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ADJOINTS OF COMPOSITION OPERATORS
WITH RATIONAL SYMBOL

CHRISTOPHER HAMMOND, JENNIFER MOORHOUSE, AND MARIAN E. ROBBINS

Abstract. Building on techniques developed by Cowen and Gallardo-Gutiérrez,

we find a concrete formula for the adjoint of a composition operator with ratio-

nal symbol acting on the Hardy space H2. We consider some specific examples,

comparing our formula with several results that were previously known.

1. Preliminaries

Let D denote the open unit disk in the complex plane. The Hardy space H2 is
the Hilbert space consisting of all analytic functions f(z) =

∑
anzn on D such that

‖f‖2 =

√√√√
∞∑

n=0

|an|2 < ∞.

If f(z) =
∑

anzn and g(z) =
∑

bnzn belong to H2, the inner product 〈f, g〉 can
be written in several ways. For example,

〈f, g〉 =
∞∑

n=0

anbn = lim
r↑1

∫ 2π

0

f(reiθ)g(reiθ)
dθ

2π
.

Any function f in H2 can be extended to the boundary of D by means of radial
limits; in particular, f(ζ) = limr↑1 f(rζ) exists for almost all ζ in ∂D. (See Theorem
2.2 in [5]). Furthermore, we can write

〈f, g〉 =
∫ 2π

0

f(eiθ)g(eiθ)
dθ

2π
=

1
2πi

∫

∂D
f(ζ)g(ζ)

dζ

ζ
.

It is often helpful to think of H2 as a subspace of L2(∂D). Taking the basis
{zn}∞n=−∞ for L2(∂D), we can identify the Hardy space with the collection of
functions whose Fourier coefficients vanish for n ≤ −1.

One important property of H2 is that it is a reproducing kernel Hilbert space.
In other words, for any point w in D there is some function Kw in H2 (known as a
reproducing kernel function) such that 〈f, Kw〉 = f(w) for all f in H2. In the case
of the Hardy space, it is easy to see that Kw(z) = 1/(1− wz).
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At this point, we will introduce our principal object of study. Let ϕ be an analytic
map that takes D into itself. The composition operator Cϕ on H2 is defined by the
rule

Cϕ(f) = f ◦ ϕ.

It follows from Littlewood’s Subordination Theorem (see Theorem 2.22 in [4]) that
every such operator takes H2 into itself. These operators have received a good deal
of attention in recent years. Both [4] and [10] provide an overview of many of the
results that are known.

2. Adjoints

One of the most fundamental questions relating to composition operators is how
to obtain a reasonable representation for their adjoints. It is difficult to find a useful
description for C∗ϕ, apart from the elementary identity

C∗ϕ(Kw) = Kϕ(w). (1)

(See Theorem 1.4 in [4].) In 1988, Cowen [2] used this fact to establish the first
major result pertaining to the adjoints of composition operators:

Theorem 1 (Cowen). Let

ϕ(z) =
az + b

cz + d
be a nonconstant linear fractional map that takes D into itself. The adjoint C∗ϕ can
be written TgCσT ∗h , for

g(z) =
1

−bz + d
, σ(z) =

az − c

−bz + d
, and h(z) = cz + d,

where Tg and Th denote the Toeplitz operators with symbols g and h respectively.

While Cowen only stated this result for nonconstant ϕ, it is easy to see that the
formula also holds for constant maps, provided that ϕ is written in the form

ϕ(z) =
b

d
=

0z + b

0z + d
,

so that σ(z) = 0. In that case, Cϕ and Cσ can simply be considered point-evaluation
functionals.

It is sometimes helpful to have a more concrete version of Cowen’s adjoint for-
mula. Recalling that T ∗z is the backward shift on H2, we see that

(C∗ϕf)(z) =
(

1
−bz + d

)(
c

(
f(σ(z))− f(0)

σ(z)

)
+ df(σ(z))

)

=
(

1
−bz + d

)((
c + dσ(z)

σ(z)

)
f(σ(z))− cf(0)

σ(z)

)

=
(ad− bc)z

(az − c)(−bz + d)
f(σ(z)) +

cf(0)
c− az

. (2)
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A similar calculation appears in [7].
In recent years, numerous authors have made the observation that

(C∗ϕf)(w) = 〈f,Kw ◦ ϕ〉 =
∫ 2π

0

f(eiθ)

