In this framework, models are
developed based on available data, then model predictions are used to inform future
monitoring (Aitken et al., 2007). Additional data collected during monitoring is then used
to update models. This iterative process has been recommended for both recovering
species (Cianfrani et al., 2010) and for invasive species (Jones et al., 2010), but has not
been widely evaluated (but see Bromberg et al., 2011).

Quantitatively evaluating model predictions typically requires setting a threshold for
suitability (Liu et al., 2005). This threshold allows continuous suitability scores (which
are the typical model output) to be converted to predictions of presence or absence, which
are simpler to interpret. Locations with predicted suitability scores above the threshold
are predicted presences, while those with lower scores are predicted absences. However,
there are many methods for determining thresholds, and the specific suitability threshold
selected may greatly affect the model’s ability to accurately predict future invasions (Liu
et al., 2005). If thresholds are set to maximize current accuracy (a recommended method)
they may poorly reflect future distributions. Threshold independent measures of current
accuracy can also be used to assess models (Fielding and Bell, 1997), but only allow
probabilistic predictions of future distributions.

An alternative approach is to use models to produce risk maps rather than specific
predictions of potential distributions (e.g., Venette et al., 2010). Areas with higher habitat
suitability scores indicate higher risk. This approach involves using multiple thresholds to
define risk categories — usually based on set proportions of the total area — rather than a

single threshold to distinguish between predicted presence and absence. This approach



reframes the question from where a species is predicted to occur in the future, to
identifying the parts of the area of interest that are at greatest risk of invasion. Intensity
of monitoring could then be based on the risk level in each area. This provides a more
flexible framework for understanding future species distributions. If future occurrences
are more common in areas with higher suitability scores, this approach may be successful
even when the strict threshold approach is not.

In this paper | used historical records of two invasive plant species in the Bolleswood
Natural Area, Connecticut, USA, to produce SDMs predicting potential distributions of
the species. | then used more recent data to determine how well the models predicted new
occurrences over time. | asked the following questions:

1. Does model accuracy decline with time?

2. Does model accuracy measured when the model is created correlate with future
predictive accuracy?

3. Can future predictive accuracy be improved by iterative modeling or by using different
methods to determine the suitability threshold?

4. Can a risk assessment framework better depict future distributions than a single
threshold method?

The goal of this study is to examine the behavior of models over time with real rather
than simulated species. Because this study was conducted on a small scale due to the
constraints of the historical dataset, results should not be used to infer the potential
distributions of the target species in other areas. Nevertheless, this study can provide an
example of how SDMs for invasive species may behave over time and of the challenges

that can be faced in trying to predict the future distributions of non-equilibrium species.



2. Methods
2.1 Study site

The Bolleswood Natural Area is a 65 ha section of the Connecticut College
Arboretum in New London and Waterford, Connecticut, USA. The western portion was
cultivated until 1951 while the rest of the natural area was too rocky for cultivation (Fig.
1; Goslee et al., 2005). The natural area was established in 1952 and has since been
protected from cutting and fires. Most of the natural area is currently forested, with stands
dominated by oak (Quercus spp.), oak-hemlock (Quercus-Tsuga) and hemlock-hardwood
stands (Hemond et al., 1983). The terrain varies from rocky ridges and ravines to flat
former agricultural fields. Elevation ranges from 34 to 70 m. Temperatures average -2.3
°C in January and 21.8 °C in July. Annual precipitation averages 123.1 cm

(www.worldclim.org; Hijmans et al., 2005)

2.2 Study species

I selected two common plants that invade forests for modeling; Celastrus orbiculatus
Thunb. and Rosa multiflora Thunb. Celastrus is a woody vine, native to eastern Asia,
first introduced to the United States as an ornamental around 1860 (Leicht-Young et al.,
2007). It is an aggressive invader in fields and open forests, particularly in disturbed
habitats (Silveri et al., 2001) and has spread throughout eastern North America (USDA-
NRCS, 2010). Celastrus can damage trees and can form dense thickets, negatively

impacting native vegetation (McNab and Meeker, 1987).



