
Connecticut College
Digital Commons @ Connecticut College

Computer Science Faculty Publications Computer Science Department

Spring 4-2012

Completion Time Scheduling and the WSRPT
Algorithm
Christine Chung
Connecticut College, cchung@conncoll.edu

Bo Xiong
Connecticut College, bxiong@conncoll.edu

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscifacpub

Part of the Computer Sciences Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut
College. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of Digital Commons @
Connecticut College. For more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Chung, Christine and Xiong, Bo, "Completion Time Scheduling and the WSRPT Algorithm" (2012). Computer Science Faculty
Publications. 9.
http://digitalcommons.conncoll.edu/comscifacpub/9

http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/9?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu

Completion Time Scheduling and the WSRPT Algorithm

Comments
Presented at ISCO 2012 (International Symposium on Combinatorial Optimization.

This conference proceeding is available at Digital Commons @ Connecticut College: http://digitalcommons.conncoll.edu/
comscifacpub/9

http://digitalcommons.conncoll.edu/comscifacpub/9?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/9?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages

Completion Time Scheduling and the WSRPT
Algorithm

Bo Xiong, Christine Chung

Department of Computer Science, Connecticut College, New London, CT
{bxiong,cchung}@conncoll.edu

Abstract. We consider the online scheduling problem of minimizing the
total weighted and unweighted completion time on identical parallel ma-
chines with preemptible jobs. We show a new general lower bound of
21/19 ≈ 1.105 on the competitive ratio of any deterministic online algo-

rithm for the unweighted problem and 16−
√
14

11
≈ 1.114 for the weighted

problem. We then analyze the performance of the natural online algo-
rithm WSRPT (Weighted Shortest Remaining Processing Time). We
show that WSRPT is 2-competitive. We also prove that the lower bound
on the competitive ratio of WSRPT for this problem is 1.215.

1 Introduction

We consider the well-studied online problem of preemptively scheduling jobs
on identical parallel machines to minimize total completion time, both in the
case that the jobs have weights and in the case that the jobs are unweighted.
We have m machines and a set of n jobs that arrive over time. Each job j
is characterized by a positive integer processing time, pj , and an nonnegative
integer release time, rj . In the weighted case, each job also has a positive integer
weight wj . (The unweighted case is equivalent to all jobs having equal weights.)
A job’s processing time, release time, and weight are not known until a job
arrives. We cannot schedule a job on a machine before its release time and each
job is preemptible. We use cj to denote the completion time of job j, and our
goal is to minimize

∑
j cj in the unweighted case and

∑
j wjcj in the weighted

case. The unweighted problem is denoted P | rj ,pmtn |
∑
j cj and the weighted

problem is P | rj ,pmtn |
∑
j wjcj using the standard scheduling notation of [1].

The weighted problem is NP-Hard, even for the single-machine case [2], and the
unweighted problem is NP-Hard for two or more machines [3].

The best known general lowerbound on the competitive ratio for any deter-
ministic algorithm (for both the weighted and unweighted case) due to Vest-
jens [4] was 1.047 and has held since 1997. With respect to upperbounds, for
weighted completion time scheduling, Megow and Schulz [5] showed that the
algorithm WSPT (Weighted Shortest Processing Time), which schedules jobs in
order of non-decreasing weight-to-size ratio, is 2-competitive. Sitters [6] then re-
cently gave an algorithm that is 1.791-competitive for weighted completion time
scheduling.

In this work, we give an updated general lower bound of 21/19 ≈ 1.105 for
the competitive ratio of any deterministic online algorithm for the unweighted

case and 16−
√
14

11 ≈ 1.114 for the weighted case.
We then analyze the performance of the algorithm WSRPT (Weighted Short-

est Remaining Processing Time). WSRPT is an extension of the famous SRPT
(Shortest Remaining Processing Time) algorithm, which is used for unweighted
job scheduling. At any point in the schedule, SRPT always runs the job(s) with
the shortest remaining processing time. SRPT is optimal for the unweighted
problem on one machine. The competitiveness of SRPT for parallel machines
was first analyzed in 1995 by [7], has been evaluated experimentally (e.g., [8–
10]), and has continued to be widely used and studied. It was a long-held
belief that SRPT was close to optimal, and most recently, [6] finally showed
that SRPT is 5/4-competitive. (Prior to that, the original proof of SRPT’s 2-
competitiveness [7] was the best known ratio for fifteen years until [11] showed it
was 1.86-competitive.) The current lowerbound on the competitiveness of SRPT
is 21/19 ≈ 1.105 [11].