1− ϕ(eiθ)w

dθ

2π
. (3)

This fact seems particularly helpful when considering composition operators in-
duced by rational maps. In an unpublished manuscript, Bourdon [1] uses it to find
a representation for C∗ϕ when ϕ belongs to a certain class of “quadratic fractional”
maps. It is the principal tool used by Effinger-Dean, Johnson, Reed, and Shapiro
[6] to calculate ‖Cϕ‖ when ϕ is a rational map satisfying a particular finiteness
condition. Equation (3) is also the starting point from which both Mart́ın and
Vukotić [8] and Cowen and Gallardo-Gutiérrez [3] attempt to describe the adjoints
of all composition operators with rational symbol. It is the content of this last
paper that provides the starting point for our current discussion.

The results of Cowen and Gallardo-Gutiérrez are stated in terms of multiple-
valued weighted composition operators. Suppose that ψ and σ are a compatible
pair of multiple-valued analytic maps on D (in a sense the authors describe in their
paper), with σ(D) ⊆ D. The operator Wψ,σ is defined by the rule

(Wψ,σf)(z) =
∑

ψ(z)f(σ(z)),

the sum being taken over all branches of the pair ψ and σ. Whenever we encounter
such an operator in this paper, the function ψ will actually be defined in terms of σ.

Before considering their adjoint theorem, we need to remind the reader of a
particular piece of notation. If f is a (possibly multiple-valued) function acting
on a subset U of the Riemann sphere, we define the function f̃ on the set {z ∈
C ∪ {∞} : 1/z ∈ U} by the rule

f̃(z) = f

(
1
z

)
. (4)

Cowen and Gallardo-Gutiérrez state their adjoint formula in terms of this notation:

Theorem 2 (Cowen and Gallardo-Gutiérrez). Let ϕ be a nonconstant rational map
that takes D into itself. The adjoint C∗ϕ can be written BWψ,σ, where B denotes
the backward shift operator and Wψ,σ is the multiple-valued weighted composition

operator induced by σ = 1/ϕ̃−1 and ψ = (̃ϕ−1)′/ϕ̃−1.

Note that the function (̃ϕ−1)′ in the numerator of ψ represents the “tilde transform”
of (ϕ−1)′, as defined in line (4), rather than the derivative of ϕ̃−1. It is clear from
the context of this theorem that the authors consider both B and Wψ,σ to be
operators from H2 into itself.

As we shall see, Theorem 2 is not entirely correct in all cases. We will begin by
considering whether this result is valid for linear fractional maps.
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3. Linear fractional examples

If Theorem 2 were to hold in general, it would certainly have to agree with
Theorem 1 in the case of linear fractional maps. We shall show that these two
theorems rarely yield the same result. Let

ϕ(z) =
az + b

cz + d

be a nonconstant map that takes D into itself. Note that

ϕ−1(z) =
dz − b

−cz + a
.

Using the notation of Theorem 2, we can write

ϕ̃−1(z) = ϕ−1(1/z) =
−bz + d

az − c
,

and thus

σ(z) = 1/ϕ̃−1(z) =
az − c

−bz + d
.

Also note that

(̃ϕ−1)′(z) =

(
ad− bc(− c

z + a
)2

)
=

(ad− bc)z2

(az − c)2
,

from which it follows that

ψ(z) = (̃ϕ−1)′(z)/ϕ̃−1(z) =
(ad− bc)z2

(az − c)(−bz + d)
.

According to Theorem 2, the operator C∗ϕ can be written as the product BWψ,σ.
This would allow us to write

(C∗ϕf)(z) =
ψ(z)f(σ(z))− ψ(0)f(σ(0))

z
=

(ad− bc)z
(az − c)(−bz + d)

f(σ(z)). (5)

It is clear that line (5) agrees with line (2) only in one special case: when c = 0.
In other words, Theorem 2 is only valid for those linear fractional maps that are
actually linear.

There is more than one reason that Theorem 2 fails in this situation. We will
present a pair of examples, each demonstrating one difficulty with the theorem.