Rosa is a deciduous shrub, also native to eastern Asia that was intentionally
introduced into the United States in the late 1800s (Banasiak and Meiners, 2009; Mosher
et al., 2009). It has spread across most of North America (USDA-NRCS, 2010). Rosa
occurs in both open and forested habitats, but is limited by light availability in dense
forests (Banasiak and Meiners, 2009). Rosa forms dense thickets and has been associated

with decreased species richness (Meiners et al., 2001).

2.3 Species data and habitat variables

Eight hundred ninety 3 x 3 m plots were established in the natural area in 1952.
These plots were contiguously arranged in four 6 m wide transects of varying length
spaced 122 m apart (Fig. 1; Niering and Goodwin, 1962). All plant species have been
recorded in these plots every 10 years since 1952. Celastrus first occurred in these plots
and Rosa first became common in 1982 (Fig. 2), so | used presence/absence data for
these two species in 1982 to construct models. | excluded plots that were entirely open
water or open bog, leaving 857 plots.

I used nine environmental variables that reflected topography, vegetation structure,
moisture availability, and spatial patterns (Table 1). The plots were separated into four
forest age classes based on categories from Niering & Goodwin (1962). By 1982 (the
first year of this study) all areas were forested, but these four classes represented
differences in time since reforestation and land use history. Additionally, | used percent
canopy cover (measured for each plot in 1992 because 1982 data were not available at the
plot level). Each plot was assigned a drainage class based on Goslee et al. (2005).

Elevation, slope and the cosine of aspect were calculated from a DEM using ArcMap 9.2



(ESRI, Redlands, California, USA). Finally, I measured the distance from the western
edge of the natural area to each plot using ArcMap 9.2. Records indicate most of the
invasion of the natural area has come from the western edge (Fike and Niering, 1999). |
tested for multicollinearity among habitat variables, but | found no strong correlations
(Jr|<0.57) so all variables were included in model development.

One challenge with SDMs is finding environmental data from the same time period
as the species data. This can be especially problematic when considering model
predictions over time, as in this study. The topographic variables (drainage class,
elevation, aspect and slope) are unlikely to have changed much over the timescale of this
study. While the actual forest age changed over the course of the study, differences
remained among the four classes. However, if species colonization is based on absolute
forest age, changes in distributions over the course of the study could be due to changes
in age. Likewise, canopy cover likely changed over the course of the study and this could
influence results. However, nearly all plots had developed a closed canopy prior to 1982,
so changes in canopy cover over the 20 year time period were modest. Finally, while
proximity to the edge of the natural area did not vary over time, its importance may

change as the species spread into the natural area.

2.4 Model development and assessment

Model development and assessment involves two steps. First a modeling algorithm is
used to calculate suitability scores for each plot. Then threshold values can be determined
to separate plots into predicted presences or absences (or risk categories) based on their

suitability scores.
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I used Maxent to calculate suitability scores for each plot. Maxent is a machine
learning modeling method that creates a probability distribution across the study area that
maximizes entropy (i.e., is as close to uniform as possible) given the constraints of the
input data (Phillips et al., 2004; Phillips et al., 2006). Maxent only requires presence
points and selects absences randomly from background point. In an extensive review of
different modeling methods for native species, Maxent was among the best performing
methods (Elith et al., 2006). | used Maxent 3.3.0
(http://www.cs.princeton.edu/~schapire/maxent/) with default options (regularization =1,
maximum iterations =500). Maxent estimates the relative contributions of each variable
based on the increase in regularized gain in each iteration, thus providing the percent
contribution for each variable. I also created models using logistic regression (LR) and
Genetic Algorithm for Rule-set Predictions (GARP), but patterns were very similar to
those for Maxent, so they are not reported here.

Methods of model assessment are modified from Jones et al. (2010). | used 5-fold
cross validation to assess models by randomly partitioning 1982 presence and absence
points for each species into five equal subsets. | ran five replicate models of each
modeling technique for each species; each replicate used 80% of the data for model
construction with a different set of 20% reserved to test model accuracy.

I used three measures to assess model accuracy. First, | used Sensitivity, or the
proportion of true positives accurately predicted by a model. For invasive species, it is
generally more important to accurately predict where a species will occur than where it
will not. Thus, Sensitivity is an important metric of a model’s ability to predict future

occurrences of an invasive species, especially when combined with more complete
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measures of model accuracy.

