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Abstract We explore the revenue capabilities of truthful, monotone (“fair”)
allocation and pricing functions for resource-constrained auction mechanisms
within a general framework that encompasses unlimited supply auctions, knap-
sack auctions, and auctions with general non-decreasing convex production
cost functions. We study and compare the revenue obtainable in each fair pric-
ing scheme to the profit obtained by the ideal omniscient multi-price auction.
We show that for capacitated knapsack auctions, no constant pricing scheme
can achieve any approximation to the optimal profit, but proportional pricing
is as powerful as general monotone pricing. In addition, for auction settings
with arbitrary bounded non-decreasing convex production cost functions, we
present a proportional pricing mechanism which achieves a poly-logarithmic
approximation. Unlike existing approaches, all of our mechanisms have fair
(monotone) prices, and all of our competitive analysis is with respect to the
optimal profit extraction.
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1 Introduction

Practical experience [9,10,8] demonstrates that any store charging non-
monotone prices (that is, charging some buyer i more than buyer j despite the
fact that buyer i receives strictly less of the good than j) risks public outrage
and accusations of unfair practices. There are of course very simple auction
pricing schemes that are monotone: for example, constant pricing, in which
each bidder is quoted the same price regardless of the quantity of the good
she receives, and proportional pricing in which each bidder is quoted a price
proportional to her demand. Given that fairness may thus in many situations
be considered a first-order mechanism design constraint, even at the expense
of short-term profit maximization, it is natural to ask, “are clever implementa-
tions of these simple monotone pricing schemes capable of maximizing profit?”

We answer this question in the affirmative in a broad class of auctions in
which bidders demand different quantities of a given resource, for example,
server capacity, bandwidth, or electricity. We consider natural subclasses of
this class of auctions: unlimited supply, limited supply (“knapsack auctions”),
and a more general setting in which the cost to the mechanism may be some
arbitrary non-decreasing convex function of the supply sold. This last model we
propose generalizes the first two, and models any way in which the auctioneer
may incur decreasing marginal utility as the production of the good being
sold increases (for example if increased demand for raw materials increases
the producer’s per unit cost for these materials).

In general, if h is the highest bidder’s true valuation, no truthful auction
can acquire the value h from the highest bidder, and at best can hope to com-
pete with OPT − h (see, for example, [1]). In the unlimited supply setting,
the constant pricing mechanism of Goldberg and Hartline [5] is O(log n) com-
petitive with OPT − h, where n is the number of bidders, and OPT is the
sum of all bidders’ valuations, not just the optimal profit obtainable by any
constant price mechanism. Our findings are as follows:

– In the limited supply (knapsack) setting, we show that no constant pricing
mechanism can achieve an approximation factor of o(S) to OPT− o(n)h,
where S is knapsack size. However, we give a mechanism that uses propor-
tional pricing that, aside from an extra profit loss of h, achieves an O(log S)
approximation to OPT− 2h.

– In a general setting in which the mechanism incurs some non-decreasing
convex cost as a function C of the supply it sells, we give a proportional
pricing mechanism that achieves (again aside from an extra loss of h) a
polylogarithmic approximation to REV − 3h − 2C(S∗), where REV is
the revenue obtained and C(S∗) the cost incurred by the auctioneer in
the optimal solution maximizing REV − C(S). (Here we assume the cost
function is polynomially bounded.)

In each of these settings, there is essentially a log lower bound on the profit
competitiveness for any monotone pricing mechanism (implicit in [5]). Addi-
tionally, in the generalized auction setting, we show that proportional pricing
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is strictly weaker than monotone pricing (independent of truthfulness). We
give an instance that shows that no proportional pricing scheme can achieve
profit within any finite factor of REV − O(1)C(S∗). This perhaps makes it
more surprising that a truthful proportional pricing mechanism can be close
to optimally competitive with OPT− h. Overall, our results show that there
exist proportional pricing schemes that compete with full profit extraction
essentially as effectively as the best possible monotone pricing scheme.