Example 1. Consider the map

ϕ(z) =
2z

z + 4
,

which certainly takes D into itself. Theorem 2, as manifested in line (5), says that

(C∗ϕf)(z) =
(

2z

2z − 1

)
f(σ(z)). (6)

This statement cannot be correct, since the operator on the right-hand side does
not take H2 into itself. In particular, if f(σ(1/2)) = f(0) 6= 0, expression (6) fails
to be analytic in D.
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While we will provide a more detailed discussion at a later point, the problem
here is that Wψ,σ does not take H2 into itself. The proper way to correct this
difficulty is to follow the backward shift with the orthogonal projection from L2(∂D)
onto H2. In this particular example, we would obtain

(C∗ϕf)(z) =
(

2z

2z − 1

)
f(σ(z)) +

f(0)
1− 2z

,

which agrees with the adjoint formula given by line (2).

There is some ambiguity in the statement of Theorem 2, in that the backward
shift can sometimes be construed to include a projection. Nonetheless, this issue
is more than a notational nicety, as the absence of the projection causes Corollary
3.9 in [3] to be incorrect. In particular, the kernel of C∗ϕ includes not only those
functions that are sent to 0 as a result of the backward shift, but also those that are
sent to 0 due to the projection. The next example illustrates a different problem
with Theorem 2.

Example 2. Let

ϕ(z) =
z

2z + 4
.

According to Theorem 2, as explained at the start of this section, the adjoint should
be given by the formula

(C∗ϕf)(z) =
(

z

z − 2

)
f(σ(z)). (7)

Unlike the previous example, this expression always yields an analytic function
on D. Nevertheless, even if it did not contradict Theorem 1, equation (7) cannot
provide a correct formula for C∗ϕ. Since ϕ(0) = 0, line (1) tells us that C∗ϕ must fix
the kernel function K0(z) = 1. It is obvious that the operator defined above does
not fix constant functions.

The difficulty here is more subtle – and more fundamental – than that of the
previous example. The proof of Theorem 2 (i.e. Theorem 3.8 in [3]) relies on the
assumption that ∂ϕ−1(D), or at least one component thereof, is a simple closed
curve enclosing ∂D. In this instance, ∂ϕ−1(D) is a circle of radius 4/3 centered at
z = −8/3. In particular, ∂ϕ−1(D) does not enclose ∂D. (See Figure 1.) Conse-
quently one cannot use Cauchy’s theorem to show that

∫

∂D
f(ϕ(ζ))g̃(ζ)

dζ

ζ
=

∫

∂ϕ−1(D)

f(ϕ(ζ))g̃(ζ)
dζ

ζ

for polynomials f and g, as asserted in the proof of Theorem 2, since the integrand
has a distinct singularity within each circle (at z = 0 and z = −2, respectively).
Without this purported equality, the remainder of the proof of Theorem 2 is invalid.
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Figure 1. The set ϕ−1(D) for ϕ(z) = z/(2z + 4), along with ∂D.

Note that ∂ϕ−1(D) need not even be a circle. For example, if we take

ϕ(z) =
z

z + 4
,

then ∂ϕ−1(D) is the vertical line Re z = −2.
While these examples are particular to linear fractional maps, the problems they

illustrate can manifest themselves with rational maps of any degree.

4. The main theorem

From this point onward, we will assume that ϕ is a rational map that takes D
into itself. Our goal is to apply certain aspects of the proof of Theorem 2 (Theorem
3.8 in [3]) to obtain a general formula for C∗ϕ. Before stating our main results, we
need to extract an important calculation from the proof of Theorem 2.

Lemma 3 (Cowen and Gallardo-Gutiérrez). Let ϕ be a nonconstant rational map
that takes D into itself. Define the multiple-valued functions

σ(z) = 1/ϕ̃−1(z) = 1/ϕ−1(1/z)

and

ψ(z) =
zσ′(z)
σ(z)

.
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Suppose that ∂ϕ−1(D) is a bounded set. If f is a rational function with no poles on
∂D and g is a polynomial, then

∫

∂ϕ−1(D)

f(ϕ(ζ))g̃(ζ)
dζ

ζ
=

∫

∂D
f(ζ)

∑
ψ(ζ)g(σ(ζ))

dζ

ζ
. (8)

In this expression, the function g̃ is defined as in line (4) and the summation is
taken over all branches of σ.

While the map σ here is the same as in Theorem 2, the function ψ is slightly
different. With a bit of work, the ψ from Theorem 2 can be rewritten z2σ′(z)/σ(z).
The reason for this discrepancy is that here the function ψ incorporates the action
of the backward shift.