Second, I used the true skill statistic (TSS), a threshold-dependent measure of model
accuracy which is similar to the commonly used Kappa statistic (Allouche et al., 2006).
TSS incorporates both the rate of false positive and false negative predictions, but unlike
Kappa is not sensitive to frequency of presence points (Allouche et al., 2006). TSS is
calculated as Sensitivity + Specificity — 1, where Specificity is the proportion of true
negatives accurately predicted by the model. As with Kappa, values of TSS >0.6 are
considered good, 0.2-0.6 fair to moderate, and <0.2 poor (Landis and Koch, 1977).

Both Sensitivity and TSS need predictions of presence/absence at each point in the
landscape to compare with data not used in model creation (Fielding and Bell, 1997).
This required selection of a threshold value above which the model is considered to
predict presence (Fielding and Bell, 1997). | tested four different methods to select
threshold values. The first three are methods recommended by Liu et al. (2005). First, |
selected the threshold that maximized TSS using the data from 1982 (equivalent to the
sensitivity-specificity sum maximization of Liu et al. [2005]). | calculated TSS for each
model replicate across the full range of possible threshold values (0-100) and selected the
threshold that maximized TSS. This method provides an optimal threshold for evaluating
the current accuracy of each model replicate (Robertson et al., 2004) but may not be
optimal for future accuracy. Second, | calculated the threshold as the proportion of plots
in the original 1982 data where the species occurred (prevalence). Third, | used the
average suitability scores of all plots as calculated by the models. In addition to these
three recommended methods | also set a fourth threshold as the minimum suitability

score in a plot where the species occurred in 1982 (thus maximizing Sensitivity in 1982).
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This last threshold measure is likely to produce many false positives in measuring current
accuracy but may maximize the ability of models to predict future occurrences. Because
this threshold measure is the least likely to decline in accuracy over time | used this
threshold as a conservative measure of the effects of time on model accuracy. Each of
these thresholds was applied to suitability scores calculated using Maxent with data from
1982. Model TSS and Sensitivity were calculated in each year for each model using
thresholds generated by each of the four methods.

Finally, I assessed accuracy using the area under the curve (AUC) of Receiver
Operating Characteristic (ROC) plots, which do not require selection of a habitat-
suitability threshold (Fielding and Bell, 1997). AUC measures the accuracy of a model
over the entire range of threshold values. Values of AUC generally range from 0.5
(equivalent to that due to chance) to 1.0 (perfect performance). Values >0.9 are
considered good, 0.7-0.9 moderate, and <0.7 poor (Pearce and Ferrier, 2000).

To assess model predictions of current accuracy, | used the 1982 data for the 20% of
the plots not included in model development for each replicate. To measure accuracy in
predicting future distributions I used all previously non-invaded plots in 1992 and 2002.
Thus in 1992 | used all plots where the species had never been recorded prior to 1992 and
in 2002 | used all plots not invaded prior to 2002. This includes 20 new occurrences in
1992 and 36 in 2002 for Celastrus and 36 and 15 respectively for Rosa. | calculated the
AUC, Sensitivity, and TSS in 1992 and 2002 based on Maxent models created from the
1982 data.

I compared model accuracy among years and species using two-way ANOVA with

year and species as the factors (SPSS, 2006). ANOVA tests with significant (p <0.05)
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main effects of year were followed by Tukey’s HSD post-hoc tests of means.

To determine if predictive accuracy declined with time (question 1), | examined the
main effect of year in the models. When there were significant interactions between year
and species, | used one-way ANOVA tests to compare accuracy among years for each
species. Significant ANOVA tests (p <0.05) were followed by post-hoc tests as for the
two-way ANOVA (or Tamhane’s T2 tests if variances were unequal). To evaluate if
models with higher accuracy in 1982 also had higher accuracy in subsequent years
(question 2), | looked for significant year by species interactions and visually evaluated
results. If models with initially high accuracy declined more than models with lower
initial accuracy, and this difference led to a significant interaction, this indicated poor

correspondence between current and future accuracy.