WSRPT is a natural extension of SRPT to the weighted case of the problem,
as it schedules jobs based on smallest remaining weight-to-size ratio. (WSPT,
by contrast, schedules jobs based only on smallest initial weight-to-size ratio,
without taking into account how much of a job has been processed at any point
in the schedule.) Megow [12] proves WSRPT is 2-competitive for the single ma-
chine case. To the best of our knowledge, ours is the first analysis of WSRPT
for the parallel machine case. We show that WSRPT is 2-competitive for the
problem P | rj ,pmtn |

∑
j wjcj , and we suspect it actually yields a much better

performance guarantee. We also exhibit an instance of the problem, by modi-
fying a lowerbound instance from [12], where the WSRPT schedule has a total
weighted completion time 1.215 times that of the optimal offline schedule.

While our result for WSRPT does not beat the competitiveness of the best
known algorithm for the problem P | rj ,pmtn |

∑
j wjcj (which is due to [6]), our

contribution is with respect to the WSRPT algorithm and techniques for analyz-
ing the algorithm as applied to parallel machines. While the algorithm itself is
simple to state, it has proven somewhat difficult to analyze, due to the interplay
of the static job weights with the changing nature of the remaining processing
times. Further, analyzing the algorithm for multiple parallel machines rather
than one machine (as in [12]) demands that we handle additional possible situ-
ations that can cause the priorities of two jobs to change order as time unfolds.
Given that SRPT is so popular and effective an algorithm, we speculate that
many implementations of SRPT are in application domains where weights on
the jobs are becoming a relevant factor. Easily tweaking SRPT implementations
into WSRPT implementations will then be quite alluring for programmers. Our
conjecture is that not only is WSRPT a simpler and more natural algorithm,
but it is also a better algorithm for the problem P | rj ,pmtn |

∑
j wjcj than the

current proven leading algorithm, with respect to competitiveness.
To summarize, our contributions are:

• We show that WSRPT is 2-competitive for the problem P | rj ,pmtn |
∑
j wjcj .

• We show that the competitive ratio of WSRPT for the problem 1 | rj ,pmtn |
∑
j wjcj

(and hence P | rj ,pmtn |
∑
j wjcj) is no better than 1.215.

• We prove a general lower bound of 1.114 on the competitive ratio of any
deterministic algorithm for the problem P | rj ,pmtn |

∑
j wjcj .

• We prove a general lower bound of 21/19 on the competitive ratio of any
deterministic algorithm for the problem P | rj ,pmtn |

∑
j cj .

2 Preliminaries

Each instance of our scheduling problem consists of m machines and a set of
jobs J = {1, ..., n} that arrive over time, and we start at time t = 0. Each of
the machines can only process one of the n jobs at a time, and each job can
be processed by at most one machine at a time. Each job j is characterized by
a positive integer processing time pj and an nonnegative integer release time
rj . For unweighted completion time scheduling, all jobs have weight of one. For
weighted completion time scheduling, each job has a positive integer weight wj .
We cannot schedule a job j before its release time rj , which is not known in
advance. Each job is preemptible, so a job may be suspended and resumed later
on any machine at any time at no extra cost. For convenience, and without loss
of generality, we assume each job may only be suspended or resumed on any
machine at integer times. In the unweighted problem, if σ is a scheduling of
the jobs in J , we define cost(σ) =

∑
j cj(σ) (i.e., total completion time), where

cj(σ) denotes the completion time of job j in the schedule σ. When σ refers
to a schedule for the weighted problem, then we define cost(σ) =

∑
j wjcj(σ),

referred to as total weighted completion time. When the schedule being referenced
is clear from context, we write cj(σ) simply as cj . For both problems, our goal
is to minimize cost(σ) over all possible schedules.