It is important to recognize that the integral on the right-hand side of (8) does
not necessarily represent an inner product in H2, or even in L2(∂D). As we have
already observed, the function

∑
ψ(g ◦ σ) may have a singularity in D and hence

might not be analytic. Under certain circumstances, it does not even belong to
L2(∂D).

Before proceeding with the proof of this lemma, we need to consider a minor
technical detail. For ϕ analytic in D, it is not always the case that ϕ−1(∂D) =
∂ϕ−1(D). These sets do coincide, however, whenever ϕ is analytic in a neighborhood
of the closure of ϕ−1(D). Any rational map ϕ : D→ D satisfies this condition, since
it can only have a finite number of poles, none of which can belong to the closure
of ϕ−1(D).

Proof of Lemma 3. Fix an appropriate set of branch cuts for ϕ−1 and consider a
complete set of branches ϕ−1

1 , ϕ−1
2 , . . . , ϕ−1

N . Let B denote the set of all branch
points for ϕ−1 that lie on ∂D and, for each j in {1, 2, . . . , n}, define Γj = ϕ−1

j (∂D \
B). Note that the sets Γj are pairwise disjoint and that

N⋃

j=1

Γj = ϕ−1(∂D \B).

Because B is a finite set, we see that
∫

∂ϕ−1(D)

f(ϕ(ζ))g̃(ζ)
dζ

ζ
=

∫

ϕ−1(∂D)

f(ϕ(ζ))g̃(ζ)
dζ

ζ

=
N∑

j=1

∫

Γj

f(ϕ(ζ))g̃(ζ)
dζ

ζ
. (9)

Since ϕ is one-to-one on each Γj , we can apply the change of variables ϕ(ζ) = η to
each of the integrals on the right-hand side of (9). Because ζ = ϕ−1

j (η) for ζ in Γj ,
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we obtain
∫

∂ϕ−1(D)

f(ϕ(ζ))g̃(ζ)
dζ

ζ
=

∫

∂D
f(η)

N∑

j=1

g̃(ϕ−1
j (η))

ϕ−1
j (η)ϕ′(ϕ−1

j (η))
dη

=
∫

∂D
f(η)

N∑

j=1

(ϕ−1
j )′(η)

ϕ−1
j (η)

g̃(ϕ−1
j (η))dη.

If η belongs to ∂D, then g̃(ϕ−1
j (η)) = g(σj(η)) and ϕ−1

j (η) = ϕ̃−1
j (η). One can easily

check that (h̃)′(z) = (−1/z2)(̃h′)(z) for all polynomials, and hence for any function
that is analytic in a neighborhood of the point z. Thus a bit of computation shows
that

(̃ϕ−1
j )′(z)

ϕ̃−1
j (z)

=
z2σ′j(z)
σj(z)

whenever 1/z is not a branch point for ϕ−1. Combining all of these observations,
we have

∫

∂ϕ−1(D)

f(ϕ(ζ))g̃(ζ)
dζ

ζ
=

∫

∂D
f(η)

N∑

j=1

η2σ′j(η)
σj(η)

g(σj(η))dη

=
∫

∂D
f(η)

N∑

j=1

ησ′j(η)
σj(η)

g(σj(η))
dη

η
,

as we had hoped to show. ¤

One consequence of this lemma is that, as long as it belongs to L2(∂D), the
function

∑
ψ(g ◦ σ) is not affected by the choice of branch cuts.

While the multiple-valued function ϕ−1 can be quite complicated in terms of its
branch cuts, it can have only a single pole. In particular, a rational map has only
one limit as |z| goes to ∞. For the duration of this paper, we will write ϕ(∞) to
denote this quantity; that is,

ϕ(∞) = lim
|z|→∞

ϕ(z),

with the understanding that ϕ(∞) = ∞ if no finite limit exists. The value of ϕ(∞)
determines the basic geometric properties of the set ϕ−1(D). It is always the case
that ϕ−1(D) is an open set containing D. As long as |ϕ(∞)| 6= 1, the boundary
∂ϕ−1(D) consists of a finite number of bounded curves. If |ϕ(∞)| > 1, then ϕ−1(D)
is the union of bounded regions enclosed within ∂ϕ−1(D). On the other hand,
if |ϕ(∞)| < 1, the set ϕ−1(D) is unbounded and has bounded complement. If
|ϕ(∞)| = 1, then at least one component of ∂ϕ−1(D) must be unbounded, which
means that both ϕ−1(D) and its complement are unbounded sets. (See Figure 2.)

