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Abstract 21 

Species distribution models (SDMs) are increasingly used to predict distributions of 22 

invasive species. If successful, these models can help managers target limited resources 23 

for monitoring and controlling invasive species to areas of high invasion risk. Model 24 

accuracy is usually determined using current species distributions, but because invasive 25 

species are not at equilibrium with the environment, high current accuracy may not 26 

indicate high future accuracy. I used 1982 species distribution data from Bolleswood 27 

Natural Area, Connecticut, USA, to create SDMs for two forest invaders, Celastrus 28 

orbiculatus and Rosa multiflora. I then used more recent data, from 1992 and 2002, as 29 

validation data sets to determine how model accuracy changed over time and if current 30 

and future accuracy were related. I also tested if three alternative approaches – iterative 31 

modeling, alternative methods of choosing suitability thresholds and using a risk 32 

assessment framework – improved accuracy in predicting future distributions. Model 33 

accuracy declined over time with greater declines for models of the species (Celastrus) 34 

with the higher initial accuracy. By 2002, 49% of Celastrus and 85% of Rosa new 35 

occurrences were correctly predicted by models. Neither iterative modeling nor 36 

alternative thresholds improved accuracy of predicting 2002 occurrences, but a risk 37 

assessment framework showed promise for guiding monitoring efforts.  These results 38 

suggest that measures of current accuracy may not indicate a model’s predictive accuracy 39 

and must be used cautiously. Distinguishing between predictions of current and future 40 

distributions is critical. While iterative models were not successful in this study, I argue 41 

that using models in a risk assessment framework closely tied to monitoring will greatly 42 

increase the utility of SDMs for managing invasive species. 43 



3 
 

 44 

 45 

Keywords: Celastrus orbiculatus, equilibrium assumption, Maxent, model accuracy, Rosa 46 

multiflora 47 

 48 

1. Introduction 49 

Exotic plant species can greatly impact natural communities around the world 50 

(Vitousek et al., 1997). Even forests, which have often been considered resistant to the 51 

spread of exotic species, have been invaded (Martin et al., 2009). If managers of forest 52 

reserves and other natural areas can determine where invasions are most likely to occur in 53 

the future, they can focus monitoring and control efforts on those areas. Monitoring 54 

invasive species is resource intensive (Rew et al., 2005), so being able to focus limited 55 

resources is highly beneficial. Species distribution models (SDMs) have been 56 

increasingly used to predict potential distributions of invasive species (Elith et al., 2010), 57 

which can facilitate early detection of invasive species and maximize monitoring 58 

efficiency. In recent years, there has been a proliferation of modeling approaches that can 59 

be used to model invasive species (Elith et al., 2006).   60 

There are important limitations to using SDMs to model potential distributions of 61 

invasive species. The methods used to develop SDMs assume that species are in 62 

equilibrium with their environment (Guisan and Zimmermann, 2000), meaning that they 63 

occur in all suitable habitats. Invasive species, especially in early stages of invasion, may 64 

occur only in a subset of habitats in which they can thrive, simply due to lack of dispersal 65 

(Václavík and Meentemeyer, 2012). As a result, models may not predict the full 66 
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distribution of potential invasions. While species might be expected to approach 67 

equilibrium as time passes following initial invasion, it is usually not possible to tell how 68 

close an invasive species is to equilibrium. In addition, many species are not in 69 

equilibrium with climate even after centuries (Svenning and Skov, 2004) and given 70 

ongoing changes in climate and land use, equilibrium may never occur. The degree to 71 

which an invasive species is in equilibrium is also scale dependent. Even if a species is at 72 

equilibrium in the invaded range as a whole, it may be far from equilibrium in smaller 73 

areas within the invaded range, and vice-versa.  74 

The problem of non-equilibrium in SDMs for invasive species has been widely 75 

acknowledged (Thuiller et al., 2005; Václavík and Meentemeyer, 2009; Elith et al., 2010; 76 

Václavík and Meentemeyer, 2012) and several approaches have been developed to 77 

address it, such as using native range data (Ibanez et al., 2009) or mechanistic niche 78 

models (Kearney and Porter, 2009). Several recent studies have tested the effects of lack 79 

of equilibrium by using only a subset of available records in a limited geographic area to 80 

simulate earlier invasion stages (Thuiller et al., 2004; Dupin et al., 2011) or by using 81 

simulated species (Václavík and Meentemeyer, 2012). All of these studies suggest that 82 

models created during early stages of invasion will poorly predict future distributions of 83 

invasive species as they expand. For example, Sutherst and Bourne (2009) showed 84 

qualitatively that early models did not predict new areas of expansion of an invasive tick 85 

in Africa, despite high model accuracy at the time models were created. However, no 86 

study has quantitatively assessed how accuracy of a given model changes over time, 87 

which would help us to understand how current models may fare in the future. 88 
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The implications of lack of equilibrium are further compounded by the methods used 89 

to assess model accuracy. Most studies assess model accuracy by testing model results 90 

with data left out during model creation (Fielding and Bell, 1997). This provides an 91 

assessment of accuracy in predicting current distributions of the species. Predicting 92 

current distributions differs significantly from predicting future distributions, but these 93 

are often not clearly distinguished (see Václavík and Meentemeyer, 2009 for discussion). 94 