2.5 Effects of threshold measures and iterative modeling on model accuracy

| tested two approaches to improve predictive accuracy. First, | compared the four
methods for determining thresholds to determine if certain methods provide better
accuracy over time. Each of the four threshold values were applied to Maxent models
using data from 1982. For each year and species | used one-way ANOVA followed by
Tukey’s HSD post-hoc tests of means to compare model accuracy (TSS and Sensitivity)
using the four methods to determine thresholds.

Second, I used an iterative modeling approach by using data from 1992 to predict
occurrences in 2002. | contructed Maxent models using data from 1992, with five
replicate models per species. | then calculated the AUC, TSS, and Sensitivity in 2002 for

each replicate using the minimum suitability of occurrences threshold. | compared
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accuracy in 2002 between the Maxent models using 1982 data and those using 1992 data

using t-tests.

2.6 Prioritizing monitoring based on relative risk

I developed an alternate method of assessing risk of future invasion based on habitat
suitability scores. Using the suitability scores from the Maxent models using 1982 data, |
separated plots into risk categories as follows: Very High = the 10% of plots with the
highest suitability scores, High = the next 20% of plots, Moderate = the next 20% and
Low = the 50% of plots with the lowest habitat suitability scores. These categories are
arbitrary but could allow managers to focus on smaller areas with higher risk. This was
done separately for each model replicate. For each species and year, | compared the
observed number of occurrences in each risk category with the expected number
assuming new occurrences were spread randomly across risk categories. For example, of
the 36 new occurrences for Celastrus in 2002, 3.6 would be expected in the Very High
category, 7.2 in each of the High and Moderate categories and 18 in the Low category. |
used one-sample t-tests (SPSS, 2006) for each species and year to compare the observed
occurrences in each risk category for the five replicate models with the expected number
of occurrences in that same risk category. This risk assessment approach will be useful if
occurrences are more common in areas of higher risk than expected by chance. For visual
comparison among years and species, numbers of occurrences in each year were

converted to percentages observed in each risk category.

3. Results
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The majority of the occurrences of both species in 1982 were on the western end of
the transects (Fig. 3). Celastrus spread eastward over time, while Rosa filled in gaps in its
distribution. Model results for both species showed high predicted suitability on the
western edge of the study area and low suitability to the east (Fig. 3, Appendix A).

Presence of young forest (Age 1) was the most important variable for both species
with a relative contribution of 70.9% for Celastrus and 59.3% for Rosa (Appendix B).
Drainage class (17.7%) and distance from the western edge of the natural area (7.9%)
also contributed for Celastrus, while distance from the western edge (30.1%) and canopy
cover (4.2%) contributed for Rosa.

All measures of model accuracy (using Maxent models with 1982 data and minimum
occurrence threshold) showed a significant decline over time (main effect: Year p<0.001;
Table 2). Accuracy in 2002 was significantly lower than in 1982 in almost all cases (Fig.
4). AUC declined for both species over time, while TSS declined dramatically for
Celastrus but not for Rosa. The ability of models to predict new occurrences (Sensitivity)
in 2002 was poor for Celastrus (49%) and moderate for Rosa (85%) even using the most
conservative threshold measure. Patterns were similar regardless of the threshold measure
used.

AUC and Sensitivity were higher overall for Rosa than for Celastrus, but there was a
significant Year by Species interaction for all three accuracy measures (p<0.001; Table
2). All three measures were higher for Celastrus than Rosa in 1982, but were much lower
in 2002 (Fig. 4). Accuracy for Celastrus began to decline in 1992; while for Rosa it
increased or stayed the same. Full one-factor ANOVA results for Year are found in

Appendix C.
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3.1 Effects of threshold measures and iterative modeling

Thresholds values varied among selection methods (Appendix D). Threshold values
that maximized TSS in 1982 were more variable among replicates and often much higher
than with other selection methods. The relative accuracy of threshold selection methods
depended on species and year (Fig. 5), but all measures showed the same general patterns
of decline over time and stronger decline for Celastrus. There was generally little
difference in accuracy among selection methods in 1982. By 2002, the method that
maximized TSS in 1982 generally performed more poorly than the other methods
because it maximizes current rather than future accuracy. Full ANOVA results for
threshold comparisons are in Appendix E.