1.1 Related Work

The framework of competitive analysis in the setting of auction design was in-
troduced by Goldberg et al. [6]. In the digital goods setting, where each bidder
demands one unit of the resource, and the supply of the resource is unlimited,
Goldberg et al. [6] and Fiat et al. [4] give randomized truthful mechanisms
that are competitive with the optimal constant price profit. In the “knapsack
auction” setting, where each bidder may have a different demand and there is
a fixed limited supply, Aggarwal and Hartline [1] give a randomized truthful
mechanism that achieves a profit of αOPTmono − γh lg lg lg n, where n is the
number of players, OPTmono is the optimal monotone pricing profit, h is the
maximum valuation of any bidder, and α and γ are constants. It is impor-
tant to note that the mechanisms given in [6] and [1] use random sampling
techniques and are not monotone. That is, they can quote customers different
prices for identical orders. This can in some sense be justified by the result
in [5] that shows that, for either the setting of digital goods or knapsack auc-
tions, no truthful, fair pricing mechanism can be o(log n/ log logn) competitive
with the optimal constant price profit. That is, there is no mechanism that
achieves all the properties of (1) truthfulness, (2) fairness, and (3) constant
competitiveness with respect to profit.

Goldberg and Hartline [5] go on to show that if the fairness requirement
is relaxed (and the auction is allowed to give non-envy-free outcomes with
small probability), auctions competitive with the optimal constant price can
be found. Guruswami et al. [7] show that in two auction settings closely re-
lated to ours, simply computing fair prices that maximize profit, without the
requirement of truthfulness, is APX-hard. Very recently, Babaioff et al. con-
sidered an auction setting in which the supply arrives online, and generalized
the definition of fairness to their setting, also showing an Ω(log n/ log logn)
lower bound for even welfare maximization in this online setting [2].

Intuitively, the papers [6,1,4] (among others) study the profit competitive-
ness that can be achieved if one gives up on fairness. In contrast, the goal of
this work is to understand the pricing techniques that are needed to maximize
profit in a variety of settings, if monotonicity and truthfulness are objectives
we are unwilling to sacrifice.
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1.2 The Problem

In this work, we consider single-round, sealed-bid auctions with a set N = [n]
of single-minded bidders. Each bidder i has a public size (or demand) xi, and
a private valuation vi. We write x = (x1, . . . , xn) and v = (v1, . . . , vn). We
will assume that smallest size xi of any bidder is 1. Let X =

∑n

i=1 xi. The
demand of a player must be satisfied completely or not at all; we do not allow
fractional allocations.

Definition 1 In a single-round, sealed-bid auction, each bidder i submits a
bid bi, which is the most she is willing to pay if she wins. We write b =
(b1, . . . , bn). Given b and x, the mechanism returns prices p = (p1, . . . , pn)
and an indicator vector w = (w1, . . . , wn). If wi = 1, we say player i wins;
otherwise, we say she loses. Player i pays pi if she is a winner and 0 if she is
not. The mechanism is valid if and only if every winning bidder has bi ≥ pi,
and every losing bidder has pi ≥ bi. The profit achieved by the mechanism
depends on the capacity constraints under consideration (discussed below).

Note that the agents are indistinguishable to the auction mechanism, ex-
cept for their size. We will only present truthful mechanisms, and so through-
out the paper, we will assume b = v.

Definition 2 A deterministic auction is truthful if, for any x, for all bidders
i ∈ N , for any choice of v−i, bidder i’s utility (vi − pi) is maximized by
bidding her true value vi. We say that a randomized auction is truthful if it is
a probability distribution over deterministic truthful auctions.1

We require that our pricing schemes be fair, meaning monotone: we cannot
charge some player more than another player with higher demand.

Definition 3 A deterministic auction’s pricing is monotone if for any v and
x, it assigns prices p such that pi ≥ pj whenever xi ≥ xj , for any i and j
in N . A randomized auction’s pricing is monotone if it is a distribution over
deterministic monotone auctions.

One example of of a valid monotone pricing scheme is constant pricing, where
each player is offered the same price p = p1 = p2 = . . . = pn, every player
i with vi > p is a winner, and no player i with vi < p is a winner. Another
monotone scheme, proportional pricing, fixes some value c and charges each
player i a price pi = c · xi; every player i with vi > pi is a winner, and no
player i with vi < pi is a winner.

In all cases, we assume that the bidders are trying to maximize utility, that
they know the mechanism being used, and that they don’t collude. Our goal
is to study truthful, monotone pricing mechanisms that maximize our profit,
in a variety of capacity constraint settings:

1 Such mechanisms are sometimes known as ex-post or universally truthful. This guaran-
tees that bidders do not regret truthful bidding even after the coin tosses of the mechanism
are revealed, and is a stronger guarantee than truthfulness in expectation.
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– In the unlimited supply setting, there is no limit on the total size of the
bidders we can accept. A mechanism’s profit here is just p ·w.