Predicting future distributions is often the stated objective of the models, but seldom can 95 

be directly assessed (Elith et al., 2010). Because invasive species are not in equilibrium 96 

with the environment, accuracy in predicting current distributions and future distributions 97 

may not correspond. The implicit assumption in many studies seems to be that models 98 

that best predict the current distribution will also best predict the future distribution, but 99 

this assumption has not been tested. If this is not the case, then measures of current 100 

accuracy are not useful for determining which models will best predict future 101 

distributions. 102 

When historical data on the spread of invasive species are available, the relationship 103 

between current and future predictions can be evaluated directly (Elith et al., 2010). 104 

Earlier data can be used to create models and more recent data can be used to test the 105 

ability of the models to predict new occurrences over time. The use of historical data can 106 

also allow evaluation of possible methods to improve predictions of future distributions. 107 

There are many potential approaches for improving predictions including: (i) iterative 108 

modeling, (ii) alternative methods for setting suitability thresholds, and (iii) using a risk 109 

assessment framework rather than threshold based predictions. 110 
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An iterative modeling framework may improve the ability of models to predict future 111 

distributions of species that are expanding their range. In this framework, models are 112 

developed based on available data, then model predictions are used to inform future 113 

monitoring (Aitken et al., 2007). Additional data collected during monitoring is then used 114 

to update models. This iterative process has been recommended for both recovering 115 

species (Cianfrani et al., 2010) and for invasive species (Jones et al., 2010), but has not 116 

been widely evaluated (but see Bromberg et al., 2011).  117 

Quantitatively evaluating model predictions typically requires setting a threshold for 118 

suitability (Liu et al., 2005). This threshold allows continuous suitability scores (which 119 

are the typical model output) to be converted to predictions of presence or absence, which 120 

are simpler to interpret. Locations with predicted suitability scores above the threshold 121 

are predicted presences, while those with lower scores are predicted absences. However, 122 

there are many methods for determining thresholds, and the specific suitability threshold 123 

selected may greatly affect the model’s ability to accurately predict future invasions (Liu 124 

et al., 2005). If thresholds are set to maximize current accuracy (a recommended method) 125 

they may poorly reflect future distributions. Threshold independent measures of current 126 

accuracy can also be used to assess models (Fielding and Bell, 1997), but only allow 127 

probabilistic predictions of future distributions.  128 

An alternative approach is to use models to produce risk maps rather than specific 129 

predictions of potential distributions (e.g., Venette et al., 2010). Areas with higher habitat 130 

suitability scores indicate higher risk. This approach involves using multiple thresholds to 131 

define risk categories – usually based on set proportions of the total area – rather than a 132 

single threshold to distinguish between predicted presence and absence. This approach 133 
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reframes the question from where a species is predicted to occur in the future, to 134 

identifying the parts of the area of interest that are at greatest risk of invasion.  Intensity 135 

of monitoring could then be based on the risk level in each area. This provides a more 136 

flexible framework for understanding future species distributions. If future occurrences 137 

are more common in areas with higher suitability scores, this approach may be successful 138 

even when the strict threshold approach is not.  139 

In this paper I used historical records of two invasive plant species in the Bolleswood 140 

Natural Area, Connecticut, USA, to produce SDMs predicting potential distributions of 141 

the species. I then used more recent data to determine how well the models predicted new 142 

occurrences over time. I asked the following questions:  143 

1. Does model accuracy decline with time?  144 

2. Does model accuracy measured when the model is created correlate with future 145 

predictive accuracy?  146 

3. Can future predictive accuracy be improved by iterative modeling or by using different 147 

methods to determine the suitability threshold?  148 

4. Can a risk assessment framework better depict future distributions than a single 149 

threshold method? 150 

The goal of this study is to examine the behavior of models over time with real rather 151 

than simulated species. Because this study was conducted on a small scale due to the 152 

constraints of the historical dataset, results should not be used to infer the potential 153 

distributions of the target species in other areas. Nevertheless, this study can provide an 154 

example of how SDMs for invasive species may behave over time and of the challenges 155 

that can be faced in trying to predict the future distributions of non-equilibrium species. 156 
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 157 

2. Methods 158 

2.1 Study site 159 

The Bolleswood Natural Area is a 65 ha section of the Connecticut College 160 

Arboretum in New London and Waterford, Connecticut, USA. The western portion was 161 

cultivated until 1951 while the rest of the natural area was too rocky for cultivation (Fig. 162 

1; Goslee et al., 2005). The natural area was established in 1952 and has since been 163 

protected from cutting and fires. Most of the natural area is currently forested, with stands 164 

dominated by oak (Quercus spp.), oak-hemlock (Quercus-Tsuga) and hemlock-hardwood 165 

stands (Hemond et al., 1983). The terrain varies from rocky ridges and ravines to flat 166 

former agricultural fields. Elevation ranges from 34 to 70 m. Temperatures average -2.3 167 

°C in January and 21.8 °C in July. Annual precipitation averages 123.1 cm 168 

(www.worldclim.org; Hijmans et al., 2005) 169 

 170 

2.2 Study species 171 

I selected two common plants that invade forests for modeling; Celastrus orbiculatus 172 

Thunb. and Rosa multiflora Thunb. Celastrus is a woody vine, native to eastern Asia, 173 

first introduced to the United States as an ornamental around 1860 (Leicht-Young et al., 174 

2007). It is an aggressive invader in fields and open forests, particularly in disturbed 175 

habitats (Silveri et al., 2001) and has spread throughout eastern North America (USDA-176 