A problem is an online problem if the inputs arrive over time and there is
no prior knowledge of inputs that will arrive in the future. The competitive ratio
of an online algorithm is the maximum (over all input instances) of the ratio of
the total weighted completion time of the schedule produced by the algorithm
and the total weighted completion time of an optimal offline schedule (one that
knows all future inputs in advance). More formally, if OPT (I) is the optimal
offline schedule on an instance I and A(I) is the schedule produced by online
algorithm A on instance I, then the competitive ratio of an algorithm A can be
expressed as

max
I∈I

cost(A(I))

cost(OPT (I))
,

where I is the set of all possible input instances.

An algorithm is called ρ-competitive if it has a competitive ratio of at most
ρ. The competitive ratio is the standard measure by which algorithms for online
problems are evaluated.

3 General Lower Bound

In this section, we show a lower bound of 21/19 ≈ 1.105 on the competitive ratio
of any algorithm for unweighted completion time scheduling and a lower bound

of 16−
√
14

11 ≈ 1.114 for weighted completion time scheduling. We prove these
lower bounds by giving a simple scheme for constructing an instance where the
nature of the jobs that arrive depends on the choices the algorithm has made so
far. The scheme is based on the lower bound instance for the algorithm SRPT,
from [11].

Theorem 1. There is no deterministic algorithm that has a competitive ratio
better than 21/19 for the problem P | rj , pmtn |

∑
j cj.

Proof. Consider the following instance with only two machines. At time 0, a set
of three jobs arrives, two of which have a processing time of 1 and one of which
has a processing time of 2.

In order to minimize the total completion time, we assume without loss of
generality that the online algorithm always processes an available job if a ma-
chine is available. Since preemption is allowed only at integer times, the online
algorithm will either have processed none or one unit of the job of length 2 at
time 1.

Suppose the online algorithm does not process any of the job of length 2 by
time t = 1. Then we release a set of 4 jobs of length 1 at time t = 2. Consequently,
at this point the best schedule σ for this instance would be to schedule the job of
length 2 at t = 1 and the 4 jobs of length 1 one after another when the machines
become available. Thus total completion time is cost(σ) = 1+1+3+3+4+4+5 =
21. However, the optimal schedule σ∗ is to begin processing the job of length 2
at t = 0, which achieves cost(σ∗) = 1 + 2 + 2 + 3 + 3 + 4 + 4 = 19. (Please refer
to Case 1 of Figure 1.)

Now suppose the algorithm has processed one unit of the job of length 2 at
t = 1. In this case, we release only one job of length 1 at t = 1. Consequently, the
best schedule σ at this point for this instance would be to schedule any remaining
jobs one after another when machines become available. Hence, cost(σ) = 1 +
2 + 2 + 3 = 8. However, if we schedule both jobs of length 1 at t = 0, we can
achieve an optimal schedule σ∗ with cost(σ∗) = 1 + 1 + 2 + 3 = 7.

The competitive ratio in the first case was 21/19 and the second was 8/7.
Combining both cases, we conclude that there is no deterministic algorithm
that has a competitive ratio better than 21/19 for unweighted completion time
scheduling.

Theorem 2. There is no deterministic algorithm that has a competitive ratio

better than 16−
√
14

11 ≈ 1.114 for the problem P | rj , pmtn |
∑
j wjcj.

Proof. We use a similar idea as in the proof of previous theorem to prove this
lower bound. However, we add weights to the jobs. We first release three jobs,

Fig. 1. The input instance for each case and the corresponding online (σ) and optimal
(σ∗) schedules. The job number being processed is indicated within each integer time
segment of each schedule.

two of which have processing time 1 and weight 1, the other one of which has

processing time 2 and weight 2+
√
14

5 . In the first case, suppose the online algo-
rithm does not process any of the job of length 2 at t = 1. We then release four

jobs of weight 2+
√
14

5 and processing time 1 at t = 2. In the second case, suppose
the online algorithm has processed one unit of the job of length 2 at t = 1. We
then release one job of weight 1 and processing time 1 at t = 1. The online and
optimal schedules for these two cases reflects that of the two cases in Figure 1.