Using updated information from 1992 to create Maxent models did not improve
model accuracy in 2002 over models using 1982 data only (Fig. 6). Model accuracy in
2002 was never significantly higher for models using 1992 data than for models using

1982 data, and AUC for Celastrus was actually lower.

3.2 Prioritizing monitoring based on relative risk

After controlling for different numbers of plots, significantly more occurrences than
expected by chance were found in areas of Very High risk for both species in all years
while fewer than expected were found in areas of Low risk, even in 2002 (Fig. 7). For
Rosa, the distribution of new occurrences was fairly consistent among years with 60-73%
in areas of Very High risk (only 10% of the land area) and 24-26% in areas of High risk.

For Celastrus, >78% of occurrences in 1982 and 1992 were in areas of Very High risk. In

17



2002 this dropped to 24%, but even then, 75% of new occurrences were in either the
Very High or High risk category (30% of the land area). These patterns indicate that these

categories are effectively describing both current and future risk of invasion.

4. Discussion

For both species, predictive accuracy declined after 20 years, despite high initial
accuracy. This suggests that, at least in this case, models are not accurately predicting the
long-term potential distribution, but instead model the current and near-term
distributions. That accuracy declines over time is not surprising, and fits with evidence
from a number of recent studies (Elith et al., 2010; Dupin et al., 2011; Véaclavik and
Meentemeyer, 2012).

This decline in accuracy over time could have been caused by changes in habitat
variables over time that were not incorporated into the models. For example, using
canopy cover data from 1982 (had it been measured) and updating model results based on
changing canopy cover in each time period may have improved model accuracy.
However, because canopy cover contributed very little to model results (Appendix B), the
effect was likely modest. Although forest age was important, Celastrus spread from the
youngest forest to older forest classes over time, even though all forests were increasing
in age. It is important to consider how habitat variables changing over time impacts
model results, but this did not appear to be a major problem in this study.

There is some evidence that Celastrus is gradually spreading away from the sources
of colonization, which might negatively impact model accuracy over time, since

proximity to the edge of the natural area was included in the model. However, this
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variable contributed only 8% to the model results for Celastrus. Nevertheless, the use of
variables representing dispersal patterns needs to be carefully considered if accuracy over
time is an important goal, as including these variables will tend to focus results on current
and near term distributions rather than potential equilibrium distributions.

A major reason that the models failed to accurately predict future distributions is that
the species (particularly Celastrus) shifted the habitat it invaded from primarily young
open forest in 1982 to much older forest in 2002, with the shift mostly occurring after
1992. A shift in habitat such as this one can occur for two major reasons. First, it may be
the result of rapid evolution in the invasive species in its new range (Broennimann et al.,
2007), but this is unlikely in this case because of the scale of the study. Second, a
distribution shift may also occur during an invasion if the initial invasion only includes a
subset of suitable habitat or if initial distributions include sink habitat (Anderson et al.,
2006). In this case, the shift is the result of non-equilibrium conditions. The small size of
the study area and single initial invasion focus may have accentuated this shift in this
study. However, even over larger spatial scales, invasion patterns can lead to similar
shifts in habitat (Crossman and Bass, 2008; Jones et al., 2010).

More critical than the general decline in accuracy, however, is that models that more
accurately predicted the current distribution in 1982 (Celastrus), performed much worse
in predicting the future distribution. In retrospect, this is likely because Rosa was closer
to equilibrium with the environment than Celastrus, which allows for better predictions
of future distributions (Véaclavik and Meentemeyer, 2012). However, this difference

would not have been apparent in 1982 as both appeared to be in initial stages of
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spreading. Thus, current model accuracy measures do not necessarily indicate the ability
of models to predict future distributions and must be interpreted with care.

The method used to select the threshold did impact accuracy somewhat, but the
overall pattern of decline in accuracy over time was similar for all threshold measures.
Using the threshold that maximizes current accuracy, however, generally performed the
worst over time. This method may be useful if the goal is maximize current accuracy, but
not if the goal is long term predictions.