NRCS, 2010). Celastrus can damage trees and can form dense thickets, negatively 177 

impacting native vegetation (McNab and Meeker, 1987).  178 
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Rosa is a deciduous shrub, also native to eastern Asia that was intentionally 179 

introduced into the United States in the late 1800s (Banasiak and Meiners, 2009; Mosher 180 

et al., 2009). It has spread across most of North America (USDA-NRCS, 2010). Rosa 181 

occurs in both open and forested habitats, but is limited by light availability in dense 182 

forests (Banasiak and Meiners, 2009). Rosa forms dense thickets and has been associated 183 

with decreased species richness (Meiners et al., 2001). 184 

 185 

2.3 Species data and habitat variables 186 

Eight hundred ninety 3 × 3 m plots were established in the natural area in 1952. 187 

These plots were contiguously arranged in four 6 m wide transects of varying length 188 

spaced 122 m apart (Fig. 1; Niering and Goodwin, 1962). All plant species have been 189 

recorded in these plots every 10 years since 1952. Celastrus first occurred in these plots 190 

and Rosa first became common in 1982 (Fig. 2), so I used presence/absence data for 191 

these two species in 1982 to construct models. I excluded plots that were entirely open 192 

water or open bog, leaving 857 plots.  193 

I used nine environmental variables that reflected topography, vegetation structure, 194 

moisture availability, and spatial patterns (Table 1). The plots were separated into four 195 

forest age classes based on categories from Niering & Goodwin (1962). By 1982 (the 196 

first year of this study) all areas were forested, but these four classes represented 197 

differences in time since reforestation and land use history. Additionally, I used percent 198 

canopy cover (measured for each plot in 1992 because 1982 data were not available at the 199 

plot level). Each plot was assigned a drainage class based on Goslee et al. (2005). 200 

Elevation, slope and the cosine of aspect were calculated from a DEM using ArcMap 9.2 201 
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(ESRI, Redlands, California, USA).  Finally, I measured the distance from the western 202 

edge of the natural area to each plot using ArcMap 9.2. Records indicate most of the 203 

invasion of the natural area has come from the western edge (Fike and Niering, 1999). I 204 

tested for multicollinearity among habitat variables, but I found no strong correlations 205 

(|r|<0.57) so all variables were included in model development. 206 

One challenge with SDMs is finding environmental data from the same time period 207 

as the species data. This can be especially problematic when considering model 208 

predictions over time, as in this study. The topographic variables (drainage class, 209 

elevation, aspect and slope) are unlikely to have changed much over the timescale of this 210 

study. While the actual forest age changed over the course of the study, differences 211 

remained among the four classes. However, if species colonization is based on absolute 212 

forest age, changes in distributions over the course of the study could be due to changes 213 

in age. Likewise, canopy cover likely changed over the course of the study and this could 214 

influence results. However, nearly all plots had developed a closed canopy prior to 1982, 215 

so changes in canopy cover over the 20 year time period were modest. Finally, while 216 

proximity to the edge of the natural area did not vary over time, its importance may 217 

change as the species spread into the natural area.  218 

 219 

2.4 Model development and assessment 220 

Model development and assessment involves two steps. First a modeling algorithm is 221 

used to calculate suitability scores for each plot. Then threshold values can be determined 222 

to separate plots into predicted presences or absences (or risk categories) based on their 223 

suitability scores. 224 
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I used Maxent to calculate suitability scores for each plot. Maxent is a machine 225 

learning modeling method that creates a probability distribution across the study area that 226 

maximizes entropy (i.e., is as close to uniform as possible) given the constraints of the 227 

input data (Phillips et al., 2004; Phillips et al., 2006). Maxent only requires presence 228 

points and selects absences randomly from background point. In an extensive review of 229 

different modeling methods for native species, Maxent was among the best performing 230 

methods (Elith et al., 2006). I used Maxent 3.3.0 231 

(http://www.cs.princeton.edu/~schapire/maxent/) with default options (regularization =1, 232 

maximum iterations =500). Maxent estimates the relative contributions of each variable 233 

based on the increase in regularized gain in each iteration, thus providing the percent 234 

contribution for each variable. I also created models using logistic regression (LR) and 235 

Genetic Algorithm for Rule-set Predictions (GARP), but patterns were very similar to 236 

those for Maxent, so they are not reported here. 237 

Methods of model assessment are modified from Jones et al. (2010). I used 5-fold 238 

cross validation to assess models by randomly partitioning 1982 presence and absence 239 

points for each species into five equal subsets.  I ran five replicate models of each 240 

modeling technique for each species; each replicate used 80% of the data for model 241 

construction with a different set of 20% reserved to test model accuracy. 242 

I used three measures to assess model accuracy. First, I used Sensitivity, or the 243 

proportion of true positives accurately predicted by a model. For invasive species, it is 244 

generally more important to accurately predict where a species will occur than where it 245 

will not. Thus, Sensitivity is an important metric of a model’s ability to predict future 246 

occurrences of an invasive species, especially when combined with more complete 247 
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measures of model accuracy.  248 

Second, I used the true skill statistic (TSS), a threshold-dependent measure of model 249 

accuracy which is similar to the commonly used Kappa statistic (Allouche et al., 2006). 250 

TSS incorporates both the rate of false positive and false negative predictions, but unlike 251 

Kappa is not sensitive to frequency of presence points (Allouche et al., 2006).  TSS is 252 

calculated as Sensitivity + Specificity – 1, where Specificity is the proportion of true 253 

negatives accurately predicted by the model. As with Kappa, values of TSS >0.6 are 254 

considered good, 0.2-0.6 fair to moderate, and <0.2 poor (Landis and Koch, 1977).   255 

Both Sensitivity and TSS need predictions of presence/absence at each point in the 256 

landscape to compare with data not used in model creation (Fielding and Bell, 1997). 257 