For the purposes of this paper, we will need to consider each of these cases
separately. We start with the most straightforward situation.
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Figure 2. The set ϕ−1(D) for ϕ(z) = (z2 − 1)/(z2 + z − 4).

Proposition 4. Suppose that ϕ is a nonconstant rational map that takes D into
itself, with |ϕ(∞)| > 1. Then

(C∗ϕf)(z) =
∑

ψ(z)f(σ(z)) +
f(0)

1− ϕ(∞)z
, (10)

where σ and ψ are the multiple-valued functions defined in Lemma 3 and the sum-
mation is taken over all branches of σ.

Before giving the proof of this proposition, we need to discuss one aspect of
its statement. Clearly the expression on the right-hand side of (10) is undefined at
z = 1/ϕ(∞), both because that point is a singularity for 1/(1−ϕ(∞)z) and because
σ, the denominator of ψ, vanishes there. This expression also has singularities at
the finitely many points where σ′ is undefined. It will follow from our subsequent
discussion that all of these singularities are removable. A similar observation also
pertains to the statements of Propositions 5 and 6.

Proof of Proposition 4. Since the polynomials are dense in H2, it suffices to con-
sider 〈f, C∗ϕ(g)〉 for polynomials f and g. Observe that g̃, as defined in line (4), is
analytic in {z : |z| > 0} and that g̃ agrees with g on the boundary of D. Thus

〈f, C∗ϕ(g)〉 =
1

2πi

∫

∂D
f(ϕ(ζ))g(ζ)

dζ

ζ
=

1
2πi

∫

∂D
f(ϕ(ζ))g̃(ζ)

dζ

ζ
. (11)

We wish to transfer this last integral from ∂D to ∂ϕ−1(D).
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Since |ϕ(∞)| > 1, we know that ϕ−1(D) is a bounded set, one component of
which contains D. First of all, suppose A is a component of ϕ−1(D) that does not
contain D. Since ϕ is analytic inside A and the point 0 does not belong to A, we
see that ∫

∂A

f(ϕ(ζ))g̃(ζ)
dζ

ζ
= 0.

Now let B denote the component of ϕ−1(D) that contains D. (See Figure 3.) If B

is not simply connected, we can draw a set of non-intersecting contours connecting
the exterior boundary of B to the boundary of each of the holes inside B in such
a way that, traversing every such contour in both directions, we can regard ∂B as
being a single connected curve. Since ϕ is analytic inside B, it is possible to deform
∂D to ∂B without passing over any singularities of ϕ and without passing over 0.
Thus we can apply Cauchy’s theorem and equation (11) to see that

〈f, C∗ϕ(g)〉 =
1

2πi

∫

∂B

f(ϕ(ζ))g̃(ζ)
dζ

ζ
=

1
2πi

∫

∂ϕ−1(D)

f(ϕ(ζ))g̃(ζ)
dζ

ζ
.

Hence Lemma 3 dictates that

〈f, C∗ϕ(g)〉 =
1

2πi

∫

∂D
f(ζ)

∑
ψ(ζ)g(σ(ζ))

dζ

ζ
(12)

for any polynomials f and g.

Figure 3. The set ϕ−1(D) for ϕ(z) = z2/17− z/2, along with ∂D.

Consider the function
∑

ψ(g◦σ) for a fixed polynomial g. We would like to show
that

∑
ψ(g ◦ σ) belongs to L2(∂D). To that end, let us examine its Fourier series

with respect to the basis {zn}∞n=−∞. Since line (12) holds for any polynomial f ,
we only need to compute the Fourier coefficients corresponding to negative powers
of z. Let n be a natural number and take f(z) = z−n. Lemma 3 dictates that

1
2πi

∫

∂D
f(ζ)

∑
ψ(ζ)g(σ(ζ))

dζ

ζ
=

1
2πi

∫

∂ϕ−1(D)

g̃(ζ)
ϕ(ζ)n

dζ

ζ
.
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Since ϕ is a rational map, the only singularities of the integrand on the right-hand
side occur when ζ = 0 or when ϕ(ζ) = 0; that is, within ϕ−1(D). Recall that the
set ϕ−1(D) is bounded. Therefore, for R sufficiently large, Cauchy’s theorem shows
that

1
2πi

∫

∂ϕ−1(D)

g̃(ζ)
ϕ(ζ)n

dζ

ζ
=

1
2πi

∫

CR

g̃(ζ)
ϕ(ζ)n

dζ

ζ
,

where CR denotes the circle of radius R centered at the origin. Letting R go to ∞,
we see that

1
2πi

∫

CR

g̃(ζ)
ϕ(ζ)n

dζ

ζ
=

1
2πi

∫

∂D

g̃(Rζ)
ϕ(Rζ)n

dζ

ζ
→ g(0)

ϕ(∞)n
.