In the first case, cost(σ) ≥ 9.6 + 19
5

√
14 for any online schedule σ, and

cost(σ∗) = 9.4+ 16
5

√
14 for the optimal schedule σ∗. In the second case, cost(σ) ≥

6.8+ 2
5

√
14 and cost(σ∗) = 5.2+ 3

5

√
14. The competitive ratio in either case is at

least 16−
√
14

11 . Thus, there is no deterministic algorithm that has a competitive

ratio better than 16−
√
14

11 ≈ 1.114 for weighted completion time scheduling.

4 WSRPT

In this section, we analyze the performance of the algorithm WSRPT (Weighted
Shortest Remaining Processing Time). A related well-known algorithm, SRPT
(Shortest Remaining Processing Time), applies to the variant of our problem
where the jobs are unweighted. At every point in time, SRPT simply schedules
the m jobs with shortest remaining processing time. SRPT is known to be 5/4-
competitive for the unweighted variant of the problem [6]. WSRPT can be seen
as the weighted version of SRPT.

The WSRPT algorithm proceeds as follows. Define the remaining priority of
a job at a given time to be the weight of the job over the remaining processing
time of the job. At any time, process the m available jobs with highest remaining
priority, or fewer if less than m jobs are available. Ties are broken by choosing
the job with the smaller job index. Note that the remaining priority of a job
will change as the job is processed. When new jobs arrive, we recalculate the
remaining priority of all jobs and reschedule the jobs based on the new values.

4.1 Lower Bound of WSRPT

Megow [12] showed that the algorithm WSRPT does not have a competitive ratio
less than 1.21057 for the weighted completion scheduling problem on single ma-
chine. We slightly modify her instance to improve the lower bound from 1.21057
to 1.21568 and note that it also applies to the problem P | rj ,pmtn |

∑
j wjcj .

For completeness, we reproduce the entire instance with modification here.

Theorem 3. If the algorithm WSRPT is ρ−competitive for the scheduling prob-
lem 1|rj , pmtn|

∑
j

wjcj, then ρ is at least 1.21568.

Proof. Consider the following instance with one machine and k + x + 1 jobs: x
high priority jobs with weight 1/x and processing time 1/x, one low priority job
` with weight 1 and processing time p` and k small jobs of length ε = (p`−1)/k.
The job ` and the first small job are released at time 0.

The remaining small jobs are released at rj = (j − 1)ε for j = 2, 3, ..., k and
all the high priority jobs are released at p` − 1. (Note that it is feasible for all
small jobs to be completed by the time this high priority job is released.) The
weight of the small jobs are wj = ε/(p` − (j − 1)ε) for j = 1, 2, .., k.

Since the priority of job ` and the first small job are the same, we assume
without loss of generality that WSRPT starts processing job ` at time 0. Note
that as each small job is released, it is tied in priority with the remaining priority
of job `. Hence, we do not preempt job ` until at t = p` − 1 when all the jobs
with high priority are released. Then we start processing all the jobs with high
priority one after another. After all the jobs with high priority are finished, we
then finish processing ` and all the small jobs. The total weighted completion
time of WSRPT is thus

x∑
i=1

(p` − 1 + i
x)

x
+ p` + 1 +

k∑
i=1

(p` + 1 + iε)
ε

p` − (k − i)ε

The optimal schedule in the instance should process all small jobs first, then
all the jobs with high priority and job ` at last. The weighted completion time
for optimal schedule is

x∑
i=1

(p` − 1 + i
x)

x
+ 2p` +

k∑
i=1

iε
ε

p` − (i− 1)ε

As k and x tend to infinity, then the competitive ratio of WSRPT is no less
than

p`(3− ln 1
p`−1 + ln p`

p`−1)− 0.5

0.5 + 2p` + p` ln p`
≥ 1.2156861

for p` ≈ 5.17.