This required selection of a threshold value above which the model is considered to 258 

predict presence (Fielding and Bell, 1997). I tested four different methods to select 259 

threshold values. The first three are methods recommended by Liu et al. (2005). First, I 260 

selected the threshold that maximized TSS using the data from 1982 (equivalent to the 261 

sensitivity-specificity sum maximization of Liu et al. [2005]). I calculated TSS for each 262 

model replicate across the full range of possible threshold values (0-100) and selected the 263 

threshold that maximized TSS.  This method provides an optimal threshold for evaluating 264 

the current accuracy of each model replicate (Robertson et al., 2004) but may not be 265 

optimal for future accuracy. Second, I calculated the threshold as the proportion of plots 266 

in the original 1982 data where the species occurred (prevalence). Third, I used the 267 

average suitability scores of all plots as calculated by the models. In addition to these 268 

three recommended methods I also set a fourth threshold as the minimum suitability 269 

score in a plot where the species occurred in 1982 (thus maximizing Sensitivity in 1982). 270 
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This last threshold measure is likely to produce many false positives in measuring current 271 

accuracy but may maximize the ability of models to predict future occurrences. Because 272 

this threshold measure is the least likely to decline in accuracy over time I used this 273 

threshold as a conservative measure of the effects of time on model accuracy. Each of 274 

these thresholds was applied to suitability scores calculated using Maxent with data from 275 

1982. Model TSS and Sensitivity were calculated in each year for each model using 276 

thresholds generated by each of the four methods.    277 

Finally, I assessed accuracy using the area under the curve (AUC) of Receiver 278 

Operating Characteristic (ROC) plots, which do not require selection of a habitat-279 

suitability threshold (Fielding and Bell, 1997).  AUC measures the accuracy of a model 280 

over the entire range of threshold values. Values of AUC generally range from 0.5 281 

(equivalent to that due to chance) to 1.0 (perfect performance).  Values >0.9 are 282 

considered good, 0.7-0.9 moderate, and <0.7 poor (Pearce and Ferrier, 2000). 283 

To assess model predictions of current accuracy, I used the 1982 data for the 20% of 284 

the plots not included in model development for each replicate. To measure accuracy in 285 

predicting future distributions I used all previously non-invaded plots in 1992 and 2002. 286 

Thus in 1992 I used all plots where the species had never been recorded prior to 1992 and 287 

in 2002 I used all plots not invaded prior to 2002. This includes 20 new occurrences in 288 

1992 and 36 in 2002 for Celastrus and 36 and 15 respectively for Rosa. I calculated the 289 

AUC, Sensitivity, and TSS in 1992 and 2002 based on Maxent models created from the 290 

1982 data. 291 

I compared model accuracy among years and species using two-way ANOVA with 292 

year and species as the factors (SPSS, 2006). ANOVA tests with significant (p <0.05) 293 
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main effects of year were followed by Tukey’s HSD post-hoc tests of means. 294 

To determine if predictive accuracy declined with time (question 1), I examined the 295 

main effect of year in the models. When there were significant interactions between year 296 

and species, I used one-way ANOVA tests to compare accuracy among years for each 297 

species. Significant ANOVA tests (p <0.05) were followed by post-hoc tests as for the 298 

two-way ANOVA (or Tamhane’s T2 tests if variances were unequal).  To evaluate if 299 

models with higher accuracy in 1982 also had higher accuracy in subsequent years 300 

(question 2), I looked for significant year by species interactions and visually evaluated 301 

results. If models with initially high accuracy declined more than models with lower 302 

initial accuracy, and this difference led to a significant interaction, this indicated poor 303 

correspondence between current and future accuracy.  304 

 305 

2.5 Effects of threshold measures and iterative modeling on model accuracy  306 

I tested two approaches to improve predictive accuracy. First, I compared the four 307 

methods for determining thresholds to determine if certain methods provide better 308 

accuracy over time. Each of the four threshold values were applied to Maxent models 309 

using data from 1982. For each year and species I used one-way ANOVA followed by 310 

Tukey’s HSD post-hoc tests of means to compare model accuracy (TSS and Sensitivity) 311 

using the four methods to determine thresholds. 312 

Second, I used an iterative modeling approach by using data from 1992 to predict 313 

occurrences in 2002. I contructed Maxent models using data from 1992, with five 314 

replicate models per species. I then calculated the AUC, TSS, and Sensitivity in 2002 for 315 

each replicate using the minimum suitability of occurrences threshold. I compared 316 
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accuracy in 2002 between the Maxent models using 1982 data and those using 1992 data  317 

using  t-tests. 318 

 319 

2.6 Prioritizing monitoring based on relative risk 320 

I developed an alternate method of assessing risk of future invasion based on habitat 321 

suitability scores. Using the suitability scores from the Maxent models using 1982 data, I 322 

separated plots into risk categories as follows: Very High = the 10% of plots with the 323 

highest suitability scores, High = the next 20% of plots, Moderate = the next 20% and 324 

