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Abstract 

Critical periods of neural development occur during early postnatal life that 

correspond with increases in synaptic plasticity and the formation of neural circuits 

needed for learning and memory.  This development can be profoundly influenced by 

experience and negatively affected by environmental toxins.  Environmental enrichment 

and lead exposure inversely affect mediators of synaptic plasticity, which suggests that 

enrichment may have an attenuating effect on lead induced cognitive deficits.  A wealth 

of evidence has indicated that exposure to excessive amounts of inorganic Pb2+ during 

early development can produce long lasting cognitive deficits in humans.  Evidence also 

suggests that children raised in an impoverished environment are at a disproportionate 

risk for developing Pb2+-induced cognitive deficits compared with peers exposed to an 

enriched environment.  The present study evaluated the effects of both developmental 

Pb2+ exposure and environmental enrichment on visuospatial working and long-term 

memory in rats.  Animals were fed either 1500 ppm Pb2+ acetate-laced rat chow or 

standard chow and exposed to either an impoverished environment (single housed, 

bedding only) or an enriched environment (4 rats/cage with toys, enclosures, etc.) for 7 

weeks following weaning (PN day 25).  Long-term and working memory error rates were 

assessed during a 17 day radial arm maze (RAM) learning task.  Results suggest that the 

quality of the rearing environment but not Pb2+ exposure had a significant effect on 

learning performance.  These findings suggest that the detrimental effects of Pb2+ 

exposure on cognitive development may be attenuated by exposure to an enriched 

environment and that the combination of being reared in an impoverished environment 

coupled with Pb2+ exposure can significantly impair learning performance later in life. 
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Introduction 

1.1 Sources of environmental Pb2+ exposure 

Lead (Pb2+) is a heavy metal that occurs naturally in the Earth’s crust.  Pb2+ is a 

transition metal cation, and is almost always found naturally bound to one or more other 

elements to form Pb2+ compounds (Patil et al., 2006).  Pb2+ is one of the most commonly 

used metals in human history (Patil et al., 2006), and continues to be released through 

exhaust emission products and widespread industrial use (Juberg, Kleiman, & Kwon, 

1997).  As a heavy metal, Pb2+ has potential to be toxic for living organisms when found 

at abnormally high doses.  Neural development during “critical periods” that occur in 

early postnatal life is particularly vulnerable to the physiological stress exerted by Pb2+ 

exposure.  During these early postnatal critical periods of neural development, Pb2+ 

exposure can create life-long cognitive deficits (Koller, Brown, Spurgeon, & Levy, 2004; 

Toscano & Guilarte, 2005).  Children in this critical period tend to move by crawling and 

therefore are more likely to be exposed to different surfaces that could contain Pb2+ dust 

(Koller et al., 2004).  In developing countries, especially Asian countries, a large number 

of people live close to battery factories that use Pb2+ to make the batteries (Patil et al., 

2006).  A number of people in developing countries live close to Pb2+ mines (Patil et al., 

2006).  Developing countries also have little regulation over the use of Pb2+ gasoline, 

which results in elevated exposure of those populations to environmental Pb2+ (Juberg et 

al., 1997).  Pb2+ mines, industrial plants, and Pb2+ based gasoline contaminate their 

surrounding environments and can cause toxic exposure levels by getting into drinking 

water and soil.   
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Pb2+ toxicity varies from acute exposure with a short lasting, extremely high 

environmental dose of Pb2+, to chronic low-level exposure to Pb2+ over a longer span of 

time.  Chronic Pb2+ exposure is the most prevalent form of Pb2+ toxicity.  In chronic 

exposure cases, children and adults are differentially affected by Pb2+ exposure 

(Finkelstein, Markowitz, Rosen, 1998).  Children are far more vulnerable to severe and 

long-lasting symptoms of Pb2+ exposure (Lidsky & Schneider, 2006; Ruff, Markowitz, 

Bijur, Rosen, 1996).  In childhood Pb2+ poisoning cases, sustained cognitive decline is 

the most prevalent symptom, which includes fine motor, visuoperceptual, memory, 

language, and attention deficits (Lidsky & Schneider, 2006).  The major environmental 

source of Pb2+ that young children are exposed to is floor dust, which accounts for 50% 

of the average child’s Pb2+ intake (Koller et al., 2004).  In older housing, Pb2+ paint and 

Pb2+ contaminated windowsills are a major risk factor for young children (Koller et al., 

2004). 

Heightened awareness for the dangers of Pb2+ exposure have led to policy 

changes in developed countries, which has reduced blood Pb2+ levels in those developed 

populations to roughly 3 !g/dL (Koller et al., 2004).  Currently the World Health 

Organization places children with 10 !g/dL or more of Pb+ in their blood at risk for Pb2+ 

toxicity (Koller et al., 2004).  However, cognitive deficits have been seen in children with 

smaller concentrations of Pb2+ in their blood (Koller et al., 2004).  In the United States, 

4.4% of all children ages 1-5 are estimated to have unsafe or elevated Pb2+ exposure 

levels (Rabito, Shorter, & White, 2003).  However, approximately one quarter of low-

income minority children living in older housing have unsafe levels of Pb2+ exposure, 

making Pb2+ exposure an important issue in impoverished areas of developed countries 
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(Rabito et al., 2003).  In underdeveloped countries the mean blood Pb2+ level is far higher 

and chronic Pb2+ exposure continues to be a major environmental issue (Koller et al., 

2004).  Lack of regulation on Pb2+ mines causes heavy environmental pollution in certain 

areas.  Also, impoverished areas with manufacturing plants that assemble Pb2+ are at risk 

for higher exposure.   

1.2 Adverse effects of blood Pb2+ levels in humans 

Numerous studies have shown cognitive declines in subjects exposed to chronic 

low-level Pb2+ exposure throughout childhood.  In Koller et al. (2004), a 1-4% decrease 

in cognitive decline was observed in children exposed to Pb2+ during development.  

Studies of adults who were exposed to Pb2+ before the age of 4 show poorer performance 

on tests measuring attention, memory, reasoning, and motor speed (White, Diamond, 

Procter, Morey, & Hu, 1993).  Controlled studies using animal subjects have consistently 

shown Pb2+-induced cognitive deficits that are similar to those observed in humans.  Rats 

that were exposed to Pb2+ prenatally through weaning showed significantly decreased 

performance on the Morris water maze (MWM), which is a test of spatial memory 

(Kuhlmann, McGlothan, & Guilarte, 1997).  Rats tested at postnatal day 21 (PN21) 

following developmental Pb2+ exposure showed significantly decreased spatial memory 

ability compared with control animals (Jett, Kuhlmann, Farmer, & Guilarte, 1997).  The 

animal studies correspond well with the observations made in children, showing that they 

are at a differential risk to Pb2+ exposure compared with adults. 

Pb2+’s interference with neural development is most profound during the critical 

period, which corresponds to a period of increased synaptogenesis (Hensch, 2004; 

Toscano & Guilarte, 2005).  During this time period, connections between neurons and 
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neural circuits are first beginning to form.  In humans, synaptogenesis occurs during a 

critical period between the ages of 18-36 months during which children are most 

vulnerable to Pb2+ poisoning (Goldstein, 1990).  This period corresponds with heightened 

levels of synaptic plasticity, where neurons are particularly susceptible to being modified 

based on environmental factors and experiences (Hensch, 2004).  Rats develop their 

nervous systems much faster than humans do, and synaptic plasticity peaks in the rat 

nervous system between postnatal days 14-15 (Harris & Teyler, 1984; Toscano & 

Guilarte, 2005), which corresponds with the critical period of heightened synaptogenesis 

in rats.  Proteins that are particularly involved in memory formation are expressed at their 

highest levels during this developmental period in both rats and humans (Toscano & 

Guilarte, 2005).  Furthermore, children absorb significantly more Pb2+ into their 

intestines than adults (Toscano & Guilarte, 2005).  Increased Pb2+ absorption, increased 

exposure to Pb2+ contaminated surfaces, and heightened levels of synaptogenesis and 

neural circuit formation are major factors in the elevated risk for developing children to 

Pb2+ exposure.  

1.3 Physiology of memory formation 

Memory and learning are neural processes with one common underlying 

mechanism, synaptic plasticity.  Synaptic plasticity occurs when neurons change or create 

new connections with other neurons by creating new synapses in a process known as 

synaptogenesis.  A synapse is a small junction where separate neurons send chemical 

messages to each other called neurotransmitters.  Neurotransmitters are packaged in 

vesicles that remain in the neurons terminal buttons until a signal reaches them to be 

released.  This signal comes from calcium (Ca2+) ions that initiate exocytosis of 
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neurotransmitter vesicles, releasing neurotransmitter into the synapse.  Upon 

depolarization of a neuron’s membranes at the terminal buttons, voltage-gated Ca2+ 

channels open and allow passive influx of Ca2+ into the terminals.  Action potentials are 

fired when a neuron’s axon hillock becomes depolarized enough to open voltage-gated 

sodium channels, sending a wave of depolarization down the axon until it reaches the 

terminal buttons.  These physiological events take place in the pre-synaptic neuron 

leading to neurotransmitter release.  Information is passed to the post-synaptic neuron 

when receptors on the post-synaptic neuron’s dendrite bind the released neurotransmitter 

and elicit a number of different intracellular responses. 

Memory can be divided into two independent phases that constitute both short-

term and long-term memory formation (Alonso et al., 2002).  Short-term memory is 

independent of protein synthesis and lasts between 1-3 hours, which is different from 

protein and RNA synthesis dependent long-term memory that can take several hours to 

several days to occur (Alonso et al., 2002; Izquierdo I., Barros, Souza T., Souza M., 

Izquierdo, L., & Medina, 1998).  This memory formation requires activation of different 

glutamate receptors and isoreceptors, and also subsequent biochemical cascades, which 

leads to enhanced activity of protein kinases A, C, G, and calcium/calmodulin-dependent 

protein kinase II (CaMKII) (Izquierdo & Medina, 1997).  Chronically high cellular levels 

of Pb2+ can affect these secondary-signaling pathways in the LTP process of memory 

formation, causing deficits in memory formation (Finkelstein et al., 1998; Goldstein, 

1990; Long, Rosen, & Schanne, 1994).   

In order for synaptogenesis to occur, the cellular machinery to create a working 

synapse must be synthesized and localized in the right places (Bahls et al., 1998).  
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Neuronal growth cones are responsible for extending axons towards their target areas in 

order to create neuron-neuron contact (Basarsky, Parpura, & Haydon, 1994).  In the 

hippocampus, Basarsky et al. (1994) has demonstrated that hippocampal neurons undergo 

several days of contact before synaptic transmission is detected.  The beginning of 

synaptic transmission in these hippocampal neurons is correlated with changes in the 

localization of specific proteins that are critical to synaptogenesis, including synapsin I, 

from the soma to the terminal buttons (Basarsky et al., 1994).   Synapsins are 

phosphoproteins that associate with neurotransmitter vesicles and are implicated in 

neuronal development and synaptic functioning (Valtorta Pozzia, Benfenatib, & 

Fornasiero, 2011).  Synapsin proteins have serine residues that are open for 

phosphorylation by a number of protein kinases including mitogen-associated protein 

kinase (MAPK) and Ca2+/CaMK-dependent protein kinase (CaMK) (Valtorta et al., 

2011).  Phosphorylation of synapsin I modulates the transport and localization of 

neurotransmitter vesicle precursors along with growth in axons and dendrites during 

synaptogenesis (Valtorta et al., 2011).  Other cellular processes involved in 

synaptogenesis include synthesis and localization of post-synaptic neurotransmitter 

receptors and pre-synaptic voltage-gated Ca2+ channels (Bahls et al., 1998).  Pb2+ has the 

potential to disrupt memory formation by inhibiting any of these physiological processes 

involved with synaptogenesis. 

One prominent mechanism that has been associated with synaptogenesis and 

memory formation is long-term potentiation (LTP) (Yang, Wu, Liu, & Tung, 1998).  

When neurons are activated, they undergo physiological changes, and LTP refers to the 

transcriptional processes that grow and strengthen synapses (Riedel, Wetzel, & Reymann, 
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1996).  Studies have shown LTP is strongly related to inotropic glutamate receptors 

(Riedel et al., 1996).  Glutamate is the major excitatory neurotransmitter in the CNS and 

is the endogenous ligand at two different inotropic receptors; "-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptor (AMPAR) and NMDAR (Riedel et al., 1996).  

AMPARs are ligand gated Na+ channels that allow Na+ influx into the cell upon 

activation by glutamate, causing a cell membrane depolarization.  NMDARs require 

glutamate binding, however, this receptor is also voltage gated.  A Mg2+ cation blocks the 

channel so Na+ cannot enter the cell unless there is subsequent depolarization across the 

cell membrane.  When enough AMPARs are activated by glutamate, NMDARs undergo 

a conformational change forcing the removal of the Mg2+ cation, promoting Na+ influx.   

Activation of NMDA receptors leads to intracellular physiological changes that 

ultimately cause synapses to form and strengthen (Yang et al., 1998).  NMDARs vary 

based on their composition of subunits, which include the NR1, NR2A, NR2B, NR2C, 

NR2D, and NR3A subunits (Guilarte & McGlothan, 1998; Prybylowski et al., 2002).  