Iterative modeling only slightly increased predictive ability in 2002 for Rosa and not
at all for Celastrus. Iterative modeling should reduce the impact of distribution shifts on
predictive ability, but the ten year interval may have been too long. In 1992 Celastrus
still had largely invaded the youngest forests, while in 2002 the majority of new
occurrences were in older forest. More frequent sampling and model updates may have
been able to better predict this shift. For iterative modeling to be effective, some
sampling must occur in areas predicted to be less suitable by the original models.

Using the model results in a risk assessment framework without setting thresholds
showed more promise. Even after 20 years, very few occurrences were found in areas
rated as Low risk. In general, new occurrences progressively spread from plots with
higher to lower suitability scores. This suggests that a stratified monitoring plan based on
risk categories could successfully detect most new occurrences. This type of approach
would allow managers to prioritize areas for monitoring and control of invasive species,
with the most intense monitoring occurring in areas of higher risk. This approach would

have successfully detected almost all of the new occurrences in the current study.
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Other approaches are being developed that may improve the ability of SDMs to
predict future distributions. Adding data from the species’ native range or from larger
spatial scales in the invaded range shows potential (Broennimann and Guisan, 2008;
Ibanez et al., 2009; Jones et al., 2010). However, scale and resolution issues may come
into play. For example, a model for Celastrus using data from both the native and
invaded range indicated that all of the study area in the current study was suitable at a 1
km? resolution (Ibanez et al., 2009). While Celastrus can likely occur somewhere in each
square kilometer in the region, this conclusion is not particularly helpful for management
of the species in local natural areas such as the Bolleswood.

Another new approach that may help to overcome the lack of equilibrium issue is to
use mechanistic or physiological information about the species to describe the species’
niche and then use this information to create a niche-based model (Kearney and Porter,
2009). These mechanistic models do not require the assumption of equilibrium, but they
do require considerable knowledge about the physiology and ecology of the species.
Nevertheless this approach may provide complimentary predictions that will help to

evaluate the predictions of SDMs (Elith et al., 2010)

5. Conclusions

This study demonstrates that it is critical to clearly differentiate between predicting
the actual current distribution and the potential future distribution of an invasive species.
These two types of predictions are often confused in SDM studies of invasive species
(see Vaclavik and Meentemeyer, 2009 for discussion). High model accuracy using data

from the time of model creation does not ensure that the model will accurately predict the
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future distribution. The ability of models to predict new occurrences will decline with
time and without data from the future it is impossible to directly assess a model’s future
accuracy. The small scale and spatial autocorrelation in the current study may exacerbate
this problem, and in some circumstances models can accurately predict both current and
future distributions (e.g., Jarnevich et al., 2010). However, spatial autocorrelation and
invasion patterns can influence even large-scale models (Crossman and Bass, 2008; Jones
et al., 2010) leading to similar patterns as found in this study. The key message is that
high current model accuracy does not always indicate high future accuracy, and these
should be explicitly distinguished.

Nevertheless, there are ways to better use SDMs to help control invasive species.
Model development should be more closely and explicitly tied to monitoring. Initial
Models can be used to map the risk of potential invasion rather than to predict future
presence or absence. These maps can then be used to design monitoring programs with
intensity of sampling based on invasion risk. Additional information about the species
native range and/or physiology can also be included. Results from monitoring can then be
used to iteratively model the potential distribution. The combination of frequent iterative
modeling in a risk assessment framework with the use of additional mechanistic or native

range data is most likely to successfully detect future spread of invasive species.
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Table 1. Predictor variables used in models

Variable Range Description

Age 1? 0,1 Areas dominated by old fields in 1952

Age 22 0,1 Areas dominated by shrubs in 1952

Age 3? 0,1 Areas dominated by transitional (young) forest in

Percent canopy 0-100%
cover

Drainage class® 1-6

Distance from west 12 -471m

Elevation 35-68m
Slope 0 - 58°
Aspect -1-1

1952

Visual estimate of canopy cover in 1992

Assessment of soil drainage from saturated (1) to
excessively drained (6)

Distance from western edge of the natural area (the
most likely source of invasion)

Elevation above sea level

Slope angle in degrees

Cosine of aspect (1=north facing, -1=south facing)

4from Niering and Goodwin (1962). All areas not included in Age 1-3 were mature

forest in 1952.

bfrom Goslee et al. (2005)
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Table 1. Results of two-way ANOVA tests for three measures of model accuracy.