4.2 Upper Bound of WSRPT

We begin this section by distinguishing the term initial priority from remaining
priority. The initial priority of a job j is defined as the weight of j, wj , divided
by the total processing time of j, pj . Initial priority does not change over time.
We contrast this with remaining priority of a job j at time t, which we have
defined as the weight divided by the remaining processing time of job j at time
t, and we denote it pj(t). As the remaining processing time of a job decreases,
its remaining priority increases. For convenience and without loss of generality,
we assume all the jobs are indexed in non-decreasing initial priority: w1/p1 ≥
w2/p2 ≥ ... ≥ wn/pn.

Megow and Schulz [5] showed that the algorithm WSPT (Weighted Shortest
Remaining Time) is 2-competitive. They also give a matching lower bound on the
competitive ratio of WSPT, proving that WSPT is no better than 2-competitive.
Since the algorithm WSPT only considers the initial priority of the job, it has
the helpful property that the job’s scheduling priority never changes. However,
WSRPT schedules jobs based on remaining priority, which changes as the job is
processed. In this section, we show the algorithm WSRPT is 2-competitive. We
note, however, that its counterpart SRPT is 5/4-competitive for the unweighted
version of the problem, so we conjecture WSRPT in fact has a strictly lower
competitive ratio than the algorithm WSPT.

Our overarching strategy will be to bound the total weighted idle time of all
jobs in the schedule. We will then be able to bound an expression for total com-
pletion time that is broken down into two components: idle time and processing
time. We now present three lemmas that will help us toward this goal.

The first two lemmas establish the fact that in a WSRPT schedule, if job j
has higher remaining priority than job k at some point, and job k has higher
remaining priority than job j later, then job j will never have higher remaining
priority than job k again.

Lemma 1. Consider two jobs a and b in a WSRPT schedule. After a and b are
released, if we have wa/pa(t1) > wb/pb(t1) and wa/pa(t2) < wb/pb(t2) for some
t1 and t2 such that t1 < t2, then pa(t1) > pb(t1) and wa > wb.

Proof. We prove the above lemma by contradiction. Assume pa(t1) ≤ pb(t1).
Let t′ be the earliest time such that wa/pa(t′) < wb/pb(t

′). According to the
definition of WSRPT, and the fact that job a had greater remaining priority
than job b in the interval [t1, t

′), we have

pa(t1)− pa(t′) ≥ pb(t1)− pb(t′).
We can then conclude

pa(t′)

pb(t′)
=
pa(t1)− (pa(t1)− pa(t′))

pb(t1)− (pb(t1)− pb(t′))
<
pa(t1)

pb(t1)

By assumption, we also know that

wa
wb

>
pa(t1)

pb(t1)

and
wa
wb

<
pa(t′)

pb(t′)

It follows that
pa(t′)

pb(t′)
>
pa(t1)

pb(t1)

At this point we reach a contradiction. When we combine the fact that pa(t1) >
pb(t1) and wa/pa(t1) > wb/pb(t1), we can conclude wa > wb.

Lemma 2. Consider two jobs c and d in a WSRPT schedule. After c and d are
released, if we have wc/pc(t1) > wd/pd(t1) and wc/pc(t2) < wd/pd(t2) for some
t1 and t2 such that t1 < t2, then wc/pc(t3) < wd/pd(t3) is true for any t3 > t2.

Proof. Let t′ be the earliest time such that wc/pc(t
′) < wd/pd(t

′). From Lemma
1 we know wc > wd. Combined with the fact that wc/pc(t

′) < wd/pd(t
′), we

can conclude pc(t
′) > pd(t

′). Assume for contradiction that at some t3 > t′ we
have wc/pc(t3) > wd/pd(t3). Applying Lemma 1 again, we have pd(t

′) > pc(t
′),

a contradiction.

For the next lemma, we first define some notation. We define the idle time
of a job as the total time that a job is not being processed between its release
date and completion time. Let dj(σ) denote the idle time of job j in schedule σ.
Then dj(σ) = cj(σ) − rj − pj . (We omit the σ when it is clear from context.)
We can then rewrite the total weighted completion time for a schedule σ as
cost(σ) =

∑
j wj(pj + rj) +

∑
j wjdj . We use W (σ) to denote the total weighted

idle time for a schedule σ, that is, W (σ) =
∑
j wjdj .