Altered expression of these subunits can change the overall composition of NMDARs, 

and could lead to impairments of NMDAR dependent LTP (Guilarte & McGlothan, 

1998).  NR2 subunit availability determines the number of functional NMDARs on the 

cell surface (Prybylowski et al., 2002).  NMDAR expression is highest during the critical 

period (Toscano & Guilarte, 2005), indicating these receptors play a role in 

synaptogenesis and neural circuit formation.  Interfering with NMDARs, in particular 

NR2 subunit expression, or any part of the intracellular signaling cascade following 

NMDAR activation, could affect LTP and memory.   
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Another form of receptors for glutamate that has been shown to affect 

hippocampal synaptic plasticity is metabotropic glutamate receptors (mGluRs) (Xu et al., 

2009).  NMDAR activation alone is not enough to explain the process of glutamate-

induced LTP (Heidinger et al., 2002).  mGluR activation leads to secondary signaling 

events that cause phosphorylation of a tyrosine residue on NR2B subunits of NMDARs, 

and phosphorylation of this subunit is known to increase during LTP phases (Heidinger et 

al., 2002).  Ca2+ signaling is a part of the intracellular pathway induced upon mGluR 

activation, as CaMK is activated by mGluR signal transduction (Heidinger et al., 2002).  

CaMK subsequently activates a number of other kinase families, leading to NR2B 

phosphorylation (Heidinger et al., 2002).  The NR2B subunit is directly coupled to 

another kinase signaling pathway called the mitogen-activated protein kinase (MAPK) 

pathway (Krapivinsky et al., 2003).  One form of MAPK, the extracellular-related protein 

kinase (ERK) 1/2, is activated by phosphorylation at both a tyrosine and threonine 

residue separated by one amino acid (Thomas & Huganir, 2004).  Activation of ERK 1/2 

signaling pathways is important to synaptic plasticity, and activated ERK is seen in 

dendrites and cell bodies of neurons that are active due to synaptic activity (Toscano & 

Guilarte, 2005; Adams & Sweatt, 2002).  mGluRs and secondary signaling pathways 

related to NMDAR activation provide another target for Pb2+-induced LTP inhibition. 

Another critical mechanism identified with synaptic plasticity and memory 

formation is brain-derived neurotrophic factor (BDNF) activity (Richter-Schmidinger et 

al., 2011).  BDNF is a member of the neurotrophin family that is responsible for cell 

growth and maintenance (Mizuno, Yamada, Olariu, Nawa, & Nabeshima, 2000).  BDNF 

enhances synaptic transmission by causing increases in NMDAR subunit phosphorylation 
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(Mizuno et al., 2000).  BDNF has also been shown to enhance synaptic plasticity by 

inducing LTP (Mizuno et al., 2000).  BDNF expression is another physiological change 

that affects memory formation.    

BDNF polymorphisms have been shown to cause significant working memory 

impairments is adults compared to those carrying the normal BDNF gene (Richter-

Schmidinger et al., 2011).  Transgenic mice that overexpress BDNF perform better in 

spatial memory tasks such as the Morris water maze (MWM) than heterozygote and wild-

type BDNF mice, indicating that increased BDNF levels enhance spatial memory and 

learning (Nakajo, Miyamoto, Nakano, Xue, Hori, & Yanamoto, 2008).  Hormones such 

as #-estradiol that increase hippocampal synaptogenesis can be reversed by both #-

estradiol and BDNF receptor antagonists, indicating that BDNF mediates the hormone’s 

effect on synaptogenesis (Sato, Akaishi, Matsuki, Ohno, & Nakazawa, 2007).  Increases 

in BDNF have been consistently associated with improvement in learning and memory 

tasks. 

In the hippocampus, BDNF exerts its multiple effects on memory and LTP 

through activation of the transcription factor cAMP response element-binding protein 

(CREB) (Alonso et al., 2002).  A higher level of phosphorylated CREB in the 

hippocampus is associated with better performance in learning and memory in tasks 

(Kudo, Wati, Qiao, Arita, & Kanba, 2005).  Both ERK1/2 and CaMKII are part of 

biological cascades that act as secondary messengers after NMDAR activation, which 

leads to enhance CREB activity (Alonso et al., 2002).  BDNF increases phosphorylation 

in both ERK1/2 and CaMKII signaling pathways (Alonso et al., 2002).  This effect is 

possibly caused by BDNF’s ability to enhance the responsiveness of NR2B subunit 



!
*%!

containing NMDAR’s by activating post-synaptic TrkB receptors (Levine & Kolb, 2000).  

It is clear that BDNF is important to memory formation, as both NMDARs and 

subsequent signaling pathways that are important to LTP are more active in the presence 

of BDNF.  Increased BDNF expression is important to the enhancing effects of rearing in 

an EE on memory formation (Schneider, Lee, Anderson, & Lidsky, 2001; Toscano & 

Guilarte, 2005). 

1.4 Role of the hippocampus in memory acquisition 

Along with the specific proteins that influence memory formation, certain brain 

regions are involved in these memory formation processes.  The hippocampus is one 

brain region that is active during several memory forming events (Felix & Levin, 1997; 

Moser & Moser, 1998).  In rodents, the main function of the hippocampus is in spatial 

memory formation (Moser & Moser, 1998).  Lesion of any dorsal hippocampal neurons 

caused spatial memory recall deficits in rats (Moser & Moser, 1998), indicating that 

spatial memories are widely encoded throughout the hippocampus.  Hippocampal 

cholinergic neurons have also been shown to impact working memories (Felix & Levin, 

1997).  In humans, the hippocampus is thought to also encode for declarative or episodic 

memories (Battaglia, Benchenane, Sirota, Pennartz, & Wiener, 2011).  However, the 

human hippocampus is still organized to process spatial relationships (Kumaran & 

Maguire, 2005).  It is hypothesized that episodic memories are coded in hippocampal 

neurons and are linked by common features to form an organized network of knowledge 

(Eichenbaum, 1999). 

The hippocampus is crucial to the formation of long-term declarative memories.  

During inactivity, the hippocampal neurons fire in a pattern of synchronized theta wave 



!
*&!

bursts, sending oscillations that propagate to other brain structures (Battaglia et al., 2011).  

These synchronized neural oscillations encode information that propagates to other 

cortical and subcortical brain regions, causing this information to be stored as long-term 

memory (Battaglia et al., 2011).  While directly coding for some information, the 

hippocampus is also critical for information storage in other brain regions.  Within the 

hippocampus, several different neuronal subtypes contribute to memory formation and 

learning.  Farr, Flood, & Morley (2000) demonstrated that drugs targeting acetylcholine, 

GABA, glutamate, and serotonin containing neurons in the hippocampus all affected 

memory retention.  A number of neurotransmitters and secondary signalers influence 

memory formation in the hippocampus.  However, it is widely accepted that NMDAR 

activation is most critical to LTP and memory formation in the hippocampus (Toscano & 

Guilarte, 2005).   

The hippocampus is part of a functional system known as the hippocampal 

formation, and the two terms can be used interchangeably when referring to the 

functional hippocampus (Andersen, Morris, Amaral, Bliss, & O’Keefe, 2007).  There are 

several different structures within the hippocampal formation including four subfields of 

the hippocampus called CA1, CA2, CA3, and CA4 (with CA standing for cornu 

ammonis) (Giap, Jong, Ricker, Cullen, & Zafonte, 2000), along with the dentate gyrus, 

subiculum, presubiculum, parasubiculum, and entorhinal cortex (Andersen et al., 2007).  

The CA4 subfield of the hippocampus is also known as a deep polymorphic cell layer in 

the dentate gyrus (Andersen et al., 2007).  The major pathway of information entering the 

hippocampus is known as the perforant path (Andersen et al. 2007) (figure 1).  Input from 

the neocortex enters the hippocampal formation through superficial cell layers of the 
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entorhinal cortex and proceeds unidirectionally onto granule cell layers of the dentate 

gyrus (Andersen et al. 2007).  Input next reaches pyramidal cells of the CA3 hippocampal 

subfield through axons of neurons in the dentate gyrus known as mossy fibers (Andersen 

et al. 2007).  CA3 pyramidal cells next project the input unidirectionally to CA1 

pyramidal cells through the axons of Schaffer collateral neurons (Andersen et al. 2007).  

The unidirectional flow of input continues after CA1 pyramidal cells to neurons of the 

subiculum and then onto the presubiculum and parasubiculum (Andersen et al. 2007).  

Prominent cortical projections begin in both CA1 pyramidal cells and the subiculum and 

are first projected through the entorhinal cortex, completing the unidirectional input loop 

through the hippocampus (Andersen et al. 2007). 

The development of hippocampal connections is critical to the proper circuitry 

and functioning of the hippocampus. Entorhino-hippocampal projections bring 

information from the entorhinal cortex into the granule and pyramidal cells of the dentate 

gyrus (Andersen et al. 2007).  Commisural fiber projections send information from the 

CA3 to the dentate gyrus (Andersen et al. 2007).  Finally, septohippocampal projections 

are cholinergic and GABAergic projections originating in the medial septum and sending 

input into the hippocampus (Andersen et al. 2007).  Afferent neurons that input into the 

hippocampus are mainly excitatory and contain either the excitatory neurotransmitter 

glutamate or acetylcholine (Giap et al., 2000).  Interneurons of the hippocampus are 

mostly inhibitory neurons that contain the neurotransmitter $-aminobutyric acid (Giap et 

al. 2000).  Pb2+ can potentially interfere with the formation of hippocampal input 

pathways including the perforant pathway, or neurotransmission in hippocampal 

projections, altering learning and memory processes.   
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1.5 Indirect Effects of Pb2+ on memory formation and learning 

Pb2+ exerts a number of direct and indirect effects on memory once concentrations 

reach abnormally high intracellular levels.  Chronic Pb2+ exposure results in cell death 

(Chao, Moss, & Harry, 2007; Weisskopf et al., 2004), which affects neuron cells in 

memory related brain regions including the hippocampus.  A decrease in neuronal density 

was observed in Weisskopf et al. (2004) using N-acetylaspartate:creatine ratio to measure 

hippocampal densities of two 71 year old twins who had received chronic Pb2+ exposure.  

One twin had a history of higher exposure, and therefore showed less hippocampal 

volume.  This finding indicates varying levels of Pb2+ exposure correlates with decreases 

neuronal density in the hippocampus (Jiang et al., 2008).  Pb2+’s indirect effect on 

memory by cell death has multiple physiological causes. 

Once Pb2+ is inside the body, it negatively affects cellular function in a variety 

ways.  Heme groups are present in multiple enzymes, and heme biosynthesis is inhibited 

by accumulation of Pb2+ in erythrocytes.  Heme groups are required for the protein 

hemoglobin (Patil et al., 2006), which is responsible for moving oxygen throughout the 

body to respiring tissue.  Heme groups have a porphyrin ring system that normally binds 

an iron cation during synthesis (Counter, Buchanan, & Ortega, 2008).  Pb2+ induced iron 

deficiency causes zinc to replace iron in this porphyrin system, and inhibits the synthesis 

of protoporphyrin IX, which is a metabolic step in heme synthesis (Counter et al., 2008; 

Fujita, Nishitani, & Ogawa, 2002).  Both %-aminolevulinate dehydratase and  

ferrochetalase are both enzymes inhibited by Pb2+ exposure in the heme synthetic 

pathway (Fujita et al., 2002).  Inhibiting oxygen transportation to neurons required for 

aerobic respiration is a harmful aspect of Pb2+ toxicity. 
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Some enzymes act as natural antioxidants, clearing up reactive oxygen species 

(ROS) and radical species that are potential mutagens of DNA (Patil et al., 2006).  

Ascorbic acid, a potent antioxidant that has been shown to decrease cell death by 

enhancing ROS pathway enzymes, can ameliorate Pb2+ induced oxidative damage in the 

hippocampus (Chang et al., 2012).  This finding indicates ROS enzymes are important for 

protecting cells against Pb2+ induced oxidative stress.  Pb2+ negatively affects the ROS 

pathway by inhibiting specific antioxidant enzymes that require a metal cofactor and 

increasing the formation of highly reactive oxygen species that deplete the supply of 

antioxidant enzymes (Patil et al., 2006).  Significant changes in mitochondrial ROS 

pathways were observed in glial cells of Pb2+ exposed animals (Weisskopf, Hu, Sparrow, 

Lenkinski, & Wright, 2007).  Significant upregulation of ROS pathways ultimately leads 

to astrocyte swelling and apoptosis (Hu, Sun, Zhao, Cui, & Yang, 2008).  These results 

together indicate that Pb2+ exposure puts oxidative stress on neuronal cells, which causes 

cell death and decreased neural functioning. 

In Patil et al. (2006), workers that had been chronically exposed to Pb2+ 

throughout their lives were tested for ROS pathway enzymes.  The study showed 

significantly increased concentrations of ROS pathway enzymes, particularly superoxide 

dismutase in the Pb2+ exposure group.  Superoxide dismutase converts reactive 

superoxide species into water and hydrogen peroxide (Patil et al., 2006).  The reactive 

product hydrogen peroxide is subsequently converted into water and O2 by another 

enzyme called catalase, which is a tetrameric protein consisting of four heme groups with 

a reactive Fe2+ cation (Patil et al., 2006).  Because heme biosynthesis is inhibited by Pb2+ 
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exposure, reactive intermediates in this ROS metabolic pathway accumulate and cause 

upregulation of enzymes including superoxide dismutase.   