Low = the 50% of plots with the lowest habitat suitability scores.  These categories are 325 

arbitrary but could allow managers to focus on smaller areas with higher risk. This was 326 

done separately for each model replicate. For each species and year, I compared the 327 

observed number of occurrences in each risk category with the expected number 328 

assuming new occurrences were spread randomly across risk categories. For example, of 329 

the 36 new occurrences for Celastrus in 2002, 3.6 would be expected in the Very High 330 

category, 7.2 in each of the High and Moderate categories and 18 in the Low category. I 331 

used one-sample t-tests (SPSS, 2006) for each species and year to compare the observed 332 

occurrences in each risk category for the five replicate models with the expected number 333 

of occurrences in that same risk category. This risk assessment approach will be useful if 334 

occurrences are more common in areas of higher risk than expected by chance. For visual 335 

comparison among years and species, numbers of occurrences in each year were 336 

converted to percentages observed in each risk category.  337 

 338 

3. Results 339 
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The majority of the occurrences of both species in 1982 were on the western end of 340 

the transects (Fig. 3). Celastrus spread eastward over time, while Rosa filled in gaps in its 341 

distribution. Model results for both species showed high predicted suitability on the 342 

western edge of the study area and low suitability to the east (Fig. 3, Appendix A). 343 

Presence of young forest (Age 1) was the most important variable for both species 344 

with a relative contribution of 70.9% for Celastrus and 59.3% for Rosa (Appendix B). 345 

Drainage class (17.7%) and distance from the western edge of the natural area (7.9%) 346 

also contributed for Celastrus, while distance from the western edge (30.1%) and canopy 347 

cover (4.2%) contributed for Rosa. 348 

All measures of model accuracy (using Maxent models with 1982 data and minimum 349 

occurrence threshold) showed a significant decline over time (main effect: Year p<0.001; 350 

Table 2). Accuracy in 2002 was significantly lower than in 1982 in almost all cases (Fig. 351 

4). AUC declined for both species over time, while TSS declined dramatically for 352 

Celastrus but not for Rosa. The ability of models to predict new occurrences (Sensitivity) 353 

in 2002 was poor for Celastrus (49%) and moderate for Rosa (85%) even using the most 354 

conservative threshold measure. Patterns were similar regardless of the threshold measure 355 

used. 356 

AUC and Sensitivity were higher overall for Rosa than for Celastrus, but there was a 357 

significant Year by Species interaction for all three accuracy measures (p<0.001; Table 358 

2). All three measures were higher for Celastrus than Rosa in 1982, but were much lower 359 

in 2002 (Fig. 4). Accuracy for Celastrus began to decline in 1992; while for Rosa it 360 

increased or stayed the same. Full one-factor ANOVA results for Year are found in 361 

Appendix C. 362 
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 363 

3.1 Effects of threshold measures and iterative modeling 364 

Thresholds values varied among selection methods (Appendix D). Threshold values 365 

that maximized TSS in 1982 were more variable among replicates and often much higher 366 

than with other selection methods. The relative accuracy of threshold selection methods 367 

depended on species and year (Fig. 5), but all measures showed the same general patterns 368 

of decline over time and stronger decline for Celastrus.   There was generally little 369 

difference in accuracy among selection methods in 1982. By 2002, the method that 370 

maximized TSS in 1982 generally performed more poorly than the other methods 371 

because it maximizes current rather than future accuracy. Full ANOVA results for 372 

threshold comparisons are in Appendix E. 373 

Using updated information from 1992 to create Maxent models did not improve 374 

model accuracy in 2002 over models using 1982 data only (Fig. 6). Model accuracy in 375 

2002 was never significantly higher for models using 1992 data than for models using 376 

1982 data, and AUC for Celastrus was actually lower.  377 

 378 

3.2 Prioritizing monitoring based on relative risk 379 

After controlling for different numbers of plots, significantly more occurrences than 380 

expected by chance were found in areas of Very High risk for both species in all years 381 

while fewer than expected were found in areas of Low risk, even in 2002 (Fig. 7). For 382 

Rosa, the distribution of new occurrences was fairly consistent among years with 60-73% 383 

in areas of Very High risk (only 10% of the land area) and 24-26% in areas of High risk.  384 

For Celastrus, >78% of occurrences in 1982 and 1992 were in areas of Very High risk. In 385 
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2002 this dropped to 24%, but even then, 75% of new occurrences were in either the 386 

Very High or High risk category (30% of the land area). These patterns indicate that these 387 

categories are effectively describing both current and future risk of invasion. 388 

 389 

4. Discussion 390 

For both species, predictive accuracy declined after 20 years, despite high initial 391 

accuracy. This suggests that, at least in this case, models are not accurately predicting the 392 

long-term potential distribution, but instead model the current and near-term 393 

distributions. That accuracy declines over time is not surprising, and fits with evidence 394 

from a number of recent studies (Elith et al., 2010; Dupin et al., 2011; Václavík and 395 

Meentemeyer, 2012). 396 

This decline in accuracy over time could have been caused by changes in habitat 397 

variables over time that were not incorporated into the models. For example, using 398 

canopy cover data from 1982 (had it been measured) and updating model results based on 399 

changing canopy cover in each time period may have improved model accuracy. 400 

However, because canopy cover contributed very little to model results (Appendix B), the 401 

effect was likely modest. Although forest age was important, Celastrus spread from the 402 

youngest forest to older forest classes over time, even though all forests were increasing 403 

in age. It is important to consider how habitat variables changing over time impacts 404 

model results, but this did not appear to be a major problem in this study.  405 

There is some evidence that Celastrus is gradually spreading away from the sources 406 

of colonization, which might negatively impact model accuracy over time, since 407 

proximity to the edge of the natural area was included in the model. However, this 408 
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variable contributed only 8% to the model results for Celastrus. Nevertheless, the use of 409 

variables representing dispersal patterns needs to be carefully considered if accuracy over 410 

time is an important goal, as including these variables will tend to focus results on current 411 

and near term distributions rather than potential equilibrium distributions.  412 

A major reason that the models failed to accurately predict future distributions is that 413 

the species (particularly Celastrus) shifted the habitat it invaded from primarily young 414 

open forest in 1982 to much older forest in 2002, with the shift mostly occurring after 415 