– In the knapsack setting, there is a hard limit S on the total size of the
winning bidders. Here, the mechanism’s profit is p · w if x · w ≤ S, and
−∞ otherwise.

– In the general cost setting, there is some non-decreasing convex cost func-
tion C on the size of the winning bidder set, and the profit of the auctioneer
is the difference between the sum of the prices paid by the winning bidders
and the cost of the size of the winning set. Here, we define the mechanism’s
profit to be p ·w − C (x ·w).

Note that the unlimited supply problem is an instance of the knapsack problem
with S > X . The knapsack problem is an instance of the general cost setting,
with a cost function that takes value 0 for sizes less than S, and jumps to ∞
at S.

In all three cases, we compare our schemes with the optimal multiple-price
omniscient allocation that is not constrained to be truthful nor envy-free. In
the unlimited supply case, OPT =

∑n

i=1 vi. In the knapsack setting,

OPT = max
w | x·w≤S

v ·w.

In the general cost setting,

OPT = max
w

(v ·w− C (x ·w)) .

Setting w∗ to be the set of winners in an optimal general-cost solution, we will
write REV = v · w∗ for the revenue of the optimal solution. As mentioned
above, in general no truthful algorithm can achieve better thanOPT−h, where
h is the value of the highest bid, so this will be our performance benchmark.

1.3 Unlimited Supply Auctions

In the unlimited supply setting, the auctioneer has an unlimited number of
items to sell, at zero marginal cost (equivalently, if each item has some constant
marginal cost, we may simply subtract this cost from the valuations of the
bidders). Goldberg and Hartline gave a simple randomized mechanism that
achieves a Θ(log n) approximation to the profit obtained by the best constant
price OPTc,

2 and showed that this is almost optimal [5]. It is also known
that OPTc can differ by a Θ(log n) factor from OPT.3 That is, if the profit
obtained by the mechanism below is OPTc/α, and OPTc = OPT/β, it is
known that α and β can both take values as large as Θ(log n), but no larger.
This immediately shows that RandomPrice (given below) is an O(log2 n)

2 Actually, they show something slightly weaker, defining OPTc to be the optimal con-
stant price when the mechanism is required to sell at least 2 items.

3 Consider n bidders with valuations v1, . . . , vn with vi = 1/i. OPT = H(n), but the
best constant price obtains profit i · vi = 1 for all i. [1]
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approximation to OPT. In fact, we see below that for any instance, α · β =
O(log n). In other words, RandomPrice gives a Θ(log n) approximation to
OPT.

RandomPrice(v,x)

1 Choose i ∈ {1, 2, . . . , logn} uniformly at random.
2 Let g = 2i. Sell items to the g − 1 highest bidders at price vg

(where v1 ≥ v2 ≥ . . . ≥ vn).

Theorem 1 (implicit in [5]) For any set of bidder values, let P be the ex-

pected profit obtained by RandomPrice. Let α be such that P = OPTc/α,
and let β be such that OPTc = (OPT− h)/β. Then α · β = O(log n). Equiv-
alently, P ≥ (OPT− h)/O(log n).

We note that although constant pricing is sufficient to obtain an O(log n)
approximation, this mechanism is almost optimal over the set of all monotone

pricing mechanisms. The following lower bound is implicit in the lower bound
proved by Goldberg and Hartline in the context of digital goods auctions:

Theorem 2 (Goldberg and Hartline [5]) In the uncapacitated setting, no

truthful mechanism using a monotone pricing scheme can achieve profit within

a factor of o(logn/ log logn) of OPT− c · h for any constant c.

2 Knapsack Auctions

Knapsack auctions, first studied by Aggarwal and Hartline [1], model auctions
for items for which there is a strict limit on supply: we are given a set of
bidders with demands and valuations, and can only sell to a set of bidders
whose total demand is smaller than our knapsack capacity S.