Along with inducing changes in ROS antioxidant pathways, Pb2+ has an effect on 

biological pathways through its reactive properties as a transition metal cation.  Pb2+ has 

potential to react with a variety of biological molecules creating highly reactive 

molecular species.  One of these mechanisms that potentially contribute to Pb2+’s 

negative physiological effects is through inhibition of DNA repair by preventing excision 

repair at the polymerization or ligation step of DNA synthesis (Finkelstein et al., 1998).  

Pb2+’s action as a mutagenic agent has potential to cause a wide variety of intracellular 

problems.  In Struzynska, Bubko, Walski, & Rafalowska (2001), an increased 

immunoreactivity of glial fibrillary acidic protein (GFAP), which is a common astrocyte 

reaction to CNS damage, was observed in the hippocampus and cerebral cortex following 

acute Pb2+ exposure.  ROS pathway upregulation as a mechanism against oxidative stress 

is seen in both acute (Struzynska et al., 2001) and chronic (Patil et al., 2006) Pb2+ 

exposure.  This fact suggests Pb2+ reacts with biological species to form highly reactive 

intermediates that could further react with a number of molecules including DNA.   

The blood-brain barrier is unique because unlike the rest of the body’s organs, 

water-soluble molecules such as glucose, amino acids, and important ions cannot 

passively diffuse into the central nervous system (Goldstein, 1990).  Instead, these 

essential molecules and ions are moved into the central nervous system by active 

transport, so that all other soluble molecules in the blood plasma are excluded (Goldstein, 

1990).  This barrier to most molecules is important because many hormones and ions that 

accumulate in the blood due to diet or stress would have a significant effect on neural 
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functioning (Goldstein, 1990).  By interfering with Ca2+ signaling pathways, Pb2+ 

exposure affects the formation of brain capillaries and the blood-brain barrier (Goldstein, 

1990; Finkelstein et al., 1998).  Endothelial cells have shown increased affinity for Pb2+ 

compared to other cells in the body, and also form the main structural component of the 

blood-brain barrier by forming tight junction contacts (Finkelstein et al., 1998).  Ca2+ acts 

as a secondary signaler in endothelial cells by activating PKC in a signaling pathway 

critical to homeostasis of the blood-brain barrier (Finkelstein et al., 1998).  Pb2+ interferes 

with cell signaling in endothelial cells, disrupting formation of the blood-brain barrier. 

Along with homeostatic function, PKC is also critical to the development of brain 

microvessels (Goldstein, 1990).  In particular, a translocation of PKC from the cytosol to 

the membrane fraction where it associates with cellular membranes between 10-15 days 

after the beginning of development is critical to microvessel development (Goldstein, 

1990).  Low-level Pb2+ exposure results in premature translocation of PKC, disrupting 

blood-brain barrier development.  Disruptions of blood-brain barrier development due to 

chronic Pb2+ exposure results in a disruption of the barrier between plasma and the CNS, 

and leads to interstitial plasma accumulation in the CNS (Goldstein, 1990).  Fluid 

accumulation results in CNS edema and an increase in intracranial pressure, which causes 

decreased perfusion of blood with essential nutrients to neuron cells that require the 

nutrients (Goldstein, 1990).  

Astrocytes form the other major structural component of the blood-brain barrier, 

and are particularly sensitive to the toxic effects of low-level Pb2+ exposure (Finkelstein 

et al., 1998).  Glial cell morphological (Cookman & Regan, 1991) and physiological 

(Weisskopf et al., 2007) changes are observed in Pb2+ exposed animals.  Signals between 
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astrocytes and endothelial cells are important to the development of the blood-brain 

barrier (Finkelstein et al., 1998).  Activation of ROS pathways leads to astrocyte 

proliferation and cell death (Hu et al., 2008), and Pb2+ has been shown to affect ROS 

pathways in astrocytes (Weisskopf et al., 2007).  Interactions between astrocytes and 

endothelial cells are part of Pb2+ toxicity towards blood-brain barrier development.  

Without the ability to properly obtain nutrients through the blood-brain barrier, it is more 

difficult for neurons to function.  Taken together, Pb2+ disrupts formation of the blood-

brain barrier during the developmental period, which causes widespread neural 

deficiencies in nutrient supply. 

The actions of Pb2+ as an inhibitor of heme biosynthesis, ROS pathway inhibitor, 

and DNA mutagens result in declined functioning of all biological systems.  Together, 

these actions of Pb2+ result in inadequate perfusion along with potential damage to DNA 

for all cells, including those in memory related brain areas such as the hippocampus.  

Pb2+ also disrupts blood-brain barrier formation, disrupting the normal movement of 

nutrients and hormones into the CNS.  Disruption of blood-brain barrier formation during 

development can potentially cause more Pb2+ to enter the CNS through the blood stream 

(Toscano & Guilarte, 2005).  Inadequate perfusion, DNA damage, and ROS inhibition 

are all factors that indirectly influence hippocampal cell loss by interfering with normal 

cellular functioning. 

1.6 Direct Effects of Pb2+ on Memory 
 
Pb2+ exposure interferes directly with the physiological mechanisms that form and 

strengthen synapses.  Along with the inhibition of blood-brain barrier formation through 

Ca2+ signaling pathways, Pb2+ has similar effects on Ca2+ signaling pathways involved in 
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memory formation (Goldstein, 1990).  Because Pb2+ has similar physical properties to 

other divalent cations including Ca2+, Pb2+ characteristically interferes with Ca2+ 

signaling systems (Finkelstein et al., 1998).  Intracellular Ca2+ is an important regulator 

of the neural cytoskeleton, making it critical for the modification of neural circuits 

(Mattson, 1992).  Ca2+ influx into developing neurons controls axonal differentiation by 

causing the microtubule-associated protein tau to migrate to the axon, and microtubule 

associated protein 2 (MAP2) to migrate to the dendrites (Mattson, 1992).  Disregulation 

of intracellular Ca2+ leads to neuronal death (Mattson, 1992). All of this evidence 

supports the idea that Ca2+ signaling is important to neuron survival and the physiology 

of synaptic plasticity. 

Extracellular Ca2+ enhances both synaptic plasticity and neural excitability upon 

entry into the cell through actions on second signalers including protein kinase C (PKC) 

and CaMKII (Yang et al., 1998).  PKC is normally activated by rises in intracellular Ca2+ 

concentrations, but can also be activated by subnanomolar concentrations of free 

intracellular Pb2+ (Long et al., 1994).  Synaptogenesis is reliant on several kinase 

pathways, that when blocked, inhibit the induction of LTP (Finkelstein et al., 1998; 

Klann, Chen, & Sweatt, 1993).  A protein in the rodent brain called RC3, which is a third 

messenger substrate activated by PKC, is involved in synaptic development and 

remodeling (Watson, Sutcliffe, & Fisher, 1992).  PKC activation can also affect the 

induction and maintenance of LTP by phosphorylating substrates that regulate the 

activity of NMDARs (Klann et al., 1993).  These effects of PKC on synapse development 

and LTP induction are targets of Pb2+-induced changes in memory and learning at 

subnanomolar concentrations of free intracellular Pb2+. 
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 When a neurotransmitter binds to its target receptor, it begins the sequence of 

intracellular events that lead to synaptogenesis (Goldstein, 1990).  One important 

secondary signaling pathway following neurotransmitter induced signal transduction 

involves the breakdown of a lipid involved in the plasma membrane called 

phosphoinositide bisphosphate into two signaling molecules called diacylglycerol and 

inositol triphosphate (Goldstein, 1990).  PKC is subsequently activated by diacylglycerol 

in the presence of Ca2+, leading to the phosphorylation of nerve terminal proteins that 

enhance neurotransmitter release through increasing Ca2+ entry upon depolarization of 

terminal buttons (Goldstein, 1990).  Pb2+ replaces Ca2+ in this signaling sequence, 

causing prolonged neurotransmitter release (Goldstein, 1990).  This disruption in neural 

functioning has a wide range of effects depending on the type of neurotransmitter and 

receptor type, including changes in the threshold of excitation, modulation of 

neurotransmitter release mechanisms, and losses in neural circuit complexity (Goldstein, 

1990). 

 During splicing of a translated polypeptide chain into functional NMDA subunits, 

PKC phosphorylation at the C terminus changes the splice variant so that different 

subunit isoforms are expressed (Toscano & Guilarte, 2005).  In hippocampal neurons 

positive for neuronal nitric oxide synthase (nNOS), a retrograde signaler that is known to 

affect hippocampal LTP, NMDARs are enriched with a particular NR1 spice variant that 

is inhibited by PKC phosphorylation (Toscano & Guilarte, 2005).  Pb2+ inhibits 

hippocampal LTP by interfering with nNOS retrograde signaling.  Some physiological 

processes involved in hippocampal LTP are independent of NMDARs, and are mediated 

by dihydropyridine (DHP)-sensitive Ca2+ channels (Pourmotabbed, Motamedi, 
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Fathollahi, Mansouri, & Semnanian, 1998).  Pb2+ exposure potentially interferes with this 

non-NMDA LTP by interfering with Ca2+ signaling (Pourmotabbed et al., 1998).  Pb2+ 

exposure can inhibit hippocampal LTP in multiple ways. 

 Another protein kinase involved with synaptic transmission that Pb2+ interferes 

with is CaMK, a Ca2+-binding regulatory protein (Goldstein, 1990).  Pb2+ can activate 

CaMK directly by binding in place of Ca2+, and indirectly by initiating PKC signaling 

sequences that lead to elevated intracellular Ca2+ concentrations (Goldstein, 1990).  Upon 

activation, the conformation of CaMK changes into an active kinase, allowing CaMK to 

subsequently activate the protein synapsin (Goldstein, 1990).  Pb2+-induced 

phosphorylation of synapsin leads to enhanced neurotransmitter release, augmenting the 

disruption of neural functioning caused by the over-release of neurotransmitters 

(Goldstein, 1990).  Conversely, Pb2+ has been shown to inhibit synapsin activity by both 

inhibiting the synthesis of another activator of synapsin, cyclic adenosine monophosphate 

(cAMP) (Nathanson & Bloom, 1975).  Pb2+ exposure exerts a number of different effects 

on kinase pathways and Ca2+ signaling that disrupts neurotransmission. 

Pb2+’s interference with kinase pathways can affect memory in a multitude of 

ways.  Phosphorylation of voltage-gated Ca2+ channels along with other ion channels can 

change channel conformations to change the permeability of channels to ion passage 

(Goldstein, 1990).  Interfering with ion movement across cell membranes can affect 

neurotransmission by changing voltages across membranes and causing Ca2+ to freely 

enter the cell and induce exocytosis of neurotransmitter vesicles (Goldstein, 1990).  

Enzymes that synthesize and break down neurotransmitters are also affected by 

phosphorylation (Goldstein, 1990).  Another kinase pathway affected by Pb2+ exposure is 
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the mitogen-activated protein kinase (MAPK) signaling pathway (Toscano & Guilarte, 

2005).  ERK 1/2 phosphorylation increases significantly upon Pb2+ exposure (Ramesh, 

Manna, Aggarwal, & Jadhav, 2001), which is a signaling pathway coupled to NR2B 

subunit containing NMDAR activation (Krapivinsky et al., 2003).  By interfering with 

multiple kinases including PKC, CaMKII, MAPK ,and cAMP, several synaptogenesis 

and LTP related intracellular pathways are affected upon Pb2+ exposure. 

Glutamate signal transduction is dependent on Ca2+ signaling, which is another 

target of Pb2+-induced LTP disruption.  Pb2+ causes a dose-dependent inhibition of both 

mRNA and protein expression for mGluR5, a member of the mGluR family (Xu et al., 

2009).  mGluRs signal for NR2B subunit phosphorylation through a secondary signaling 

pathway involving Ca2+/CaMK, which potentially plays a role in regulating NMDAR 

function and synaptic plasticity (Heidinger et al., 2002).  It is also thought that mGluR 

activation might trigger the regulation of hippocampal neuronal Ca2+ sensor protein 

(VILIP-1) expression, which would affect neuronal signaling and LTP (Xu et al., 2009).  

Pb2+’s interference with Ca2+ signaling in the mGluR signal transduction pathway affects 

NMDAR dependent LTP. 