1992. A shift in habitat such as this one can occur for two major reasons. First, it may be 416 

the result of rapid evolution in the invasive species in its new range (Broennimann et al., 417 

2007), but this is unlikely in this case because of the scale of the study. Second, a 418 

distribution shift may also occur during an invasion if the initial invasion only includes a 419 

subset of suitable habitat or if initial distributions include sink habitat (Anderson et al., 420 

2006). In this case, the shift is the result of non-equilibrium conditions. The small size of 421 

the study area and single initial invasion focus may have accentuated this shift in this 422 

study. However, even over larger spatial scales, invasion patterns can lead to similar 423 

shifts in habitat (Crossman and Bass, 2008; Jones et al., 2010).  424 

More critical than the general decline in accuracy, however, is that models that more 425 

accurately predicted the current distribution in 1982 (Celastrus), performed much worse 426 

in predicting the future distribution. In retrospect, this is likely because Rosa was closer 427 

to equilibrium with the environment than Celastrus, which allows for better predictions 428 

of future distributions (Václavík and Meentemeyer, 2012). However, this difference 429 

would not have been apparent in 1982 as both appeared to be in initial stages of 430 
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spreading. Thus, current model accuracy measures do not necessarily indicate the ability 431 

of models to predict future distributions and must be interpreted with care.   432 

The method used to select the threshold did impact accuracy somewhat, but the 433 

overall pattern of decline in accuracy over time was similar for all threshold measures. 434 

Using the threshold that maximizes current accuracy, however, generally performed the 435 

worst over time. This method may be useful if the goal is maximize current accuracy, but 436 

not if the goal is long term predictions. 437 

Iterative modeling only slightly increased predictive ability in 2002 for Rosa and not 438 

at all for Celastrus. Iterative modeling should reduce the impact of distribution shifts on 439 

predictive ability, but the ten year interval may have been too long. In 1992 Celastrus 440 

still had largely invaded the youngest forests, while in 2002 the majority of new 441 

occurrences were in older forest. More frequent sampling and model updates may have 442 

been able to better predict this shift. For iterative modeling to be effective, some 443 

sampling must occur in areas predicted to be less suitable by the original models.  444 

Using the model results in a risk assessment framework without setting thresholds 445 

showed more promise.  Even after 20 years, very few occurrences were found in areas 446 

rated as Low risk. In general, new occurrences progressively spread from plots with 447 

higher to lower suitability scores. This suggests that a stratified monitoring plan based on 448 

risk categories could successfully detect most new occurrences. This type of approach 449 

would allow managers to prioritize areas for monitoring and control of invasive species, 450 

with the most intense monitoring occurring in areas of higher risk. This approach would 451 

have successfully detected almost all of the new occurrences in the current study.    452 
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Other approaches are being developed that may improve the ability of SDMs to 453 

predict future distributions. Adding data from the species’ native range or from larger 454 

spatial scales in the invaded range shows potential (Broennimann and Guisan, 2008; 455 

Ibanez et al., 2009; Jones et al., 2010). However, scale and resolution issues may come 456 

into play. For example, a model for Celastrus using data from both the native and 457 

invaded range indicated that all of the study area in the current study was suitable at a 1 458 

km2 resolution (Ibanez et al., 2009). While Celastrus can likely occur somewhere in each 459 

square kilometer in the region, this conclusion is not particularly helpful for management 460 

of the species in local natural areas such as the Bolleswood. 461 

Another new approach that may help to overcome the lack of equilibrium issue is to 462 

use mechanistic or physiological information about the species to describe the species’ 463 

niche and then use this information to create a niche-based model (Kearney and Porter, 464 

2009). These mechanistic models do not require the assumption of equilibrium, but they 465 

do require considerable knowledge about the physiology and ecology of the species. 466 

Nevertheless this approach may provide complimentary predictions that will help to 467 

evaluate the predictions of SDMs (Elith et al., 2010) 468 

 469 

5. Conclusions 470 

This study demonstrates that it is critical to clearly differentiate between predicting 471 

the actual current distribution and the potential future distribution of an invasive species. 472 

These two types of predictions are often confused in SDM studies of invasive species 473 

(see Václavík and Meentemeyer, 2009 for discussion). High model accuracy using data 474 

from the time of model creation does not ensure that the model will accurately predict the 475 
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future distribution. The ability of models to predict new occurrences will decline with 476 

time and without data from the future it is impossible to directly assess a model’s future 477 

accuracy. The small scale and spatial autocorrelation in the current study may exacerbate 478 

this problem, and in some circumstances models can accurately predict both current and 479 

future distributions (e.g., Jarnevich et al., 2010). However, spatial autocorrelation and 480 

invasion patterns can influence even large-scale models (Crossman and Bass, 2008; Jones 481 

et al., 2010) leading to similar patterns as found in this study. The key message is that 482 

high current model accuracy does not always indicate high future accuracy, and these 483 

should be explicitly distinguished.  484 

Nevertheless, there are ways to better use SDMs to help control invasive species. 485 

Model development should be more closely and explicitly tied to monitoring. Initial 486 

Models can be used to map the risk of potential invasion rather than to predict future 487 

presence or absence. These maps can then be used to design monitoring programs with 488 

intensity of sampling based on invasion risk. Additional information about the species 489 

native range and/or physiology can also be included. Results from monitoring can then be 490 

used to iteratively model the potential distribution. The combination of frequent iterative 491 

modeling in a risk assessment framework with the use of additional mechanistic or native 492 

range data is most likely to successfully detect future spread of invasive species.  493 