Akin to [5], for any job j, we partition the interval between cj and rj into
two non-overlapping set of subintervals I(j) and I ′(j), where I(j) denotes the
set of subintervals in which job j is being processed and I ′(j) denotes the set of
remaining subintervals. Note that in I ′(j), all machines are busy, otherwise job
j would be processed. Also notice that the sum of lengths of the subintervals in
I ′(j) is equal to dj , the idle time of job j. Let δj(k) denote the amount of job
k that is being processed in I ′(j). The idle time dj can then be expressed as∑
k∈D(j) δj(k)/m where D(j) is the set of jobs that are being processed in I ′(j).

We partition set D(j) into two sets A(j) and B(j), where A(j) = {k ∈ D(j) :
k < j} and B(j) = {k ∈ D(j) : k > j}.

We are now ready to prove the following lemma.

Lemma 3. For any job j in a WSRPT schedule σ, if a job b is in set B(j), we
have

wbδb(j) + wjδj(b) ≤ wbpj
Proof. Let sj and sb refer to the times that jobs j and b first start processing in
σ. We consider two cases.

Case 1: sj ≤ sb. Since δj(b) > 0 by definition of B(j), then at some time
in I ′(j), job b has higher remaining priority than job j. (For an illustration
of this situation, see Figure 2.) Let t′ be the earliest time that job b first has
remaining priority higher than j, so wb/pb(t

′) > wj/pj(t
′). Since, by Lemma

2, job j will never have higher remaining priority than job b after t′, we can
conclude δj(b) ≤ pb(t′) and δb(j) ≤ pj − pj(t′) . Thus, we have

wjδj(b) + wbδb(j) ≤ wjpb(t′) + wb(pj − pj(t′))

We add nonnegative term wbpj(t
′)−wjpb(t′)to the right hand side and obtain

wjδj(b) + wbδb(j) ≤ wbpj

Fig. 2. An example instance where job 2 originally has higher priority than job 3, but
at time t′ = 1, the remaining priority of job 3 overtakes that of job 2. Hence δ2(3) > 0
even though job 3 has lower initial priority than job 2.

Case 2: sj > sb. In this case, since job j has higher initial priority than b, job
b must be released before job j. When job j is released at time rj , we have two
subcases: either job j has higher remaining priority or job b does. (Note that at
this point, remaining priority of j is the same as the initial priority).

If wj/pj > wb/pb(rj), then we are back in Case 1, by simply treating time rj
as time 0. (Note that the before time rj , both δj(b) and δb(j) remain at 0.)

If wb/pb(rj) ≥ wj/pj , we can view the remainder of job b as a job with higher
initial priority than job j. Hence, by switching the roles of j and b, and again
by treating time rj as time 0, we can again apply Case 1 above, which yields

wbδb(j) + wjδj(b) ≤ wjpb(rj).

By assumption, we have wbpj ≥ wjpb(rj), concluding our proof.

We are now ready to bound the total weighted idle time in the schedule.

Lemma 4. Let σ be a WSRPT schedule. Then

W (σ) ≤
∑
j∈J

wj
∑
k<j

pk
m
.

Proof. We begin by observing that

W (σ) =
∑
j∈J

wjdj =
∑
j∈J

wj
∑

k∈D(j)

δj(k)

m

=
∑
j∈J

wj
∑

k∈A(j)

δj(k)

m
+
∑
j∈J

wj
∑

k∈B(j)

δj(k)

m
(1)

≤
∑

a,b∈J:a<b

(
wbδb(a)

m
+
waδa(b)

m

)
. (2)

For inequality (2), note that if a < b, then wa
δa(b)
m can only appear in the second

summation term of (1), and wb
δb(a)
m can only appear in the first summation term

of (1). Finally, applying Lemma 3, the claim follows.

Theorem 4. If WSRPT is c-competitive, then c ≤ 2.