When supply is unlimited, we have seen that constant pricing is as powerful
as monotone pricing in the sense that both can achieve within a O(log n) factor
of OPT−h, but no better. In this section, we show that in the knapsack case,
when supply is limited, no valid constant pricing scheme can achieve profit
within a factor of o(S) of OPT− o(n)h. However, we show that proportional
pricing is as powerful as monotone pricing in the sense that both can achieve
O(log S) competitiveness with OPT − h, but no better. Our result is also
optimal over the set of proportional pricing schemes, even those that are not
truthful: Aggarwal and Hartline [1] give an example in which the optimal
proportional pricing is an Ω̃(logS) factor off from OPT− h.4

4 Aggarwal and Hartline show that proportional pricing cannot in general approximate
monotone pricing within a factor of o(n), and in their lower bound instance, use bidders
with exponentially large demand (also showing that proportional pricing cannot in general
approximate monotone pricing to within an Ω̃(logX) factor, where X is the total demand
of all players). Our result implies that there always exists a proportional pricing that ap-
proximates OPT − h (and not just the optimal monotone pricing) to within an O(logS)
factor.
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Theorem 3 In the knapsack setting, no mechanism which uses a valid con-

stant pricing scheme can guarantee an approximation within a o(S) factor of

OPT− o(n)h.

Proof Consider an instance with knapsack capacity S = 1/ε, 1/ε bidders i
with size xi = 1 and value vi = 1, and one bidder i∗ of size xi∗ = 1/ε and
value vi∗ = 1+ε. Clearly, OPT = 1/ε, which results from selling to each of the
1/ε bidders i 6= i∗, and OPT − o(n)h = 1/ε − o(1/ε) = Θ(1/ε). However, no
constant price p ≤ 1 results in a valid allocation, since

∑

i:vi≥p xi = 2/ε > S.
Therefore, OPTc = 1+ε, and results from selling only to bidder i∗. Therefore,
(OPT− o(n)h)/OPTc = Θ((1/(1 + ε)ε) = Θ(S).

We can also extend the lower bound for general monotone mechanisms
from the unlimited supply setting, simply by choosing the total demand of the
lower bound instance to be strictly less than the knapsack size.

Theorem 4 (Goldberg and Hartline [5]) In the knapsack setting, no

truthful mechanism using any monotone pricing scheme can guarantee an

o(log S/ log logS) approximation to OPT− c · h for any constant c.

Next, we give a truthful mechanism which achieves an O(log S) approxima-
tion to OPT− 2h by using a valid proportional pricing scheme. This pricing
scheme is similar to the “RANDOM single price” algorithm proposed in [3]
for an online, combinatorial auction setting. In [3] they show their algorithm
is O(log(S) + log(n)) competitive with OPT. Below we give a bound for our
algorithm only in terms of S.

ProportionalKnapsack(v,x, S)

1 Let π be an ordering of bidders in non-increasing density di = vi/xi.
Denote by H the largest prefix of bidders in π that is satisfiable with
supply S; note

∑

i∈H xi ≤ S.

Let Xi :=
∑i

j=1 xπ(j); X0 = 0.

Let g be a function mapping points in the knapsack x ∈ [0, S] to bidders,
in order of π as follows: g(x) = i if x ∈ [Xi−1, Xi)

2 Choose s ∈ {0, . . . , blog(S)c} uniformly at random.
Consider the bidder π(i∗) = g(2s − 1) who corresponds to the point 2s − 1
in the knapsack; let d∗ = dπ(i∗) be its density.

3 Sell items to bidders π(1), . . . , π(i∗ − 1) at prices proportional to d∗.

The above mechanism is reminiscent of a multi-unit Vickrey auction in the
sense that given a set amount of supply, the items are sold to the top bidders
at a price equal to the top losing bidder’s bid. In our mechanism, the amount
of supply is randomized and the bids are sorted per unit demand.

Proposition 1 ProportionalKnapsack is truthful and produces a valid

proportional pricing.
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Proof We observe that fixing any realization of the random coin flips, no win-
ning bidder can become a losing bidder by raising his bid, since a bidder can
only increase his rank in π by raising his bid. Our pricing scheme is truthful
because the price we charge a player is independent of her bid, and all losing
players have values below the price they would be offered if they raised their
bid to a winning level. Validity follows since winning bidders are charged pro-
portional to a rate that is at most their own density, and losing bidders are
charged proportional to a rate that is at least their own density.

Theorem 5 ProportionalKnapsack achieves expected profit at least

(OPT− 2h)/O(logS)− h.

Proof Let OPT(H) refer to the value of the optimal solution if the set
of bidders were comprised only of those in the set H . First observe that
OPT(H) ≥ OPT−h. To see this, note that OPT can take value at most the
value of the corresponding knapsack problem. By taking the largest density
prefix that fits in our knapsack, we are preserving the value of the optimal so-
lution to the fractional knapsack problem, minus at most the value of a single
bidder (the first bidder according to π not included in H). Since we wish to
be competitive with OPT − h, for the rest of the argument we may restrict
our attention to H and assume we are in the unlimited supply setting (since
the available supply is larger than the total remaining demand).