Changes in gene expression are another mechanism by which Pb2+ causes 

neurocognitive deficits.  CaMKII is expressed at significantly lower levels during low-

level Pb2+ exposure than control animals (Luo et al., 2011).  Decreased CaMKII 

expression led to impaired cAMP responsive element binding protein (CREB) 

phosphorylation.  CREB is a transcription factor, and impairing its phosphorylation leads 

to changes in hippocampal gene expression (Ho et al., 2000).  Both cAMP and CaMK are 

Ca2+ dependent kinases that activate CREB by phosphorylating a serine 133 residue 
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(Toscano & Guilarte, 2005).  CREB phosphorylation leads to the recruitment of proteins 

such as CREB binding protein (Chrivia, Kwok, Lamb, Haglwara, Montmlny, & 

Goodman, 1993), beginning assembly of a transcriptionally active complex that is 

necessary for hippocampal learning, memory, and synaptic plasticity (Deisseroth, Bito, & 

Tsien, 1996; Toscano & Guilarte, 2005).  As shown in Lau, Saha, Faris, & Russek 

(2004), NR1 subunit mRNA expression was controlled in a CREB dependent manor, 

indicating that Pb2+ alters the expression of proteins that are critical to LTP.  Specific 

metal-dependent transcription factors, such as the zinc-finger proteins, are also 

potentially responsible for Pb2+-induced changes in gene expression (Finkelstein et al., 

1998).  This is consistent with other studies that show differential gene expression upon 

Pb2+ exposure in the hippocampus (Li et al., 2009; Schneider, Anderson, & Vadigepalli, 

2011).   

The hippocampus is significantly affected by developmental Pb2+ exposure.  

Significant morphological changes in CA3 mossy fiber pathways were observed in 

animals exposed to Pb2+ during development (Alfano, LeBoutillier, & Petit, 1982).  In 

Schneider et al. (2011), male and female rats combined showed 167 hippocampal genes 

that were differentially expressed upon Pb2+ exposure.  These differentially expressed 

genes code for a wide variety of proteins including regulators of GPCR signaling and 

ROS pathway enzymes such as superoxide dismutase 3 (Schneider et al., 2011).  

Enzymes that affect the catabolism and synthesis of D-serine, an allosteric modulator of 

NMDARs, are differentially expressed upon Pb2+ exposure (Schneider et al., 2011).  

Knocking out serine racemase (Srr), the enzyme that synthesizes D-serine, changes the 

expression of 9 genes involved with the allosteric modulation of NMDARs (Schneider et 
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al., 2011).  Pb2+ exposure causes similar changes to 6 out of the 9 hippocampal genes 

(Schneider et al., 2011), indicating Pb2+ induces changes in gene expression that directly 

affects LTP.  Lower concentrations of other neurotransmitter receptors, such as the 

muscarinic acetylcholine receptor, are also observed in the hippocampus after Pb2+ 

exposure (Jett & Guilarte, 1995).  Changes in the expression of both vesicular 

acetylcholine transporter mRNA and choline acetyltransferase mRNA provides further 

evidence that Pb2+ induces changes in cholinergic signaling (Finkelstein et al., 1998).  

Hippocampal cholinergic projections are critical to emotional responses along with 

learning and memory (Finkelstein et al., 1998).  These results taken together indicate Pb2+ 

exposure disrupts a wide range of hippocampal physiology including neurotransmission 

and LTP. 

Pb2+ interferes with NMDARs in several ways (Toscano & Guilarte, 2005; Zhu et 

al., 2011; Nihei & Guilarte, 1999), making it an effective NMDA antagonist.  NMDAR 

subunits show decreased expression as a result of Pb2+ poisoning (Toscano & Guilarte, 

2005; Zhu et al., 2011).  When this change in subunit expression occurs during the 

critical period of development, NMDAR subunit composition undergoes permanent 

changes, altering the physiology of affected brain regions including the hippocampus 

(Nihei et al., 1999).  Furthermore, changes in NMDAR expression have been shown to be 

age-dependent, and appear most pronounced during the critical period of development, 

where induction of LTP is highest (Jett & Guilarte, 1995), contributing to the increased 

vulnerability of the developing brain to Pb2+ exposure.  

The NR2A receptor subunit is most inhibited in the hippocampus at low levels of 

Pb2+ exposure (Nihei et al., 1999, Zhu et al., 2011).  Inhibition of the NR2A subunit was 
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correlated with blood-Pb2+ levels in the hippocampus, indicating Pb2+ directly affects 

hippocampal NR2A subunit expression (Zhu et al., 2011).  In Guilarte & McGlothan 

(1998), in situ hybridization was used to determine mRNA expression of NMDAR 

subunits in Pb2+ exposed rats at postnatal day 21 (PN21).  At PN21, the rat nervous 

system is undergoing its critical period of development, and NMDAR levels peak in the 

CNS (Guilarte & McGlothan, 1998).  In the hippocampus, NR1 subunit expression was 

increased in the CA4 subfield and NR2A subunit mRNA expression was decreased 

across all hippocampal fields, causing altered NMDAR subunit composition that possibly 

leads to LTP impairment (Guilarte & McGlothan, 1998).  Because NR2 subunit 

expression determines the number of functional NMDARs (Prybylowski et al., 2002), 

Pb2+ induced inhibition of NR2A subunits decreases the number of functional NMDARs 

throughout the hippocampus.  This finding is consistent with Jett & Guilarte (1995), 

which found a decreased expression of functional hippocampal NMDARs following 

developmental Pb2+ exposure.  During development, NMDAR antagonists have been 

shown cause apoptosis (Dribben, Creeley, & Farber, 2011).  Pb2+ inhibition of NMDARs 

has a significant effect on learning, memory, and neuron survival. 

Developmental exposure to Pb2+ has been shown to increase the expression of 

amyloid precursor protein (APP) during adulthood (Basha, Wei et al., 2005; Wu et al., 

2008; Huang, Bihaqi, Cui, & Zawia, 2011).  APP is polypeptide that is cleaved by # and 

$ secretases at BACE1 sites to form A# proteins (Laird et al., 2005).  When A#-42, a 

specific protein in the A# family, begins to form intracellular and extracellular 

aggregates, the process results in cell death and is part of Alzheimer’s disease pathology 

(Laird et al., 2005).  In Wu et al. (2008), aged monkeys that were exposed to Pb2+ during 
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development showed increased intracellular and extracellular A# deposits, which led to 

higher levels of oxidative damage.  In Basha, Murali et al. (2005) Pb2+ exposure was 

shown to cause dose dependent increases in A# aggregation.  Being a transition metal 

cation, Pb2+ can coordinate several negatively charged species at once, which increases 

A# aggregation and Alzheimer’s pathology.      

Along with altered APP expression and A# aggregation, developmental Pb2+ 

exposure has also been shown to affect other genes and proteins in the Alzheimer’s 

pathology.  Neprilysin (NEP), a rate-limiting catabolic enzyme for A# metabolism, is 

downregulated following early life Pb2+ exposure (Huang et al., 2011).  The low-density 

lipoprotein receptor-related protein-1 (LRP1) gene has been shown to affect clearance of 

A# from cerebrospinal fluid into the blood plasma, leading to a reduced risk for A# 

deposits to aggregate (Gu et al., 2011).  Protein kinase C (PKC) and LRP1 proteins are 

colocalized in neuron tissue, and chronic Pb2+ exposure has been shown to alter PKC 

activity, leading to a relocalization of LRP1 receptors (Behl, Zhang, Shi, Cheng, Du, & 

Zheng, 2010).   

Amyloidogenesis can affect memory in a number of ways.  Oxidative stress and 

cell death are a result of A# aggregation (Wu et al., 2008).  In brain regions such as the 

hippocampus, this cell death can result in decreased memory performance.  When #-

amyloids were injected into the rat dentate gyrus of the hippocampus, a loss in synaptic 

transmission and neuroplasticity was observed (Stephan, Laroche, & Davis, 2001).  

Decreased synaptic transmission was correlated with a decrease in long-term 

potentiation, and reduced working memory performance (Stephan et al., 2001).  

Hippocampal deposits of A#-40 and A#-42 protein was highly correlated with spatial 
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memory deficits and long-term memory impairment (Zhang et al., 2011).  

Amyloidogenesis precedes the onset of Alzheimer’s disease, and can directly inhibit 

synaptic plasticity. 

Alzheimer’s pathology can affect synaptic formation by inhibiting structural 

components necessary for synaptogenesis.  Tau is a protein that helps to stabilize 

intracellular microtubules. Alzheimer’s pathology changes the expression of tau leading 

to the collapse of microtubules (Zilka et al., 2006).  The collapse causes the microtubules 

and tau proteins to clump together, creating an intracellular neurofibrillary tangle (Zilka 

et al., 2006).  Microtubules are necessary for synaptogenesis, as they stabilize the growth 

of dendritic spines that lead to synapse formations (Dent, Merriam, & Hu, 2011).  

Another direct way Alzheimer’s pathology affects synapse formation is by interfering 

with neurotransmitter vesicle exocytosis and subsequent release (Russell, Semerdjieva, 

Empson, Austen, Beesley, & Alifragis, 2012).  A#-42 interferes with the interaction 

between synaptophysin and vesicle-associated membrane protein 2 (VAMP2), increasing 

the amount of presynaptic neurotransmitter vesicles ready for release into the synapse 

through exocytosis (Russell et al., 2012).  Alzheimer’s pathology can directly affect 

synapses, which leads to potential memory deficits. 

Physiological changes in Ca2+ signaling pathways, kinase-signaling pathways, 

expression of proteins critical to memory, and A# aggregation all cause direct Pb2+-

induced memory and learning deficits.  Multiple Ca2+ signaling and kinase pathways are 

involved in the development of synapses during the critical period.  Changes in the 

expression of NMDAR subunits caused by Pb2+ exposure are augmented during the 

critical period as NMDAR expression is normally at its highest (Toscano & Guilarte, 
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2005).  Increased onset of A# aggregation and interference with synaptogenesis occurs 

with developmental Pb2+ exposure (Wu et al., 2008).  Developmental Pb2+ exposure has a 

severe direct impact on memory functioning and synaptic plasticity.  

1.7 Effects of environmental enrichment on memory formation 

Exposure to an enriched environment (EE) can positively affect memory 

formation.  EE is an experimental setting in which groups of animals are kept in social 

cages containing toys and exercise wheels (Piazza, Pinto, Trott, Marcuzzo, Gomez, & 

Fernandes, 2011). This experimental condition relates to several human activities 

including physical exercise, social interaction and sensory stimulation, all of which 

improve learning and memory tasks (Nithianantharajah & Hannan, 2006; Piazza et al., 

2011).  In Schrijuer, Bahr, Weiss, & Wurbel (2002), both social isolation and 

environmental stimulus were separate variables, and performance on several memory 

tasks was analyzed.  Animals given toys and physical exercise showed significantly faster 

habituation to novel environments (Schrijuer et al., 2002).  These animals given only an 

EE preformed better on spatial memory tasks regardless of social background (Schrijuer 

et al., 2002).  Both inanimate environmental stimulus and social interactions contribute to 

the physiological effects of EE. 

EE exhibits its effects on memory in several ways.  Morphological analysis of 

hippocampal layer-III pyramidal neurons showed EE cause increased dendritic growth 

and arborization while also increasing the density of dendritic spines, which are all 

critical for synaptic formation (Leggio et al., 2005).  EE has also been shown to 

positively impact neurogenesis.  Increased cell counts in the dentate gyrus (DG) of the 

hippocampus that correlated with improved swim test scores, an animal model of stress, 
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were found in EE rats (Llorens-Martín, Rueda, Martinez-Cue, Torres-Aleman, Florez, & 

Trejo, 2007).  Rats raised in an EE overcame glial cell morphological changes (Beauquis 

et al., 2013).  Changes in glial morphology are associated with Alzheimer’s onset causing 

decreased synaptogenesis (Beauquis et al., 2013) and disruption in blood-brain barrier 

formation (Finkelstein et al., 1998).  EE improves gliogenesis, or generation of new glia 

cells and the expression of glial-cell-derived neurotrophic factor (GDNF) (Van Praag, 

Kempermann, & Gage, 2000), which has potential to ameliorate Pb2+ induced disruption 

of blood-brain barrier formation.  Angiogenesis is increased by EE (Van Praag et al., 

2000), which can attenuate Pb2+ induced decreases in perfusion caused by heme 

biosynthesis.  Positive changes in all types of hippocampal cell counts and morphology 

are both indicative of improved memory function upon exposure to an EE. 

Increased growth in dendritic spines was associated with increased 

synaptogenesis in CA1 and CA3 hippocampal regions following rearing in an EE (Van 

Praag et al., 2000).  EE rearing is able to exert a wide range of effects on neural 

physiology by causing epigenetic changes to neuron cell genetic expression (Fischer, 

Sananbenesi, Wang, Dobbin, & Tsai, 2007).  Inhibitors of histone deacylases that induce 

transcriptional changes within the genome have been shown to increase dendrite 

sprouting and the number of functional hippocampal synapses (Fischer et al. 2007).  

Animals reared in an EE show modifications to their chromatin including increased 

histone acylation (Fischer et al., 2007).  These results indicate that enrichment leads to 

epigenetic changes in expression that improve hippocampal memory acquisition and 

long-term memory recall. 
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EE is shown to attenuate disorders and environmental conditions that negatively 

impact learning and memory.  Prenatal stress is known to cause LTP deficits in rat 

hippocampal synapses, which is reversed by housing in an EE (Yang et al., 2007).  