 494 
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Table 1. Predictor variables used in models 622 
Variable Range Description 

Age 1a 0,1 Areas dominated by old fields in 1952 

Age 2a 0,1 Areas dominated by shrubs in 1952 

Age 3a 0,1 Areas dominated by transitional (young) forest in 

1952 

Percent canopy 

cover 

0 – 100% Visual estimate of canopy cover in 1992 

Drainage classb 1 – 6 Assessment of soil drainage from saturated (1) to 

excessively drained (6)  

Distance from west 12 – 471 m Distance from western edge of the natural area (the 

most likely source of invasion) 

Elevation 35 – 68 m Elevation above sea level 

Slope 0 – 58° Slope angle in degrees 

Aspect -1 – 1 Cosine of aspect (1=north facing, -1=south facing)  

afrom Niering and Goodwin (1962). All areas not included in Age 1-3 were mature 623 

forest in 1952.  624 

bfrom Goslee et al. (2005) 625 

626 
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Table 1. Results of two-way ANOVA tests for three measures of model accuracy.  627 

Source 

Sum of 

Squares df 

Mean 

Square F P 

A. AUC (adjusted R2 = 0.925) 

Corrected Model 0.08 5 .02 72.04 <0.001 

Intercept 25.18 1 25.18 117723.10 <0.001 

Year 0.06 2 0.03 143.82 <0.001 

Species 0.00 1 0.00 10.70 0.003 

Year * Species 0.01 2 0.01 30.92 <0.001 

Error 0.01 24 0.00     

Total 25.26 30       

Corrected Total 0.08 29       

      

B. Sensitivity (adjusted R2 = 0.900) 

Corrected Model 0.81 5 0.16 53.04 <0.001 

Intercept 21.28 1 21.28 6971.25 <0.001 

Year 0.43 2 0.21 70.19 <0.001 

Species 0.13 1 0.13 43.95 <0.001 

Year * Species 0.25 2 0.12 40.43 <0.001 

Error 0.07 24 0.00   

Total 22.17 30    

Corrected Total 0.88 29    

      

C. TSS (adjusted R2 = 0.836) 

Corrected Model 0.61 5 0.121 30.58 <0.001 

Intercept 13.85 1 13.85 3497.06 <0.001 

Year 0.32 2 0.16 39.94 <0.001 

Species 0.00 1 0.00 0.10 0.751 
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Year * Species 0.29 2 0.14 36.47 <0.001 

Error 0.10 24 0.01     

Total 14.55 30       

Corrected Total 0.70 29       

      
 628 

629 



32 
 

 Fig. 1. Location of the sample plots in Bolleswood Natural Area. Triangle in inset shows 630 

the location of the study site in southeastern Connecticut, USA. Solid white lines indicate 631 

6 m wide transects of contiguous 3 X 3 m plots. Dashed line indicates the boundary of the 632 

natural area. Aerial photo shows forest cover in 1934 to illustrate variation in forest age.  633 

 634 

Fig. 2. Frequency of Celastrus orbiculatus and Rosa multiflora in the sample plots at 635 

each sample date  636 

 637 

Fig 3. Species distribution over time and model results for Celastrus orbiculatus and 638 

Rosa multiflora. For species distributions (A, C), black squares indicate species 639 

occurrence in 1982, medium gray in 1992 and light gray in 2002. Model results (B,D) are 640 

from a single replicate (results from all replicates are found in Appendix S1). Darker 641 

shading indicates greater predicted suitability.   642 

 643 

Fig 4. Model accuracy (AUC, Sensitivity, and TSS) over time by species. Within each 644 

species different letters indicate significant differences in accuracy among years based on 645 

Tukey’s HSD post-hoc tests following significant ANOVA tests. 646 

 647 

Fig. 5. Effect of threshold selection method on Sensitivity and TSS. Within each species, 648 

different letters indicate significant differences in accuracy among thresholds based on 649 

Tukey’s HSD post-hoc tests following significant ANOVA tests.  650 

 651 
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Fig. 6. Model accuracy in 2002 comparing models created in 1982 and 1992. Within each 652 

species, stars indicate significant differences between the 1982 and 1992 models based on 653 

t-tests. * 0.05>p>0.01, **0.01>p>0.001, ***p<0.001. Patterns are similar regardless of 654 

threshold measure used, results using the mean suitability threshold are shown here. 655 

 656 

Fig. 7. Percentage of new occurrences in each risk category by year. Percentages in a 657 

given year add to 100%. Very high = 10% of plots with highest suitability scores, High = 658 

10-30%, Moderate = 30-50%, Low = 50% of plots with lowest suitability scores.  Gray 659 

line indicates expected percentage of occurrences in each risk category if new 660 

occurrences were distributed randomly among categories. * = significant differences 661 

between observed and expected percentages based on one-sample t-tests (p<0.001). + = 662 

no t-statistic calculated because no variation among model replicates. 663 

  664 

665 
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Figure 1 666 

 667 

668 
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Figure 2 669 
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Figure 3 672 
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Figure 4 675 
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677 
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Figure 5 678 
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Figure 6 681 
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Figure 7 684 
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Appendix A: Maps of model results for all model types and replicates. Blue indicates low predicted 

suitability and red indicates high predicted suitability. 
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Appendix B. Importance of habitat variables in model results.  Maxent estimates the relative 

contributions of each variable based on the increase in regularized gain in each iteration, thus providing 

the percent contribution for each variable. Values indicate the average percent contribution among 

replicates (SE in parentheses). 