Sum of Mean

Source Squares  df  Square F P
A. AUC (adjusted R? = 0.925)
Corrected Model 0.08 5 .02 72.04 <0.001
Intercept 25.18 1 25.18 117723.10 <0.001
Year 0.06 2 0.03 143.82 <0.001
Species 0.00 1 0.00 10.70 0.003
Year * Species 0.01 2 0.01 30.92 <0.001
Error 001 24 0.00
Total 2526 30
Corrected Total 0.08 29
B. Sensitivity (adjusted R? = 0.900)
Corrected Model 0.81 5 0.16 53.04 <0.001
Intercept 21.28 1 21.28 6971.25 <0.001
Year 0.43 2 0.21 70.19 <0.001
Species 0.13 1 0.13 43.95 <0.001
Year * Species 0.25 2 0.12 40.43 <0.001
Error 007 24 0.00
Total 22.17 30
Corrected Total 088 29
C. TSS (adjusted R? = 0.836)
Corrected Model 0.61 5 0.121 30.58 <0.001
Intercept 13.85 1 13.85 3497.06 <0.001
Year 0.32 2 0.16 39.94 <0.001
Species 0.00 1 0.00 0.10 0.751
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Year * Species 0.29

Error 0.10
Total 14.55
Corrected Total 0.70

24

30

29

0.14

0.01

36.47

<0.001
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Fig. 1. Location of the sample plots in Bolleswood Natural Area. Triangle in inset shows
the location of the study site in southeastern Connecticut, USA. Solid white lines indicate
6 m wide transects of contiguous 3 X 3 m plots. Dashed line indicates the boundary of the

natural area. Aerial photo shows forest cover in 1934 to illustrate variation in forest age.

Fig. 2. Frequency of Celastrus orbiculatus and Rosa multiflora in the sample plots at

each sample date

Fig 3. Species distribution over time and model results for Celastrus orbiculatus and
Rosa multiflora. For species distributions (A, C), black squares indicate species
occurrence in 1982, medium gray in 1992 and light gray in 2002. Model results (B,D) are
from a single replicate (results from all replicates are found in Appendix S1). Darker

shading indicates greater predicted suitability.

Fig 4. Model accuracy (AUC, Sensitivity, and TSS) over time by species. Within each
species different letters indicate significant differences in accuracy among years based on

Tukey’s HSD post-hoc tests following significant ANOVA tests.

Fig. 5. Effect of threshold selection method on Sensitivity and TSS. Within each species,

different letters indicate significant differences in accuracy among thresholds based on

Tukey’s HSD post-hoc tests following significant ANOVA tests.
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Fig. 6. Model accuracy in 2002 comparing models created in 1982 and 1992. Within each
species, stars indicate significant differences between the 1982 and 1992 models based on
t-tests. * 0.05>p>0.01, **0.01>p>0.001, ***p<0.001. Patterns are similar regardless of

threshold measure used, results using the mean suitability threshold are shown here.

Fig. 7. Percentage of new occurrences in each risk category by year. Percentages in a
given year add to 100%. Very high = 10% of plots with highest suitability scores, High =
10-30%, Moderate = 30-50%, Low = 50% of plots with lowest suitability scores. Gray
line indicates expected percentage of occurrences in each risk category if new
occurrences were distributed randomly among categories. * = significant differences
between observed and expected percentages based on one-sample t-tests (p<0.001). + =

no t-statistic calculated because no variation among model replicates.
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Figure 4
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Figure 5

Celastrus Rosa

baabab

1.0 4 - ]
daa

0.8 1 ] b
06 a ]

aba
04 b ]
0.2 ]
0.0

b a
bal am ]

1.0 |

0.8 1

06 a babi’1
0.4 ;

0.2 ;

0.0

1982 1992 2002 1982 1992 2002
EE Max TSS [ Prevalence [ Mean Suitability [ 1 Min of Occurences

Sensitiivty

TSS

38



Figure 6
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Figure 7
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tions of each variable based on the Increase In regularized gain In each Iteration, thus providing
ent contribution for each variable. Values indicate the average percent contribution among
s (SE in parentheses).