Diabetic neuropathy is a disorder that is associated with hippocampal cell proliferation, 

cell death, and reduced synaptic plasticity (Piazza et al., 2011).  In Piazza et al. (2011), an 

EE increased hippocampal neurogenesis and dendritic branching in diabetic rats, and 

improved performance on learning tasks compared to the control.  Cranial irradiation is a 

medical treatment that results in impaired memory and cognitive function due to 

decreased hippocampal neurogenesis (Fan, Liu Z., Weinstein, Fike, & Liu J., 2007).  

Having an EE can increase neurogenesis in the dentate gyrus of gerbils along with MWM 

task performance and spatial memory following cranial irradiation (Fan et al., 2007).  

These findings indicate EE can ameliorate several hippocampal neurodegenerative 

stressors. 

Combined with the positive physiological changes caused by EE, social isolation 

is known to negatively impact memory formation.  Animals in social isolation perform 

worse on novel object recognition tasks, which is underlined by a loss in synaptic 

plasticity and function of hippocampal and cortical neurotransmitters (Marsden, King, & 

Fone, 2011).   In Han, Wang, Xue, Shao, & Li (2011) early stage isolation was associated 

with poorer performance in the MWM, along with decreased expression of BDNF in the 

nucleus accumbens and dentate gyrus.  Rats raised in post-weaning social isolation 

performed no different from rats given social interactions during development when 

administered a glutamate receptor agonist during isolation (Jones, Smith, Brown, Auer, & 
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Fone, 2011).  This indicates NMDARs are a potential site that is negatively affected by 

social isolation. 

One physiological mechanism that explains EE’s effect on memory is through its 

role in phosphorylating enzymes critical to LTP (Wang et al., 2007).  In Wang et al. 

(2007), hippocampal ERK1/2 was examined after animals completed a MWM procedure.  

The study found that the EE group showed higher phosphorylation levels for ERK2, and 

activation of ERKs is critical to synaptic plasticity (Adams & Sweatt, 2002).  Increased 

ERK activation is correlated with improved spatial memory in the MWM (Wang et al., 

2007).  This effect of EE has potential to attenuate MAPK signaling disruptions caused 

by Pb2+ exposure, overcoming adverse effects on LTP.  In Duffy, Craddock, Abel, & 

Nguyen (2003), a PKA inhibitor attenuated learning improvements caused by EE; 

indicating EE affects memory through PKA-dependent signaling pathways.  Multiple 

memory-related kinase pathways are positively influenced by EE 

1.8 Environmental enrichment attenuates the adverse effects of Pb2+ exposure 

 When combined with Pb2+ exposure, EE can counteract the adverse effects of Pb2+ 

exposure on memory.  In Schneider et al. (2001), animals raised in an EE were protected 

against Pb2+ induced memory inhibition, and showed elevated BDNF levels.  

Electrophysiological studies of hippocampal neurons also show an increase in LTP that 

correlates with memory task performance for Pb2+ exposed animals given an EE 

compared with Pb2+ exposed animals (Cao Huang, & Ruan, 2008).  In Zhu et al. (2011), 

spatial cognitive impairment due to hypoperfusion, which mimics possible effects created 

by heme synthesis inhibition, was reversed by an EE.  NR1 NMDAR subunit mRNA 

expression was increased in EE animals exposed to Pb2+ compared to animals only 
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exposed to Pb2+ (Guilarte, Toscano, McGlothan, & Weaver, 2003).  Giving rats an EE 

during development reverses Pb2+’s negative effects on memory by enhancing 

hippocampal BDNF expression, NMDAR expression, and LTP.  

Enhanced growth factor expression and improvement in neurotransmitter 

signaling are both central to EEs ability to overcome Pb2+-induced deficits in synaptic 

plasticity (Toscano & Guilarte, 2005; Van Praag et al., 2000).  EE increases expression 

for neurotransmitter receptors including the serotonin 1A receptor (Van Praag et al., 

2000).  Physical exercise can increase levels of neurotransmitters by increasing the 

expression of mRNA for enzymes that synthesize monoamine neurotransmitters such as 

tyrosine hydroxylase, which is involved in the synthesis of norepinephrine (Toscano & 

Guilarte, 2005).  Physical exercise is also known to increase choline uptake in the 

hippocampus, leading to enhanced hippocampal cholinergic signaling (Fordyce, 1991).  

Cholinergic signaling is negatively impacted by Pb2+ poisoning (Finkelstein et al., 1998), 

which can be ameliorated by EE.  EE enhances the expression of growth factors that are 

suggested to affect memory and synaptic plasticity, including BDNF and nerve growth 

factor (NGF) (Guilarte et al., 2003; Toscano & Guilarte, 2005; Van Praag et al., 2000).  

In Guilarte et al. (2003), BDNF expression reversed deficits in NR1 subunit expression in 

the hippocampus, but not NR2B, mGluR, or CaMK gene expression.  This change in 

NR1 expression is important for EE’s effect on memory and synaptic plasticity. 

It was previously thought that Pb2+-induced cognitive deficits that occurred during 

the critical period were permanent, however, EE has provided a paradigm for the reversal 

of the cognitive symptoms of developmental Pb2+ exposure.  Studies such as Schneider et 

al. (2001) have proven that cognitive deficits induced by developmental Pb2+ exposure 
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can be overcome by an EE.  Many of the physiological effects of Pb2+ exposure and EE 

appear to directly counteract each other.  Both ERK and cAMP-dependent protein kinase 

are inversely affected by developmental Pb2+ exposure and EE.  Increased levels of 

BDNF caused by EE exert a neuroprotective effect that counteracts Pb2+ exposure’s 

neurodegenerative effect.  Finally, EE causes transcriptional changes that enhance some 

of the physiological mechanisms involved in synaptic plasticity that are disrupted by 

developmental Pb2+ exposure. 

1.9 Testing working memory using the radial arm maze 

The radial arm maze (RAM) is a behavioral test used to study both working 

memory and spatial memory (Olton & Samuelson, 1976; Kolata & Kolata, 2007).  

Animals are introduced into the middle of a maze with multiple arms in a circular 

arrangement similar to the spokes of a wheel (figure 1).  Each arm radiates outward from 

the center, and half of the arms are baited with a food reward.  Animals must use spatial 

cues on each wall of the room in order to successfully navigate the maze by finding the 

food rewards.  However, rats must also use working memory to keep a record of which 

arms they have already entered during the task (Kolata & Kolata, 2007).  Working 

memory is a transient form of memory allowing animals to maintain task relevant 

information about the conditions for task completion (Baddeley, 2010).   

The RAM and other maze tasks require animal subjects to build a cognitive map 

of their environments (Hodges, 1996).  Using stable visual cues distributed throughout 

the environment, or allocentric visuospatial cues, rats develop cognitive maps in order to 

navigate their environments (Hodges, 1996).  The cognitive mapping theory states that 

animals such as rats use their hippocampus to encode a representation of the environment 
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using relative external stimuli or landmarks (an allocentric frame of reference), but not 

when a location is identified by its relative position to the observer (an egocentric frame 

of reference) (Holdstock, Mayes, Cezayirli, Isaac, Aggleton, & Roberts, 2000).  In Olton, 

Becker, & Handelmann (1980), extramaze visual cues were reversed, which caused an 

increase in both short-term reference-memory errors and long-term working memory 

errors.  Increased working memory errors indicated rats solved the task using associative 

learning between baited arms and the reward, which relies on both forming a cognitive 

map from extramaze and intramaze spatial cues and associating arms with their reward 

when forming the cognitive map (Hodges, 1996; Olton et al., 1980).  In Jarrard (1983), 

RAM tasks that required visuospatial learning, or place tasks, and tasks requiring 

associative learning through intramaze cues, or cue tasks, were separated and compared 

after hippocampal legions.  Both reference-memory and working memory errors were 

increased in the place tasks, whereas only working memory errors increased for the cue 

tasks (Jarrard, 1983).  This finding indicates rats form a visuospatial map for the location 

of cues they associate with baited arms.  Together, these findings indicate that rats build 

cognitive maps in their hippocampus by using visuospatial cues, which is critical to 

reducing long-term working memory errors in RAM tasks. 

In Kolata & Kolata (2009), mathematical models are used to compare animal 

working memory in the RAM model to working memory tasks for humans.  The working 

memory model is based on two parameters, number of maze arms and a fixed limit of 

memory capacity.  Both mathematical models for uniform search strategies and non-

uniform search strategies that factor in primacy and recency bias were compared by 

simulation, and did not differ significantly from each other (Kolata & Kolata, 2009).  The 
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result of these models based on experimental data from both rat and human RAM trials 

indicates a working memory capacity between three and nine objects, or arms that had 

previously been entered (Kolata & Kolata, 2009).  Human subjects in an 8-arm RAM 

with no other variables almost never re-enter an arm before entering all eight arms first 

(Glassman, Leniek, & Haegerich, 1998).  These subjects also report using spatial cues in 

order to keep track of the arms they entered.  This strategy of completing the task by 

human subjects appears similar to rodent methods of completing the RAM task using 

working spatial memory (Olton & Samuelson, 1976).  Both human and animal subjects 

appear to have similar strategies and working memory capacity when completing RAM 

tasks, providing this animal model with solid face validity for measuring working 

memory. 

Human working memory has traditionally been studied using memory tasks about 

discrete entities such as numbers or visual cues.  The human working memory capacity 

has been shown in repeated studies to be between four and seven different objects 

(Cowan, 2001).  Because these types of verbal and visual memory tasks are unable to be 

run with rodents, developing valid animal models of working memory is challenging.  In 

Olton & Samuelson (1976), animals showed a recency effect, meaning their likelihood of 

making a short-term error increased with the number of different arm choices since the 

initial instance.  Animals chose an average of seven different arms with their first eight 

choices (Olton & Samuelson, 1976).  These results indicate that animals succeed at the 

RAM task by storing spatial information rather than using odor trails or stereotypic 

response patterns (Glassman et al., 1998).  Working memory in these animals also shows 

bias for recently acquired task-relevant information just as in human models (Glassman et 
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al., 1998).  Furthermore, a “task-completion pause” was observed in rats that completed 

the RAM task (Dale, 1986), indicating the use of working memory to complete the maze 

task rather than a reward-based response pattern algorithm.  These studies provide 

evidence for construct validity in the RAM model, or the validity of inferences made 

about human working memory from studying animal’s RAM task performance.  

The RAM can be used to study the mechanisms behind memory formation.  

Drugs that decrease BDNF levels, such as prenatal opioid exposure, decrease memory 

performance in the RAM (Schrott, Franklin, & Serrano, 2008).  Elevated BDNF mRNA 

levels are associated with improved memory on RAM tasks (Mizuno et al., 2000).  

Blocking NMDARs inhibits their involvement in LTP and memory formation, which 

translates to decreased RAM performance (Levin, Bettegowda, Weaver, & Christopher, 

1998).  When administered a NMDA antagonist that is known to cause memory deficits, 

animals showed decreased performance in working and reference memory in the RAM 

(Levin et al., 1998).  Nicotine agonists can overcome these memory deficits at high 

enough doses (Levin et al., 1998).  However, after lesion of the ventral hippocampus, no 

nicotine-induced improvements in working memory were found (Levin, Christopher, 

Weaver, Moore, & Brucato, 1999).  "7 and "4#2 nicotine receptor subunit antagonists 

induce similar memory impairment on RAM tasks when administered into the 

hippocampus (Felix & Levin, 1997; Levin, Bradley, Addy, & Sigurani, 2002).  Because 

hippocampal cholinergic neurons are involved in working memory function (Felix & 

Levin, 1997), these studies indicate the RAM has predictive validity as physiological 

changes that are known to interfere with memory performance translate to decreased 

RAM task performance.  
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The hippocampus is clearly involved when animals build cognitive maps during 

RAM tasks; however, it is unclear whether the hippocampus is involved in visual 

working memory (Baddeley, 2011).  In Olson (2006), humans with medial temporal lobe 

damage, which includes the hippocampus, showed impairment in visual working memory 

tasks.  However, in Baddeley, Jarrold, & Vargha-Khadem (2011), a human subject with 

significant reduction in bilateral hippocampal cells showed no impaired performance in 

visuospatial working memory tasks.  One explanation for this discrepancy is that 

participants in Olson, Moore, Stark, & Chatterjee (2006) performed visual working 

memory tasks that involved allocentric visual processing, as opposed to tasks in Baddeley 

et al. (2011) that involved egocentric visual processing.  Because the RAM is a task that 

requires a greater amount of allocentric visual processing (Hodges, 1996), working 

memory tasks in the RAM are likely to involve hippocampal neurons. 

Several studies have used the RAM to examine the hippocampus’ role in memory.  

Activation of neurons in the dorsal hippocampus and medial prefrontal cortex were 

measured after a RAM task, and the dorsal hippocampus was more active after the time-

window for short-term memory range was exceeded, and the memory starts becoming 

consolidated (Lee & Kesner, 2003).  Knocking out aryl hydrocarbon receptor (AhR), 

which are expressed at relatively high levels in the hippocampus and are involved in the 

development and regulation of the hippocampus, caused decreased performance on RAM 

tasks by female rats (Powers, Lin , Vanka, Peterson, Juraska, & Schantz, 2005).  