We bound OPT(H) by considering the bidders in decreasing order of den-
sity π(1), . . . , π(|H |), and bounding the density of the optimal knapsack so-
lution. Let f(x) denote the density of the bidder occupying position x in the
knapsack. We have

OPT(H) ≤

∫ S

0

f(x)dx ≤

blog(S)c
∑

i=0

f(2i − 1)2i,

where the inequality follows since we have ordered the bidders such that their
density is non-increasing. Similarly, we may bound the expected profit P ob-
tained by our mechanism:

P =
1

blog(S)c+ 1





blog(S)c
∑

i=0

(

f(2i)2i − h
)



 ,

where we lose the h term since we cannot sell to the bidder from whom we’ve
sampled the sale density d∗. Thus,

OPT(H) ≤ h+ 2 ((P + h)(blog(S)c+ 1)) .

Recalling that OPT(H) ≥ OPT− h, we get

P ≥
OPT− 2h

2(blog(S)c+ 1)
− h.
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3 General Convex Cost Auctions

In this section, we propose a general setting in which the mechanism incurs a
cost, expressed as a function of the amount of supply sold. In the previous sec-
tion, we showed that in the bounded supply setting, proportional pricing was
sufficient to get essentially as good an approximation to OPT−h as was pos-
sible using any monotone pricing scheme. Here, we show that, in general, there
is an unboundedly large gap between the profit attainable with proportional
pricing and the profit obtainable by monotone pricing, even if we require the
monotone pricing scheme to pay a higher cost. Note that this lower bound ap-
plies to all pricing schemes (which are not constrained by truthfulness), rather
than mechanisms. We will show that surprisingly, if we wish to compete with
OPT− h, then proportional pricing is sufficient.

Theorem 6 In the general non-decreasing convex cost setting, for any value

d, there exists a set of bidders and a convex cost function such that the optimal

profit is obtained by selling supply S∗, yielding profit OPT = REV− C(S∗),
but no proportional pricing scheme is able to achieve any approximation to

REV− d · C(S∗).

Proof Consider an instance with a quadratic cost function: C(x) = x2. There
are two bidders: One bidder has size 1 and value d+2 (this bidder has density
d+2). Let k refer to the size of the second bidder, and set his value to (d+2)k+1
(this bidder has higher density, d + 2 + 1/k). The optimal monotone pricing
sells only to the first bidder, and gets profit d+1. Note that in this case, even
REV− d ·C(1) = 1 ≥ 0. However, for proportional pricing, it is impossible to
sell to the first bidder without selling to the second, since the second bidder is
denser. If we sell to the both, however, we get at most profit (d(k+1)+1−(k)2),
which is negative for large enough k. If we sell to only the denser bidder, we
get a most profit (d + 2)k + 1 − k2, again negative for large enough k. Thus,
the best proportional pricing sells no items, and gets profit 0.

Fiat et al. [4] also consider a setting in the presence of a cost function and
give a mechanism that is competitive only with the optimal revenue in some
class, minus a multiplicative factor times the cost function, and conjecture that
this is necessary. Below, we demonstrate a proportional pricing mechanism
that is polylog competitive with REV − 3h− (1 + ε)C(S∗), for any constant
ε.

Given a non-decreasing convex cost function C, the profit P the algorithm
obtains when assigning prices p and allocation w to players (v,x) is P =
p ·w − C (x ·w) . We assume C is continuous and that C(0) = 0.

We will write OPTS(v,x) for the maximum profit extraction obtainable
from v and x with a knapsack restriction S in place of the cost function. Let S∗

be the total size of the set of winning bidders under the optimal (non-truthful)
allocation:

S∗ = x ·w∗, where w∗ = argmax
w

(v ·w − C (x ·w)) .
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Our algorithm first attempts to guess S∗. We then seek to estimate a value
for each bidder that reflects the amount of her valuation adjusted for the cost
the auctioneer would incur for servicing her. We compute such “adjusted”
valuations based on the bidders’ stated valuations minus their contribution
to the cost of the estimated solution size, and run our proportional-pricing
mechanism on these estimated values. We then adjust the resulting prices
to re-incorporate their share of the cost, and output this with the resulting
allocation. In what follows, we assume that h ≥ 1; if this is not the case, the
algorithm can be easily adapted to begin guessing the value of c at h instead
of 1, losing an additional log 1/h factor.