Celastrus SE Rosa SE

Agel 70.88 (3.27) 59.32 (2.17)
Age2 1.48 (0.17) 034  (0.15)
Age3 0.06 (0.02) 1.84 (0.27)
Canopy 0.86 (0.31) 4.22 (0.66)
Aspect 0.1 (0.05) 0.5 (0.18)
Distance

from west 7.94 (0.75) 30.1 (2.92)
Drainage 17.68 (2.31) 1.08 (0.52)
Elevation 0.42 (0.18) 0.3 (0.23)

Slope 052 (0.31) 23 (052




ased on all previously uninvadead plots. For sensitivity and TSS the threshold was set at the lowest
ty score for species presences in the training data.

Celastrus orbiculatus Rosa multiflora
Sum of Mean Sum of Mean
Squares df  Square F p Squares df Square F p
Groups 0.034 2 0.017 12855 <0.001 0.041 2 0.021 69.21 <0.001
‘oups 0.002 12 0.000 0.004 12 0.000
0.035 14 0.045 14
y
Groups 0.636 2 0.318 157.54 <0.001 0.040 2 0.020 488 0.028
‘oups 0.024 12 0.002 0.049 12 0.004
0.660 14 0.089 14
Groups 0.550 2 0.275 232.61 <0.001 0.055 2 0.028 4.085 0.044
‘oups 0.014 12 0.001 0.081 12 0.007

0564 14 0.136 14




(noas to aistinguish between plots predicted as presences and apsences. Max TSS: the threshola
amized TSS using the test data from 1982. Prevalence: the proportion of plots in the original 1982
ere the species occurred. Mean suitability: the average suitability scores of all plots as calculated
10dels. Lowest occurrence: the minimum suitability score in a plot where the species occurred in

Celastrus orbiculatus Rosa multiflora
Mean Lowest Mean Lowest
Max TSS Prevalence  suitability —occurrence  Max TSS  Prevalence  suitability ~ occurrence
0.083 0.064 0.058 0.033 0.230 0.044 0.100 0.095
0.056 0.064 0.055 0.061 0.184 0.044 0.115 0.136
0.408 0.064 0.065 0.021 0.246 0.044 0.114 0.108
0.173 0.064 0.062 0.022 0.295 0.045 0.119 0.112
0.387 0.064 0.066 0.037 0.102 0.045 0.101 0.097

0.221 0.064 0.061 0.035 0.211 0.044 0.110 0.109



> methods for calculating thresholds. Methods included maximizing TSS, setting the threshold at
alence value, setting the threshold at the mean suitability value and at the lowest suitability score

ccurrence in 1982.

1. One-factor ANOVA comparing Sensitivity among threshold methods

Celastrus orbiculatus

Rosa multiflora

Sum of Mean Sum of Mean
Squares df  Square F p Squares df Square F p
Groups 0.000 3 0.000 0.00 1.000 0.023 3 0.008 0.84 0.492
‘oups 0.028 16 0.002 0.147 16 0.009
0.028 19 0.170 19
Groups 0.045 3 0.015 2.37 0.109 0.010 3 0.003 3.35 0.046
‘oups 0.102 16 0.006 0.016 16 0.001
0.147 19 0.026 19
Groups 0.100 3 0.033 5.32 0.010 0.044 3 0.015 6.05 0.006
‘oups 0.101 16 0.006 0.039 16 0.002
0.201 19 0.083 19
.2: One-factor ANOVA comparing TSS among threshold methods
Celastrus orbiculatus Rosa multiflora
Sum of Mean Sum of Mean
Squares df  Square F p Squares df Square F p
Groups 0.011 3 0.004 1.93 0.166 0.051 3 0.017 140 0.278
‘oups 0.031 16 0.002 0.194 16 0.012
0.042 19 0.245 19
Groups 0.024 3 0.008 1.52 0.247 0.038 3 0.013 9.99 0.001
‘oups 0.083 16 0.005 0.020 16 0.001
0.107 19 0.059 19
Groups 0.051 3 0.017 3.67 0.035 0.018 3 0.006 458 0.017
‘oups 0.074 16 0.005 0.021 16 0.001
0.125 19 0.039 19
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