Proof. In a WSRPT schedule σ, the total weighted completion time can be
written:

cost(σ) =
∑
j∈J

wj(pj + rj + dj) =
∑
j∈J

wjdj +
∑
j∈J

wj(pj + rj)

≤
∑
j∈J

wj
∑
k<j

pk
m

+
∑
j∈J

wj(pj + rj),

where the inequality holds by Lemma 4. At this point, we can echo the WSPT
proof of [5] to complete our proof as follows.

On a single machine, when all jobs are released at time 0, the optimal strategy
for minimizing weighted completion time is to schedule the job with the lowest
initial priority first [13]. If we assume the single machine is m times faster than
each of our m parallel machines, the optimal cost for this “easier” problem can
be expressed

∑
j∈J

wj
∑
k<j

pk
m . Since the aforementioned single-machine problem is a

relaxation of our problem, and any schedule for our m machines can be mapped
to a single m-fast machine so that weighted completion time only improves, we
have ∑

j∈J
wj
∑
k<j

pk
m
≤ cost(σ∗).

Clearly, we also have: ∑
j∈J

wj(pj + rj) ≤ cost(σ∗).

Thus, we have cost(σ) ≤ 2 · cost(σ∗).

5 Conclusion

In this work we have provided a first analysis of the algorithm WSRPT for the
problem P | rj ,pmtn |

∑
j wjcj . We show that WSRPT is 2-competitive, and

demonstrate a lower bound of 1.215 on its competitive ratio. We conjecture the
true competitive ratio of WSRPT for this problem is closer to the lower bound.

We also provide improved general lower bounds of 21/19 ≈ 1.105 and 1.114 on
the competitive ratio of any deterministic algorithm for the problems P | rj ,pmtn |

∑
j cj

and P | rj ,pmtn |
∑
j wjcj , respectively. We believe that 21/19 is the correct an-

swer for the unweighted problem, as we agree with the conjecture of [11] that
the algorithm SRPT is 21/19-competitive.

References

1. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and approximation in deterministic sequencing and scheduling theory: a survey.
ADM 5 (1979) 287 – 326

2. Labetoulle, J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Preemptive
scheduling of uniform machines subject to release dates (1982)

3. Du, J., Leung, J., Young, G.: Minimizing mean flow time with release time con-
straint. Theoretical Computer Science 75 (1990)

4. A.P.A.Vestjens: On-line machine scheduling, ph.d. thesis, Eindhoven University of
Technology (1997)

5. Megow, N., Schulz, A.S.: On-line scheduling to minimize average completion time
revisited. In: Operations Research Letters 32: 485-490. (2004)

6. Sitters, R.: Efficient algorithms for average completion time scheduling. In: Pro-
ceedings 14th Conference on Integer Programming and Combinatorial Optimiza-
tion (IPCO). (2010)

7. Phillips, C.A., Stein, C., Wein, J.: Minimizing average completion time in the
presence of release dates. Math. Program. 82 (1998) 199–223

8. Bansal, N., Harchol-Balter, M.: Analysis of srpt scheduling: investigating unfair-
ness. In: Proceedings of the 2001 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems. SIGMETRICS ’01 (2001)
279–290

9. Harchol-Balter, M., Schroeder, B., Bansal, N., Agrawal, M.: Size-based scheduling
to improve web performance. ACM Trans. Comput. Syst. 21 (2003) 207–233

10. Gong, M., Williamson, C.: Quantifying the properties of srpt scheduling. Modeling,
Analysis, and Simulation of Computer Systems, International Symposium on 0
(2003) 126

11. Chung, C., Nonner, T., Souza, A.: Srpt is 1.86-competitive for completion time
scheduling. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms. SODA ’10 (2010) 1373–1388

12. Megow, N.: Coping with incomplete information in scheduling - stochastic and
online models, Technische Universitt Berlin (2006)

13. Smith, W.E.: Various optimizers for single-stage production. Naval Research Lo-
gistics Quarterly 3 (1956) 59–66

	Connecticut College
	Digital Commons @ Connecticut College
	Spring 4-2012

	Completion Time Scheduling and the WSRPT Algorithm
	Christine Chung
	Bo Xiong
	Recommended Citation

	Completion Time Scheduling and the WSRPT Algorithm
	Comments

	Completion Time Scheduling and WSRPT Algorithm