In other words, the (−n)th Fourier coefficient of
∑

ψ(g ◦ σ) equals g(0)/ϕ(∞)n,
where we understand this quantity to be 0 if ϕ(∞) = ∞. Therefore, if f(z) =∑N

n=−N anzn, we see that

∣∣∣∣
1

2πi

∫

∂D
f(ζ)

∑
ψ(ζ)g(σ(ζ))

dζ

ζ

∣∣∣∣ =

∣∣∣∣∣
N∑

n=1

a−n
g(0)

ϕ(∞)n
+

〈
N∑

n=0

anzn, C∗ϕ(g)

〉∣∣∣∣∣

≤ ‖f‖2
(√

|g(0)|2
|ϕ(∞)|2 − 1

+ ‖Cϕ‖ ‖g‖2
)

. (13)

Consequently
∑

ψ(g ◦ σ) must belong to L2(∂D).
In view of line (12), we see that C∗ϕ(g) is simply the projection of

∑
ψ(g ◦ σ)

onto H2. Note that
∞∑

n=1

g(0)
ϕ(∞)n

1
zn

=
g(0)(ϕ(∞)z)−1

1− (ϕ(∞)z)−1
=

g(0)
ϕ(∞)z − 1

.

(For the purposes of this calculation, we can assume that z belongs to ∂D.) Con-
sequently the projection of

∑
ψ(g ◦ σ) onto H2 equals

∑
ψ(z)g(σ(z)) +

g(0)
1− ϕ(∞)z

,

which is precisely C∗ϕ(g). ¤

Next we shall consider the situation when ϕ−1 has a pole inside the disk; that
is, when |ϕ(∞)| < 1. The ideas underlying our calculations will be similar to what
we have already seen, although ϕ−1(D) is an unbounded set and ∂D is not enclosed
within ∂ϕ−1(D). Hence, as discussed in Example 2, we cannot use Cauchy’s theorem
in the same manner as in the previous proof, since in deforming ∂D to ∂ϕ−1(D) we
would pass over the point 0 and possibly some poles of ϕ. Nevertheless, the result
we obtain looks quite familiar.
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Proposition 5. Suppose that ϕ is a nonconstant rational map that takes D into
itself, with |ϕ(∞)| < 1. Then

(C∗ϕf)(z) =
∑

ψ(z)f(σ(z)) +
f(0)

1− ϕ(∞)z
,

where σ and ψ are the multiple-valued functions defined in Lemma 3 and the sum-
mation is taken over all branches of σ.

Proof. Let f and g be polynomials, and consider

〈f, C∗ϕ(g)〉 =
1

2πi

∫

∂D
f(ϕ(ζ))g̃(ζ)

dζ

ζ
.

Because ∂ϕ−1(D) is bounded, we can find R sufficiently large so that CR, the circle
of radius R centered at the origin, surrounds ∂ϕ−1(D). (See Figure 4.) Since
∂ϕ−1(D) encloses ϕ−1(C\D), the map ϕ is analytic in the region outside ∂ϕ−1(D).
Hence Cauchy’s theorem dictates that

∫

CR

f(ϕ(ζ))g̃(ζ)
dζ

ζ
=

∫

∂D
f(ϕ(ζ))g̃(ζ)

dζ

ζ
+

∫

∂ϕ−1(C\D)

f(ϕ(ζ))g̃(ζ)
dζ

ζ
,

so that

〈f, C∗ϕ(g)〉 = − 1
2πi

∫

∂ϕ−1(C\D)

f(ϕ(ζ))g̃(ζ)
dζ

ζ
+

1
2πi

∫

CR

f(ϕ(ζ))g̃(ζ)
dζ

ζ

=
1

2πi

∫

∂ϕ−1(D)

f(ϕ(ζ))g̃(ζ)
dζ

ζ
+

1
2πi

∫

CR

f(ϕ(ζ))g̃(ζ)
dζ

ζ
.