Decreased RAM performance was correlated with decreased size of female rat 

hippocampal intra and infrapyramidal mossy fiber fields (Powers et al., 2005).  This 

study shows drugs that decrease hippocampal volume correlate with worse performance 
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in RAM tasks.  In Munoz, Garbe, Lilienthal, & Winneke (1988), dorsal hippocampal 

lesions showed no affect on RAM acquisition, however, memory recall of the RAM 

several weeks later was significantly worse in animals with a hippocampal lesion.  It is 

clear that hippocampal activity is required for many aspects of working memory required 

for RAM tasks. 

The effects of EE can be studied using RAM tests.  The RAM and MWM were 

used to study how allowing rats social cages, physical exercise, and interactions with toys 

improved latency and maze error scores compared to rats with no EE (Leggio et al., 

2005).  Animals with a developmentally EE displayed improved performance on the 

RAM, which was blocked by a cholinergic antagonist (Tees, 1999).  These findings are 

consistent with previous findings that hippocampal activation is required for RAM tasks 

(Stackman & Walsh, 1995), and the hippocampus contains cholinergic neurons important 

in working memory (Levin et al., 1999; Levin et al., 2002).  In Langdon & Corbett 

(2012), animals were subjected to different forms of EE including habitual physical 

activity and cognitive activity.  These animals showed improved RAM performance, 

along with elevated levels of hippocampal BDNF (Langdon & Corbett, 2012).  EE causes 

animals to improve memory function on the RAM, which appears to be related to 

physiological changes in memory related proteins and brain regions.   

1.10 Testing hippocampal volume using NeuN 

In order to measure cell death in the hippocampus, the neuronal nuclear antigen 

(NeuN) is used to quantify the number of neurons in each of our treatment groups.  NeuN 

was first described in Mullen, Buck, & Smith (1992), as a soluble nuclear protein that is 

expressed in mostly all vertebrate neurons, and is not found in other cells besides 
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neurons.  NeuN begins expression right after a neuron initially develops following 

differentiation from a pluripotent cell, and continues to be expressed in mature adult 

neurons (Mullen et al., 1992).  This makes NeuN antigens a good way to determine the 

overall number of neurons in different brain regions.  Since Pb2+ is known to cause 

neuronal death, particularly in the hippocampus, we can use NeuN to measure this 

neurodegenerative effect along with the neuroprotective effect of EE. 

The NeuN antigen can be used to show neuroprotective or neurodegenerative 

effects of drugs or other environmental factors.  These effects can be measured in specific 

brain regions such as the hippocampus, and correlated with behavioral data to show 

involvement of these brain regions in behavioral outputs.  Carboxypeptidase E knockout 

mice show fewer neurons than the wild type in the CA3 region hippocampal subfield 

(Woronowicz et al., 2008).  This result was correlated with a significantly increased 

latency to complete the MWM task during memory acquisition for knockout mice.  In 

Collombet et al. (2011), the neuroregenerative effect of cytokine treatment was 

determined using NeuN antigens after soman poison-induced brain lesions.  NeuN 

staining indicated cytokine treatment significantly increased neural regeneration in the 

hippocampus. However, this did not significantly correlate with improved memory task 

performance, which indicates the neuroregenerative effects were not enough to overcome 

deficits caused by the lesions. 

Physiological mechanisms that influence memory formation can be studied for 

their neuroregenerative effects using NeuN.  Following stroke-induced neuron death, 

neurogenesis in the hippocampus was blocked using an NMDAR antagonist, indicating 

NMDARs are involved in neurogenesis (Arvidsson, Kokaia, & Lindvall, 2001).  
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Intrahippocampal BDNF injections have also been shown to increase neurogenesis in the 

hippocampus using the NeuN antigen (Scharfman, Goodman, Macleod, Phani, Antonelli, 

& Croll, 2005).  In Boscia, Esposito, Di Crisci, Franciscis, Annunziato, & Cerchia, 

(2009), the neuroprotective effects of GDNF, a neurotropic factor increased by EE 

exposure (Van Praag et al., 2000), was examined in CA1 and CA3 hippocampal sections 

after excitotoxic cellular injury evoked by NMDA exposure.  NeuN 

immunohistochemistry revealed that GDNF protected to a greater extent in the CA3 

subfield of the hippocampus (Boscia et al., 2009).  The NeuN antigen is an accurate 

marker of neuroprotective and neurodegenerative effects in specific brain regions.  

NeuN antigens have also been used to show how an EE can have neuroprotective 

effects against agents that cause cell death such as Pb2+.  EE can enhance hippocampal 

neurogenesis and memory task performance following ischemia-induced cell death 

(Matsumori et al., 2006).  One physiological change that occurs in depression is 

hippocampal cell loss, which can be ameliorated by an EE (Hattori et al., 2007).  In 

animal models such as chronic stress that cause hippocampal cell death, EE can 

overcome the loss of hippocampal neurons (Veena, Srikumar, Raju, & Shankaranarayana 

Rao, 2009). NeuN staining revealed BDNF knockout mice with an EE show no 

significant increases in neurogenesis compared to BDNF heterozygotes with the same 

environment, which indicates BDNF is critical to the physiological affects of EE (Rossi 

et al., 2006).  The affect of enriched EE on hippocampal neuroprotection following Pb2+ 

induced cell death will be measured by the NeuN antibody.  

1.11 Testing hippocampal activation using c-Fos 
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In order to measure cellular activation in the hippocampus, c-Fos 

immunohistochemistry was used.  The c-Fos protein is an immediate early inducible 

transcription factor (Beckmann & Wilce, 1997).  Expression of these immediate early 

transcription factors increases rapidly following administration of neurotransmitter 

analogues (Beckmann & Wilce, 1997), indicating neurotransmitter activity controls the 

expression of c-Fos.  Electrical activity throughout hippocampal subfields also induces c-

Fos expression (Beckmann & Wilce, 1997).  These results indicate c-Fos expression 

correlates with neural stimulation and communication.  Because RAM tasks require 

hippocampal activation, we used c-Fos to examine the differences in hippocampal 

activation between rats in different treatment groups. 

c-Fos immunohistochemistry can be used to assess how chronic Pb2+ exposure 

effects cellular activation.  In Lewis & Pitts (2004), rats were chronically exposed to Pb2+ 

during development prior to administration of amphetamine as adults.  Following 

amphetamine administration, c-Fos immunohistochemistry revealed Pb2+ exposed 

animals had significantly less activation in their striatum, a brain region that is activated 

following amphetamine administration (Lewis & Pitts, 2004).  This result indicates 

developmental Pb2+ exposure leads to decreased neural activation in specific brain 

regions compared to animals not exposed to developmental Pb2+.  Similar to how 

amphetamine administration induces striatal activation, rat’s exposed to a RAM task will 

have increased hippocampal activation.  Our present study used c-Fos 

immunohistochemistry to determine if developmental Pb2+ exposure leads to decreased 

hippocampal activation following the RAM task. 
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Environmental enrichment could also cause differential patterns of neural 

activation.  Several brain regions are more active when animals are exposed to EEs, 

including the dentate gyrus and CA3 hippocampal subfields (Ali, Wilson, & Murphy, 

2009).  Increased activation in these hippocampal regions could potentially strengthen 

synaptic connections in response to enrichment, which would lead to elevated c-Fos 

expression during tasks that involve hippocampal activation including the RAM.  

Hippocampal neurons are also involved in the response to stress, and socially isolated 

animals have elevated stress levels compared to control animals (Ali et al., 2009).  

Because enrichment and isolation both induce hippocampal activation for different 

reasons, we would expect enriched and isolated rats to show differential neural activation 

throughout hippocampal subfields. 

1.12 Objectives of present study 
 
 The goal of our study was to examine the effects of developmental Pb2+ exposure 

and EE on working and reference memory acquisition and performance and hippocampal 

neuron survival. We hypothesized that developmental Pb2+ exposure would cause 

decreases in RAM performance, which is indicative of visuospatial working memory 

deficits.  We further hypothesized that the Pb2+ induced deficits in RAM performance 

would be ameliorated for rats reared in an EE.  NeuN was used to examine hippocampal 

cell density in three hippocampal regions (CA1, CA2, and CA3).  We hypothesized Pb2+ 

exposure would decrease the number of mature neurons across all subfields of the 

hippocampus, and that rearing in an enriched environment would ameliorate Pb2+ induced 

decreases in mature neurons across all hippocampal subfields.  During the course of our 

study, Pb2+ exposure caused no behavioral deficits in rats during RAM testing.  Because 
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of this result, we changed the aim of our study to investigate hippocampal activation by 

using c-Fos immunohistochemistry instead NeuN immunohistochemistry.  We 

hypothesized Pb2+ exposed animals would show decreased hippocampal activation.  We 

further hypothesized that rearing in an EE would cause differential patterns of 

hippocampal activation.  Our results confirm that enriched rats perform significantly 

better during RAM testing, indicating that rearing in an EE improves working 

visuospatial memory in rats. 
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Figure 1. Hippocampal Subfields 

 
 
Figure 1. A layout of the different hippocampal subfields (adapted from Andersen et al., 
2007).  The major hippocampal pathway, or perforant pathway, first receives input at the 
entorhinal cortex, and is projected to the dentate gyrus.  The dentate gyrus then projects 
axons into the CA3 subfield, which is subsequently sent to the CA2 and CA1 subfields.  
The information then is sent to various places including the subiculum, presubiculum, 
and parasubiculum, before being projected to other brain regions including the cortex. 
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Method 
Animals and Environment 
 
 Thirty-two male Sprague-Dawley rats (Charles River Labs) were used as subjects 

in this experiment. Immediately upon arrival on post natal day 21 (PN21), rats were 

randomly separated into a housing condition with either an impoverished environment or 

an enriched environment.  Impoverished condition rats were housed in single cages and 

had no access to stimulus objects within their cages.  Enriched condition rats were housed 

in group cages with four rats to each cage and had stimulating toy objects in their cages 

including balls, wheels, tunnels, and a housing structure to lie underneath.  Both groups 

had ad lib food and water access for the entire time they were housed in the facility, 

except for the RAM testing days where animals were food deprived.  Rats were given ad 

lib food for one hour after they completed the RAM task.  After one hour, food was 

removed and rats were deprived of food until their next day of testing.  All animals were 

kept in identical cages on housing racks in the same room.  The room was temperature 

controlled and kept on a 24-hour light/dark cycle (12 hours light/12 hours dark) so rats 

received identical conditions.  On the start of testing (PN54), rats weighed an average of 

267.34 g.  

 Within each housing condition, rats were further divided into different Pb2+ 

exposure conditions.  The Pb2+ exposed group received 1500ppm Pb2+ acetate in the food 

pellets they were given to eat throughout the experiment, while the non-Pb2+ control 

group was given normal rat chow without Pb2+ acetate.  Pb2+ exposed rats were not 

housed at the same time with non-exposed rats to prevent airborne and other forms of 

inadvertent Pb2+ exposure.  The concentration of Pb2+ given to rats in this experiment is 

the highest dose or only dose given in the chow of animal subjects in many other 
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experiments (Jett & Guilarte, 1995; Munoz et al., 1988; Nihei & Guilarte, 1999).  Our 

study consisted of four groups and two treatment conditions (EE and Pb2+ exposure) 

(Table 1).  These conditions were maintained throughout the experiment until the rats 

were sacrificed on PN78. 

 Animals were immediately separated into the one of the two housing conditions 

upon arrival to the facility.  Following the first day of acclimation in the lab, rats were 

given 30 days post weaning exposure to their group’s dietary conditions.  During this 

time, cages were cleaned every 5 days.  Following the 30 days of exposure, rats began 

testing on the radial arm maze (RAM) on PN54.  Rats were tested for 18 days on the 

(RAM) before being allowed another week of exposure to their environments.  On PN78, 

the rats were tested once more on the RAM for memory recall.  Following this test on 

PN78, rats were sacrificed 30 minutes following their completion of the RAM task.  All 

parts of this experiment were approved prior to the beginning the research by the 

Connecticut College Animal Care and Use Committee (IACUC).     

 
Radial Arm Maze Apparatus 
 
 The Radial Arm Maze (RAM) procedure is adopted from Olton & Samuelson 

(1976) as a test of visuospatial working memory and reference memory.  Animals were 

placed in the middle of an apparatus that consists of eight arms with walls and a central 

octagonal platform (26 cm in diameter). The arms (50 cm long, 10 cm wide and 13 cm 

high) are made of grey Plexiglas mounted on an opaque platform (figure 2).  The 

apparatus was placed in the center of one side of a room with three surrounding walls.  

The three walls surrounding the apparatus had three separate symbols, a circle, square, 

and triangle, made from black tape for the rat to use as spatial cues.  The fourth side was 
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empty space with a constant backdrop of supplies against the far side of the room.  Each 

arm was numbered differently, and kept consistent for the webcam recording device.  The 

webcam was positioned above the maze in the center and connected with the webcam 

recording program to analyze trial errors and latency. 