GeneralAuction(v,x, C)

1 Select cost c at random from among {1, 2, 22, . . . , 2dlogC(X)e}.a

2 Set S to be the largest value such that C(S) = c, or ∞ if no such value exists.

3 v′i := vi −
C(S)xi

S
and v′ := (v′1, . . . , v

′
n)

4 (p′,w′) := ProportionalKnapsack(v′,x, S).

5 pi := p′i +
C(S)xi

S

6 Return (p,w′)

a Note that if h ≥ 1, we lose at most an additive h by assuming S∗ is such that c ≥ 1.
Also note that it is possible to get a slightly stronger result by excluding values of S such
that S >

∑
n

i=1
vi.

Lemma 1 Suppose that 2C(S∗) ≥ C(S) ≥ C(S∗) ≥ 1. The optimal profit

obtainable in an S-capacitated knapsack, given values v′, is at least the op-

timal revenue minus twice the cost at that supply, on the original instance:

OPTS(v
′,x) ≥ OPTS∗(v,x) − 2C(S∗).

Proof We observe OPTS(v
′,x) ≥ OPTS(v,x) − C(S), since at worst, the

optimal knapsack solution given v′ selects the exact same winners as the op-
timal knapsack solution given v. Now note that S∗ ≤ S and 2C(S∗) ≥ C(S),
and so OPTS(v,x) − C(S) ≥ OPTS∗(v,x) − 2C(S∗).

Theorem 7 The GeneralAuction algorithm obtains expected profit at least

REV− 2C(S∗)− 3h

O(log(X) log(C(X)))
−

h

log(C(X))
.

Note that the denominator is O(log2(X)) when C is polynomially bounded.5

Proof Suppose that 2C(S∗) ≥ C(S) ≥ C(S∗) ≥ 1. Note that by the definitions
of REV, S∗, and OPTS∗(v,x), we have REV ≤ OPTS∗(v,x). Hence, the
optimal profit obtainable in an S-capacitated knapsack under (v′,x), as shown
above, is

OPTS(v
′,x) ≥ REV− 2C(S∗).

5 This can be improved to (REV − (1 + ε)C(S∗) − 3h)/(O(log(X) log(C(X)))) −
h/ log(C(X)) for arbitrary constant ε simply by selecting c from among {1, (1 + ε), (1 +
ε)2, . . .}.
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Then by the approximation ratio of the knapsack algorithm, Proportion-
alKnapsack returns a solution of value

OPTS(v
′,x)− 2h

2blog(S)c
− h ≥

REV− 2C(S∗)− 2h

2blog(S)c
− h.

If C(S∗) < 1, this becomes at worst

REV− 2C(S∗)− 3h

2blog(S)c
− h

for h ≥ 1. The additional profit obtained by prices p over prices p′ in allocation

w is C(S)S′

S
, where S′ is the size of the solution selected by ProportionalK-

napsack. The cost imposed by the cost function is C(S′). Thus, in this case,
the profit GeneralAuction obtains is at least

REV− 2C(S∗)− 3h

2blog(S)c
− h+

(

C(S)
S′

S
− C(S′)

)

.

Since the cost function C is non-decreasing and convex, this second term
is non-negative. Since 2C(S∗) ≥ C(S) ≥ C(S∗) holds with probability
O(1/ log(C(X))), and X =

∑n

i=1 xi is an upper bound on S, this completes
the proof.

Proposition 2 GeneralAuction is truthful.

Proof This is immediate, since it is a distribution over truthful mechanisms.
(Specifically, it is a distribution over instances of ProportionalKnapsack

in which the prices have been modified by a bid-independent function, which
preserves truthfulness).

Proposition 3 GeneralAuction is a valid mechanism.

Proof Suppose player i is a winner. Then, by the validity of Proportion-

alKnapsack, v′i ≥ p′i. Thus,

vi = v′i +
C(S)xi

S
≥ p′i +

C(S)xi

S
= pi.

Now, suppose player i loses. Then, by the validity of the knapsack mechanism,
p′i ≥ v′i. Thus,

pi = p′i +
C(S)xi

S
≥ v′i +

C(S)xi

S
= vi.

Proposition 4 GeneralAuction produces proportional pricing.

Proof ProportionalKnapsack produces a proportional pricing scheme, and
the prices returned by GeneralAuction increase the proportional factor by
C(S)
S

.
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