It follows from Lemma 3 that

〈f, C∗ϕ(g)〉 =
1

2πi

∫

∂D
f(ζ)

∑
ψ(ζ)g(σ(ζ))

dζ

ζ
+

1
2πi

∫

CR

f(ϕ(ζ))g̃(ζ)
dζ

ζ
.

If we let R go to ∞, we see that

1
2πi

∫

CR

f(ϕ(ζ))g̃(ζ)
dζ

ζ
=

1
2πi

∫

∂D
f(ϕ(Rζ))g̃(Rζ)

dζ

ζ
→ f(ϕ(∞))g(0).

(Recall our assumption that |ϕ(∞)| < 1.) Notice that we can rewrite

f(ϕ(∞))g(0) = 〈Cϕ(∞)(f), C0(g)〉,

where Cϕ(∞) and C0 can simply be understood as point-evaluation functionals.
Theorem 1 tells us that 〈Cϕ(∞)(f), C0(g)〉 = 〈f, TχC0(g)〉, where

χ(z) =
1

1− ϕ(∞)z
.

In other words,

〈f, C∗ϕ(g)〉 =
1

2πi

∫

∂D
f(ζ)

(∑
ψ(ζ)g(σ(ζ)) + χ(ζ)g(0)

)
dζ

ζ

for all polynomials f and g.
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Figure 4. The set ϕ−1(D) for ϕ(z) = (z2+2iz+3)/(2z2+8iz−14),
along with ∂D and CR for R = 5.

As in the proof of Proposition 4, let us consider the Fourier series for the function∑
ψ(g ◦ σ). If f(z) = z−n, Lemma 3 dictates that

1
2πi

∫

∂D
f(ζ)

∑
ψ(ζ)g(σ(ζ))

dζ

ζ
=

1
2πi

∫

∂ϕ−1(D)

g̃(ζ)
ϕ(ζ)n

dζ

ζ
.

The only singularities of the integrand on the right-hand side occur within the set
ϕ−1(D). As we have already noted, the curves that make up ∂ϕ−1(D) enclose the
preimage of the complement of the closed disk. In other words, this integral equals
0 for all n, which means that the Fourier coefficients of

∑
ψ(g ◦ σ) corresponding

to negative powers of z are all 0. Hence an argument similar to that of line (13)
shows that

∑
ψ(g◦σ) belongs to L2(∂D), and in fact to H2. Therefore C∗ϕ(g) is the

projection of
∑

ψ(g ◦ σ) + χg(0) onto the Hardy space. It is clear that χ belongs
to H2, so we obtain the desired result. ¤

At first glance, it may appear that Propositions 4 and 5 are saying the same
thing, but in fact there is a subtle difference. As noted in the proof of Proposition
5, both of the functions

∑
ψ(f ◦ σ) and χ belong to H2. Thus, when |ϕ(∞)| < 1,

we can write

C∗ϕ = Wψ,σ + TχC0,

where all of these operators actually take H2 into itself.
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Finally we turn our attention to the case where |ϕ(∞)| = 1. In this situation,
as we have already mentioned, the geometric properties of ϕ−1(D) can be rather
complicated. Furthermore, as we can deduce from the next proposition, the function∑

ψ(z)f(σ(z)) does not belong to L2(∂D). Rather than dealing with this case on
its own terms, we will obtain the desired result as a consequence of Proposition 5.

Proposition 6. Suppose that ϕ is a nonconstant rational map that takes D into
itself, with |ϕ(∞)| = 1. Then

(C∗ϕf)(z) =
∑

ψ(z)f(σ(z)) +
f(0)

1− ϕ(∞)z
,

where σ and ψ are the multiple-valued functions defined in Lemma 3 and the sum-
mation is taken over all branches of σ.

Proof. Fix a real number r, with 0 < r < 1, and consider the map rϕ(z). Observe
that |rϕ(∞)| < 1, so Proposition 5 applies to the operator C∗rϕ. Define σ and ψ

in terms of the original map ϕ; we shall state the formula for C∗rϕ with respect to
these functions. Since (rϕ)−1(z) = ϕ−1(z/r), it follows that

1
(rϕ)−1(1/z)

=
1

ϕ−1(1/rz)
= σ(rz)

and
z(σ(rz))′

σ(rz)
=

(rz)σ′(rz)
σ(rz)

= ψ(rz).