 

 

Celastrus SE Rosa SE 

Age1 70.88 (3.27) 59.32  (2.17) 

Age2 1.48  (0.17) 0.34  (0.15) 

Age3 0.06  (0.02) 1.84  (0.27) 

Canopy 0.86  (0.31) 4.22  (0.66) 

Aspect 0.1  (0.05) 0.5  (0.18) 

Distance 

from west 7.94  (0.75) 30.1  (2.92) 

Drainage 17.68  (2.31) 1.08  (0.52) 

Elevation 0.42  (0.18) 0.3  (0.23) 

Slope 0.52  (0.31) 2.3  (0.52) 

 
 

 

 



 

 

Appendix C: Results of one-factor ANOVA tests comparing accuracy among years (1982,1992 and 

2002) based on all previously uninvaded plots. For sensitivity and TSS the threshold was set at the lowest 

suitability score for species presences in the training data. 

 

 

 
Celastrus orbiculatus 

 

Rosa multiflora 

 

 

Sum of 

Squares df 

Mean 

Square F p 

 

Sum of 

Squares df 

Mean 

Square F p 

AUC 

           Between Groups 0.034 2 0.017 128.55 <0.001 

 

0.041 2 0.021 69.21 <0.001 

Within Groups 0.002 12 0.000 

   

0.004 12 0.000 

  Total 0.035 14 

    

0.045 14 

   Sensitivity   
    

  
   Between Groups 0.636 2 0.318 157.54

7 

<0.001 
 

0.040 2 0.020 4.88 0.028 

Within Groups 0.024 12 0.002   
  

0.049 12 0.004     

Total 0.660 14     
  

0.089 14       

TSS            
Between Groups 0.550 2 0.275 232.61

6 

<0.001 
 

0.055 2 0.028 4.085 0.044 

Within Groups 0.014 12 0.001   
  

0.081 12 0.007     

Total 0.564 14     
  

0.136 14       



 

 

Appendix D. Threshold values for model replicates. For each model replicate, thresholds were set using 

four methods to distinguish between plots predicted as presences and absences. Max TSS: the threshold 

that maximized TSS using the test data from 1982. Prevalence: the proportion of plots in the original 1982 

data where the species occurred. Mean suitability: the average suitability scores of all plots as calculated 

by the models. Lowest occurrence: the minimum suitability score in a plot where the species occurred in 

1982. 

 
Celastrus orbiculatus Rosa multiflora 

Model Max TSS Prevalence  

Mean 

suitability  

Lowest 

occurrence Max TSS Prevalence  

Mean 

suitability  

Lowest 

occurrence 

1 0.083 0.064 0.058 0.033 0.230 0.044 0.100 0.095 

2 0.056 0.064 0.055 0.061 0.184 0.044 0.115 0.136 

3 0.408 0.064 0.065 0.021 0.246 0.044 0.114 0.108 

4 0.173 0.064 0.062 0.022 0.295 0.045 0.119 0.112 

5 0.387 0.064 0.066 0.037 0.102 0.045 0.101 0.097 

Mean 0.221 0.064 0.061 0.035 0.211 0.044 0.110 0.109 



 

 

Appendix E: Results of one-factor ANOVA comparing sensitivity (Table S5.1) and TSS (Table S5.2) of 

alternate methods for calculating thresholds. Methods included maximizing TSS, setting the threshold at 

the prevalence value, setting the threshold at the mean suitability value and at the lowest suitability score 

for an occurrence in 1982. 

 

Table E.1. One-factor ANOVA comparing Sensitivity among threshold methods  

 

Table E.2: One-factor ANOVA comparing TSS among threshold methods 

 
 

 
Celastrus orbiculatus 

 

Rosa multiflora 

 

 

Sum of 

Squares df 

Mean 

Square F p 

 

Sum of 

Squares df 

Mean 

Square F p 

1982 

           Between Groups 0.000 3 0.000 0.00 1.000 

 

0.023 3 0.008 0.84 0.492 

Within Groups 0.028 16 0.002     

 

0.147 16 0.009     

Total 0.028 19       

 

0.170 19       

1992 

           Between Groups 0.045 3 0.015 2.37 0.109 

 

0.010 3 0.003 3.35 0.046 

Within Groups 0.102 16 0.006     

 

0.016 16 0.001     

Total 0.147 19       

 

0.026 19       

2002 

           Between Groups 0.100 3 0.033 5.32 0.010 

 

0.044 3 0.015 6.05 0.006 

Within Groups 0.101 16 0.006     

 

0.039 16 0.002     

Total 0.201 19       

 

0.083 19       

 
Celastrus orbiculatus 

 

Rosa multiflora 

 

Sum of 

Squares df 

Mean 

Square F p 

 

Sum of 

Squares df 

Mean 

Square F p 

1982 

           Between Groups 0.011 3 0.004 1.93 0.166 

 

0.051 3 0.017 1.40 0.278 

Within Groups 0.031 16 0.002     

 

0.194 16 0.012     

Total 0.042 19       

 

0.245 19       

1992 

           Between Groups 0.024 3 0.008 1.52 0.247 

 

0.038 3 0.013 9.99 0.001 

Within Groups 0.083 16 0.005     

 

0.020 16 0.001     

Total 0.107 19       

 

0.059 19       

2002 

           Between Groups 0.051 3 0.017 3.67 0.035 

 

0.018 3 0.006 4.58 0.017 

Within Groups 0.074 16 0.005     

 

0.021 16 0.001     

Total 0.125 19       

 

0.039 19       
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