Radial Arm Maze Procedure 
 
 At PN52, rats in each experimental group began acclimation to the RAM 

apparatus.  Food rewards (chocolate flavored rice cereal) were placed in each of the eight 

arms and rats were allowed to explore the arms for 5 minutes.  Non-enriched control 

animals were exposed individually to the apparatus, while enriched condition animals 

were exposed to the apparatus in pairs.  At PN53, rats were each placed individually in 

the center of the apparatus and were given 10 minutes to explore and retrieve food 

rewards located in each of the eight arms.  Each rat was able to complete at least four 

arms before progressing to testing.  On PN54 rats in each group began testing 

individually.  Rats were randomly assigned four arms that a food reward was placed in, 

and this was kept consistent throughout experimentation.  Rats were given ten minutes to 

complete the maze activity, which occurred when the rat was able to find all four of the 

food rewards.  Rats were video recorded, and recorded for latency to complete the task, 

short-term reference memory errors, and long-term working memory errors.  Working 

memory errors were recorded when a rat reentered a baited arm that the rat had already 

been too during the trial.  Reference memory errors were recorded any time a rat entered 

an arm that did not contain a food reward.  All rats continued to perform the task 

throughout the 18-day period to eliminate the number of previous trials rats completed as 
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a variable for the recall test.  At PN76, following the 7-day period without testing, rats 

were tested once more using the same procedure as the 18-days of prior RAM testing. 

Tissue Preparation 
 
 After completing the recall phase of testing (PN78), rats were sacrificed for tissue 

harvest between 30-40 minutes after completing their task in the RAM apparatus.  Rats 

were placed in an enclosed glass chamber and asphyxiated using carbon dioxide.  This 

was followed immediately by transcardial perfusion with 400-500 mL of 0.1 M 

phosphate buffer saline (PBS), followed by 400-500 mL of 4% paraformaldehyde in 0.1 

phosphate buffer (PB).  Using ronguer forceps, the brain was extracted, and stored in the 

same 4% paraformaldehyde solution for one day.  The following day, brains were 

removed and transferred to a 30% sucrose/PBS with sodium azide solution until tissue 

sectioning.  Hippocampal sections were taken at approximately 3.14 mm posterior to 

Bregma, (Paxinos & Watson, 1998) from each animal, and were sliced at 40!m and kept 

in a PBS solution. 

c-Fos Immunohistochemistry 
 

Rabbit anti-Fos polyclonal (c-Fos) primary antibody (Santa Cruz Biotechnology, 

Santa Cruz, CA, 1:8000) was used to identify neurons that contained the c-Fos protein, a 

member of the activating protein-1 (AP-1) transcription factor family (Monje, 

Hernandez-Losa, Lyons, Castellone, & Gutkind, 2005).  c-Fos is usually expressed when 

neurons fire an action potential (Dragunow & Faull, 1989), making it a marker of neural 

activation.  An enhanced DAB (3,3’-diaminobenzidine) detection step was used along 

with a horseradish peroxidase and biotinylated goat anti-mouse secondary antibody 
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(Jackson Laboratory, Bar Harbor, ME, 1:200) for the reaction step of 

immunohistochemistry (IHC) staining of sections. 

 For each animal, three tissue sections (falling between -3.60 and -3.80 from 

Bregma) were prepared for IHC.  The tissue was first washed three times for ten minutes 

each in a 0.01M PBS.  Sections were next transferred to a solution containing the c-Fos 

primary antibody (1:8000) dilution buffer in a blocking solution to prevent non-specific 

binding of immunoglobin.  This tissue was left with the primary antibody in a shaker 

overnight.  Approximately 24 hours later, the tissue was washed in 0.01M PBS three 

separate times for ten minutes each.  During this wash, the biotinylated goat anti-rabbit 

polyclonal secondary antibody (Jackson Laboratory, Bar Harbor, ME, 1:200) dilution 

buffer was prepared in a blocking solution.  The tissue was then washed in the secondary 

antibody for two hours while left on a shaker.   

 The tissue was again washed three times for ten minutes each in 0.01M PBS.  

During this wash, Avidin-biotin complexed with horseradish peroxidase (ABC Kit, 

Vector Laboratories) was prepared in PBS.  The tissue was next left on a shaker in the 

horseradish peroxidase solution for one hour.  Before the reaction step, the tissue was 

washed three times for ten minutes each in PB.  During these washes, enhanced DAB 

solution was prepared and used as the final reagent in the series of enzymatic reactions 

that creates tissue staining. One DAB tablet (10mg) was placed in 50 mL of 0.01 M PB 

with 25!L glucose oxidase, 800!L nickel ammonium sulfate solution, 500!L of cobalt 

chloride solution, and 20mg of ammonium chloride and sonicated for ten minutes. 25 mg 

of D-glucose in 2mL of ddH2O was added to the enhanced DAB solution immediately 

before the tissue was transferred into it.  The staining was developed while the tissue was 
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washed on a shaker in the enhanced DAB solution for fifteen minutes.  Finally, the tissue 

was washed three times for ten minutes each in PBS.  

Sections were positioned on glass slides and dried overnight. The following day 

they were dehydrated through a number of graded ethanol washes (50%, 75%, 90%, 

95%, and 100%) and placed in a clearing solution before permanent mounting. The slides 

were coverslipped using a mounting medium for microscopic evaluation.   

c-Fos analysis 

One of three c-Fos stained sections of the hippocampal region (between -3.6 and -

3.8 mm from Bregma) of each animal was selected and examined using the Olympus 

BX41 Microscope under 20X magnification. Using IPLab 3.6 software, pictures of CA1, 

CA2 and CA3 hippocampal subfields were taken. A fixed rectangular area was placed on 

each of the three brain regions and applied uniformly to the captured pictures, which was 

consistent for each animal.  c-Fos positive neurons were identified by their dark-brown 

stains.  The experimenter remained blind to what condition the animal was in while 

counting c-Fos positive neurons. 
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+" Pb2+ #$%&'()%*"
," Pb2+ #$%&'()%*"
-" Pb2+ #$%&'()%*"
." Pb2+ #$%&'()%*"
/" Pb2+ #$%&'()%*"
0" Pb2+ #$%&'()%*"
1" Pb2+ #$%&'()%*"
2" Pb2+ 3*4)5678"

!9" Pb2+ 3*4)5678"
!!" Pb2+ 3*4)5678"
!+" Pb2+ 3*4)5678"
!," Pb2+ 3*4)5678"
!-" Pb2+ 3*4)5678"
!." Pb2+ 3*4)5678"
!/" Pb2+ 3*4)5678"
!0" Control #$%&'()%*"
!1" Control #$%&'()%*"
!2" Control #$%&'()%*"
+9" Control #$%&'()%*"
+!" Control #$%&'()%*"
++" Control #$%&'()%*"
+," Control #$%&'()%*"
+-" Control #$%&'()%*"
+." Control 3*4)5678"
+/" Control 3*4)5678"
+0" Control 3*4)5678"
+1" Control 3*4)5678"
+2" Control 3*4)5678"
,9" Control 3*4)5678"
,!" Control 3*4)5678"
,+" Control 3*4)5678"

 
Table 1. Housing and dietary condition for each of the 32 animals.  These animals were 
divided into 4 groups (Isolation/Pb2+, EE/Pb2+, Isolation/Control, EE/Control). 
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Figure 2. Layout and Dimensions of the Radial Arm Maze 

 
 
Figure 2. A diagram representing the layout of the Radial Arm Maze.  Each wall of the 
maze was constructed with grey plastic and the base was also grey.  The arms (50 cm 
long, 10 cm wide and 13 cm high) are made of grey Plexiglas mounted on an opaque 
platform.  The maze was located in a room surrounded by three walls, each with a 
separate symbol (circle, square, and triangle) made out of black duct tape.  Rats were 
placed in the maze in the middle as shown in the figure.  The rat’s movement was tracked 
using a video recorder placed directly above the maze. 
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Results 
 
 During radial arm maze testing, animals reared in an EE consistently performed 

better during their testing than animals reared in isolation. A significant main effect, 

F(3,31)=7.242, p<0.001 was seen for the overall latency to complete the RAM task 

across each treatment group over the entire testing period.  Tukey’s post hoc tests 

revealed control diet animals reared in isolation showed significantly more latency to 

complete the RAM task over the 18 days of testing compared with isolated animals, 

p<.05 (Figure 3).  Animals fed Pb2+ laced chow during testing and given an EE also 

completed the RAM task with significantly less latency compared to Pb2+ exposed 

animals that were isolated, p<.05 (Figure 4).  For short-term working memory errors, a 

significant main effect was seen between the four treatment groups, F(3,31)=6.226, 

p<0.05.  Tukey’s post hoc tests revealed animals fed a control diet throughout testing and 

raised in an isolated environment committed significantly more errors than animals fed a 

control diet and raised in an enriched environment, p<.05 (Figure 5).  A significant main 

effect was also seen in the long-term reference memory errors, F(3,31)=3.228, p<0.05 .  

Tukey’s post hoc tests indicated the control diet and socially isolated group committed 

significantly more errors when completing the radial arm maze task than the control diet 

and enriched environment group, p<.05 (Figure 6).   

 Animals reared in an EE performed significantly better during memory retention 

testing than animals reared in isolation.  Significant main effects across the four treatment 

groups was also seen when comparing RAM task completion latency during memory 

recall testing, F(3,31)=4.142, p<0.05.  Tukey’s post hoc tests showed that animals fed a 

control diet and reared in isolation completed the RAM task with significantly higher 
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latency during memory retention testing compared with animals reared in an enriched 

environment, p<.05 (Figure 7).  Significant overall differences were also seen when 

testing reference memory errors during memory recall testing, F(3,31)=4.030, p<0.05.  

Tukey’s post hoc tests revealed animals fed a control diet and reared in an enriched 

environment had significantly more reference memory errors compared with socially 

isolated animals during memory recall, p<.05 (Figure 8).  No significant differences were 

seen in working memory errors between socially isolated and enriched animals (Figure 

9).  No significant effects were seen between control diet and Pb2+ exposed animals 

during any memory retention radial arm maze tasks.   

 No significant main effect was seen for either treatment group when 

comparing radial arm maze testing on the last day of testing (day 18) and memory 

retention testing (day 25) for both working and reference memory errors or latency.  

Comparison of the first 5 days of testing is indicative of the animal’s initial learning 

curve.  A significant main effect is seen for latency to complete the RAM task during the 

first five testing days, F(1,28)=14.011, p<.001.  Tukey’s post hoc tests revealed that 

animals fed a Pb2+ diet and reared in an EE were significantly more latent completing the 

RAM task compared to animals fed a control diet and reared in social isolation.  A paired 

t test between the beginning of the radial arm maze testing (day 2) and the end of testing 

(day 18) revealed that animals significantly improved their latency to complete the RAM 

task during the initial testing period t(31)=6.3759, p<.001, indicating that across groups, 

animals improved their ability to complete the RAM task.  Overall our behavioral results 

indicated Pb2+ exposure had no effect on RAM task performance.  Due to our results, we 

did not expect NeuN to reveal significant findings in the hippocampus.  Instead, we 
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proceeded by investigating if there were different levels of hippocampal activation by 

using c-Fos immunohistochemistry. 
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Figure 3. Latency of radial arm maze task acquisition: control diet animals 

!
!
Figure 3.  Learning acquisition of discovering all for baited arms as measured by the 
latency (seconds) to complete the radial arm maze task.  Rats that were fed a control diet 
are compared for differences in the group reared in isolation and the group reared with an 
enriched environment.  The overall latency between the groups is summed for every two-
day interval starting on day 2 and ending on day 18.  The area under the curve was 
calculated for each animal and the group average compared for statistical significance.  A 
one-way ANOVA revealed a significant main effect across conditions F(3,31)=7.242, 
p<0.001.  A Tukey’s HSD test revealed enriched animals in the control diet condition had 
significantly lower completion latency p<0.05.   
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Figure 4. Latency of radial arm maze task acquisition: Pb2+ exposed animals 

!
!
Figure 4.  Pb2+ exposed animals were also compared after significant latency (seconds) 
differences were found across dietary Pb2+ and housing condition variables, 
F(3,31)=7.242, p<0.001.  Animals reared in isolation and fed dietary Pb2+ showed 
significantly more latency when completing the radial arm maze task compared with Pb2+ 
exposed animals reared in an enriched environment over the entire 18-day testing period 
(p<.05). 
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Figure 5. Working memory errors during radial arm maze testing 

!!
 