Consequently

(C∗rϕf)(z) =
∑

ψ(rz)f(σ(rz)) +
f(0)

1− ϕ(∞)rz
. (14)

Observe that Crϕ = CϕCρ, where ρ(z) = rz. Since Cρ is self-adjoint (as we can see
from Theorem 1), it follows that

(C∗rϕf)(z) = (C∗ρC∗ϕf)(z) = (CρC
∗
ϕf)(z) = (C∗ϕf)(rz).

Combining this observation with line (14), we see that

(C∗ϕf)(rz) =
∑

ψ(rz)f(σ(rz)) +
f(0)

1− ϕ(∞)rz

for all z in D. Making the substitution ζ = rz, we conclude that

(C∗ϕf)(ζ) =
∑

ψ(ζ)f(σ(ζ)) +
f(0)

1− ϕ(∞)ζ

whenever |ζ| < r. Since r is arbitrary, our assertion follows. ¤

Combining Propositions 4, 5, and 6, we can now state our main result.
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Theorem 7. Suppose that ϕ is a nonconstant rational map that takes D into itself.
Then

(C∗ϕf)(z) =
∑

ψ(z)f(σ(z)) +
f(0)

1− ϕ(∞)z
,

where

σ(z) = 1/ϕ̃−1(z) = 1/ϕ−1(1/z),

ψ(z) =
zσ′(z)
σ(z)

,

ϕ(∞) = lim
|z|→∞

ϕ(z),

and the summation is taken over all branches of σ.

Notice that this result agrees exactly with line (2), the adjoint formula for compo-
sition operators with linear fractional symbol. Furthermore, we obtain the following
corollary.

Corollary 8. Suppose that ϕ is a rational map that takes D into itself. If ϕ(∞) =
∞, then C∗ϕ is a (multiple-valued) weighted composition operator.

5. Further examples

Prior to this paper, there were a few concrete examples of rational ϕ (in addition
to the linear fractional maps) for which the adjoint C∗ϕ could be described precisely.
We will conclude by considering several such results in the context of Theorem 7.

Example 3. Let ϕ(z) = zm for some natural number m. It is easy to calculate C∗ϕ
simply by considering its action on the orthonormal basis {zn}∞n=0. (See Exercise
9.1.1 in [4].) Applying Theorem 7, we see that

(C∗ϕf)(z) =
m∑

j=1

f(σj(z))
m

,

where σ1, σ2, . . . , σm constitute all the branches of the function m
√

z. This result
agrees with the formulas previously stated in [8] and [9].

Example 4. The one specific example discussed by Cowen and Gallardo-Gutiérrez
[3] is the map ϕ(z) = (z2 + z)/2. Let us consider a slightly more general case:

ϕ(z) = az2 + bz,

with a 6= 0. Note that ϕ(∞) = ∞, so C∗ϕ is actually a multiple-valued weighted
composition operator. It is easy to show that

σ(z) =
bz ±

√
b
2
z2 + 4az

2
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and

ψ(z) =
zσ′(z)
σ(z)

=
1
2


1± b

√
b
2
z2 + 4az

b
2
z + 4a


 .

Therefore Theorem 7 says that

(C∗ϕf)(z) =
2∑

j=1

1
2


1 + (−1)j b

√
b
2
z2 + 4az

b
2
z + 4a


 f


bz + (−1)j

√
b
2
z2 + 4az

2


 .

When a = b = 1/2, this expression agrees with the calculation found in [3].

Example 5. As we mentioned earlier, several years ago Bourdon [1] calculated the
adjoint C∗ϕ for ϕ belonging to a particular class of rational maps. One example he
considered was

ϕ(z) =
z2 − 6z + 9

z2 − 10z + 13
.

Note that

σ(z) =
3z − 5± 2

√
3− 2z

9z − 13
and

ψ(z) =
±2z√

3− 2z(3z − 4±√3− 2z)
.

Therefore (C∗ϕf)(z) equals

2∑

j=1

(−1)j 2z√
3− 2z(3z − 4 + (−1)j

√
3− 2z)

f

(
3z − 5 + (−1)j 2

√
3− 2z

9z − 13

)
+

f(0)
1− z

.

While the two formulas look somewhat different, it is not difficult to show that this
result is identical to Bourdon’s.
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