Figure 5.  The number of working memory errors was compared between each animal 
between day 2 and day 18 of testing.  The total number of errors between each 2-day 
testing interval was graphed, and the average area under each graph was compared for 
each group.  A one-way ANOVA found a significant main effect across conditions, 
F(3,31)=6.226, p<0.05.  A Tukey’s HSD test revealed that animals fed a control diet and 
reared in isolation made significantly more working memory errors during RAM testing 
compared to animals reared in an enriched environment p<.05. 
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Figure 6. Reference memory errors during radial arm maze testing 

!!
!
Figure 6.  The number of reference memory errors was compared between each animal 
between day 2 and day 18 of testing.  The total number of errors between each 2-day 
testing interval was graphed, and the average area under each graph was compared for 
each group.  A one-way ANOVA found a significant main effect across conditions, 
F(3,31)=3.228, p<0.05.  A Tukey’s HSD test revealed that animals fed a control diet and 
reared in isolation made significantly more reference memory errors during RAM testing 
compared to animals reared in an enriched environment p<.05. 
!
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Figure 7. Latency to complete memory retention task 

 
 
Figure 7.  Memory recall of the radial arm maze task on testing day 25 was measured by 
comparing the rats overall latency of animals completing radial arm maze task on day 25.  
A one-way ANOVA revealed a significant main effect across conditions, F(3,31)=4.142, 
p<0.05.  A Tukey’s HSD test indicated that control animals reared in isolation showed 
significantly more latency to complete the maze compared to animals reared in an EE, 
p<.05. 
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Figure 8. Reference memory errors during memory retention testing

!
!
Figure 8.  Reference memory errors were compared on testing day 25 to examine if rats 
were able to equally recall the visuospatial and other long-term memories about the radial 
arm maze task.  A one-way ANOVA revealed a significant main effect across conditions, 
F(3,31)=4.030, p<0.05.  A Tukey’s HSD test indicated that animals fed a control diet and 
reared in an enriched environment had significantly fewer reference memory errors 
compared to animals fed a control diet and reared in an isolated environment, p<.05.   
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Figure 9. Working memory errors during memory retention testing

 
 
Figure 9.  Working memory errors were compared on testing day 25 to examine if rats 
retained any aspect of their differences in working memory performance during the 18-
day testing period.  A one-way ANOVA did not reveal a significant main effect 
F(3,31)=0.876, p>0.05. 
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Discussion 

Results of this study provide evidence in support of EE enhancing working and 

reference memory acquisition.  Findings also indicate that EE enhances memory recall of 

the RAM task after a week without performing the task.  Significant effects were not seen 

between Pb2+ exposed animals and control diet animals.  There were no significant 

effects during memory retention testing for the treatment variable of Pb2+ exposure either.  

Pb2+ exposed animals did not have significantly more working or reference memory 

errors during the 18 days of testing compared with animals on a control diet.  These 

results indicate Pb2+ exposure did not significantly affect visuospatial working or 

reference memory acquisition or retrieval.  In Jarrard (1983), rats exposed to different 

aspects of the RAM task showed performance consistent with the use of an allosteric 

hippocampal map.  Since hippocampal volume is positively correlated with RAM task 

performance (Powers et al., 2005), and Pb2+ exposed rats in our study did not show RAM 

task performance deficits, we expected to find that Pb2+ exposure in our study did not 

decrease the number of hippocampal cells compared with control diet animals.      

Our data indicates animals reared in isolation performed significantly worse 

compared with animals reared in an EE, regardless of whether or not they were exposed 

to Pb2+.  The effect of enrichment on memory acquisition in our study is consistent with 

previous reports that EE enhances memory acquisition (Leggio et al., 2005; Llorens-

Martín et al., 2007, Van Praag et al., 2000).  Elevated expression of BDNF has been 

shown to improve RAM performance (Mizuno et al., 2000), and increases in BDNF 

expression are seen in rats reared with an EE (Schneider et al., 2001; Guilarte et al., 

2003).  Social isolation can also decrease hippocampal BDNF levels (Han et al., 2011), 
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which is associated with decreased performance on the RAM.  Our results also indicate 

that enriched rats performed better at recalling long-term reference memories in RAM 

tasks after a week of no testing compared with isolated rats.  This result is consistent with 

Fischer et al. (2007) where rats exposed to an EE were able to re-establish long-term 

memories following brain atrophy induced hippocampal cell loss.  Working memory 

performance was not affected by enrichment, which is consistent with our definition of 

working memory as a transient form of task-relevant information that is not committed 

into long-term memory.  Our results provide further evidence that EE enhances memory 

acquisition and retrieval. 

Our conclusion that Pb2+ exposure does not inhibit hippocampal-dependent 

memory acquisition is different from other studies where Pb2+ exposure significantly 

decreases hippocampal spatial memory (Kuhlmann et al., 1997).  Working memory is 

different from other forms of hippocampal memory because working memory also 

involves other brain regions such as the medial prefrontal cortex (Lee & Kesner, 2003).  

In Jett et al. (1997), a working memory paradigm was developed and tested on the Morris 

water maze.  Pb2+ exposed animals showed no differences in escape latency compared 

with control animals in the working memory paradigm.  Like our present findings, this 

study indicates developmental Pb2+ exposure does not have a robust effect on working 

memory.     

 Memory recall was not affected by Pb2+ exposure, which also appears to conflict 

with previous results.  In Munoz (1988), memory recall was tested in RAM tasks weeks 

later after animals were given dorsal hippocampal legions.  Hippocampal legions 

decrease the number of neurons in the hippocampus, which is analogous to our 
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hypothesis for Pb2+ exposure.  Pb2+ exposed animals did not show impaired memory 

retrieval during any RAM task.  Performance between the final trial during the 18 days of 

RAM testing and the memory recall trial were not significantly different in Pb2+ exposed 

rats.  Our results indicate Pb2+ did not decrease hippocampal cells that are involved in 

memory recall.  

 One explanation for our Pb2+ exposure results is that our Pb2+ exposure period 

was too late into the rat pup’s neural development.  In humans, the brain undergoes 

elevated periods of experienced-based synaptic plasticity and neural circuit formation 

between 18-36 months after birth (Goldstein, 1990).  Evidence suggests that rat nervous 

systems undergo a corresponding critical period of synaptogenesis much earlier in life 

during weaning from their mother’s care (Toscano & Guilarte, 2005).  Peak hippocampal 

LTP activity in the rat nervous system occurs at approximately day 14-15 after the rat 

was born (Harris & Teyler, 1984).   This time period is also when NMDAR expression is 

at highest levels in the hippocampus (Toscano & Guilarte, 2005).  Because our present 

study design began Pb2+ exposure at PN21 of the rat’s lives, our subject’s brains could 

have already undergone periods of increased synaptogenesis and neural circuit formation.  

If our rat subjects went through critical periods of neural development prior to their 

period of Pb2+ exposure, memory performance would not be disrupted by Pb2+ exposure.   

 In Kuhlmann et al. (1997), different groups of rats were exposed to Pb2+ at 

varying points in their lifetime.  Some animals were exposed to Pb2+ in utero through 

their mother’s diet, which continued through weaning, as the pups were breast-feeding.  

Other groups received Pb2+ after they were finished weaning at PN 21.  Rat’s exposed to 

Pb2+ in utero showed a significantly slower escape latency from the Morris water maze as 
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adults compared with the control group.  On the other hand, rats given Pb2+ after PN21 

did not show any significant spatial memory impairment in the Morris water maze task 

compared with control animals.  This finding indicates that rats respond differently to 

Pb2+ exposure depending on the time period in which they are exposed to environmental 

Pb2+.   

 Because of our conclusion that Pb2+ did not affect hippocampal volume based on 

behavioral data, we concluded NeuN IHC analysis of mature hippocampal neurons was 

unnecessary considering there was not a significant effect for Pb2+ exposure.  Since our 

behavioral data indicated that EE does affect RAM performance, we decided to pursue 

cFos staining in the hippocampus instead of NeuN staining.  The effects Pb2+ exposure 

had on the death of hippocampal neurons were not great enough to cause memory 

impairments.  Instead, we became interested in how EE elicits neurological changes that 

leads to enhanced memory performance.  c-Fos staining measures cell activation 

(Dragunow & Faull, 1989), and we were interested to see if any significant changes in 

hippocampal activity occurred between the enriched and socially isolated animals.  

 When c-Fos immunohistochemistry staining was performed on hippocampal 

sections from our animals, no specific staining was seen for the c-Fos antigen.  There are 

several reasons why our c-Fos staining could have failed to specifically target the c-Fos 

protein.  Endogenous peroxidase activity can react with the enhanced diaminobenzidine 

(DAB) solution to create staining that is not specific to the c-Fos protein.  Antibody 

binding is another reaction step that can disrupt specific staining for the c-Fos protein.  

Enzyme-substrate reactivity can be altered, resulting in non-specific staining.  There are a 

multitude of potential reasons why our c-Fos staining was disrupted.  
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 After the hippocampal tissue was sliced by cryostat and stored in phosphate 

buffer, the freezer to keep the tissue stored at low temperatures was disrupted.  It is 

unlikely that any c-Fos proteins became denatured during this time because tissue was 

not subjected to temperatures above the physiological range.  However, keeping tissue in 

cold temperatures prevents proteins and other biological molecules from undergoing 

conformational changes that alter the reactivity of those molecules.  If biomolecules in 

hippocampal slices were to change their conformations, antibodies used for our c-Fos 

staining could possibly react with a number of these biomolecules besides the c-Fos 

protein.  Sliced tissue not kept at cold temperatures are also subject to reactions between 

biomolecules within the hippocampal slices.  Reactions directly with c-Fos protein would 

inhibit the primary antibody from binding to c-Fos.  Reactions between other proteins 

could create molecules that react as a substrate during any of the enzymatic steps in the 

IHC procedure, causing staining that is not specific to the c-Fos protein.  

 If c-Fos immunohistochemistry were to show specific staining in our tissue, we 

would expect animals treated with an EE to show higher levels of cellular activation after 

completing the RAM task.  EE improves the number of functional hippocampal neurons 

by increasing hippocampal neurogenesis (Piazza et al., 2011), which we would expect to 

result in higher levels of hippocampal activation in animals treated with an EE compared 

to socially isolated animals. Neurotransmitter signaling improves after animals are reared 

in an EE (Toscano & Guilarte, 2005; Van Praag et al., 2000).  Enhanced neurotransmitter 

signaling would cause enriched animals to have higher levels of cellular activation.  

Hippocampal cholinergic signaling impacts working memory (Felix & Levin, 1997), 

which can be enhanced by aspects of environmental enrichment such as physical exercise 
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(Fordyce, 1991).  Septohippocampal cholinergic pathway activation is critical to 

visuospatial working memory in RAM tasks (Stackman & Walsh, 1995).  Because 

animals given an EE performed significantly better in tasks that require visuospatial 

working memory, we would expect more c-Fos labeled cells in hippocampal cells that 

receive septohippocampal axon projections from the medial septum in enriched rats 

compared with isolated rats.  Because enriched rats outperformed isolated rats in all 

aspects of RAM testing, we would expect them to show higher levels of hippocampal 

cellular activation. 

A BDNF val66met genetic polymorphism affects the trafficking and secretion of 

BDNF, which is associated with decreased functional activity of hippocampal neurons 

during working memory tasks (Dennis, Cabeza, Need, Waters-Metenier, Goldstein, & 

LaBar, 2011).  Based on this result we would expect increases in BDNF as a result of EE 

rearing to enhance hippocampal functional activity during the working memory RAM 

task.  Increased NMDAR subunit mRNA expression is a result of EE (Guilarte et al., 

2003), which would enhance glutamatergic signaling.  Glutamate signaling results in 

depolarization of the post-synaptic membrane, increasing the likelihood a neuron will be 

activated and fire an action potential.  The ability of EE to enhance BDNF and NMDAR 

expression are major reasons why our enriched animals would have probably shown 

higher levels of hippocampal cellular activation. 

Our present study was limited in a number of ways.  Because all of the rats were 

either reared in an EE or socially isolated, there was no control group for comparison to 

either of our housing conditions.  In Lukkes, Mokin, Scholl, & Forster (2008), animals 

were reared in isolation beginning on PN21.  These isolated animals were tested in 
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conditioned fear paradigms as adults and displayed elevated levels of anxious behavior 

compared to control animals (Lukkes et al., 2008).  During the first 2 hours after the 

isolation restraint was given, isolated animals had elevated levels of corticosterone, a 

natural response to environmental stressors, compared to control animals (Lukkes et al., 

2008).  These isolated animals also had decreased corticosterone levels 2 hours after the 

isolation restraint was given (Lukkes et al., 2008).  This finding is consistent with 

previous studies that show chronic early life stress causes the hypothalamic-pituitary-

adrenal (HPA) axis, which is responsible for releasing corticosterone in response to 

environmental stressors, to adapt and modulate the release rate of corticosterone 

(Miachon, Rochet, Mathian, Barbagli, & Claustrat, 1993).  Because rats reared in 

isolation exhibit more anxious behavior as adults, we cannot use isolated animals as a 

control to compare with enriched animals.  Therefore, we are limited in our conclusions 

regarding enrichment, and further research is required to determine exactly how 

enrichment and isolation individually effect working visuospatial memory.  Our present 

study was also limited in drawing conclusions about our hypotheses on the ameliorating 

effects of enrichment on developmental Pb2+ exposure.  Because no significant results 

were seen for developmental Pb2+ exposure, we could not assess our hypothesis that 

rearing in an EE would ameliorate Pb2+ induced working visuospatial memory deficits. 

In future studies concerning developmental Pb2+ exposure and working memory, 

rat pups exposed to Pb2+ should be exposed in utero and throughout weaning.  Studies 

should aim to have animals chronically exposed to Pb2+ by postnatal days 14-15 because 

peak hippocampal LTP occurs during the period (Harris & Teyler, 1984), which indicates 

neural circuits are forming.  More research is required on the differential impacts of Pb2+ 
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exposure on working memory and spatial memory acquisition.  Because our study did not 

expose rats to Pb2+ during the critical period, our results are not valid to draw conclusions 

about how developmental Pb2+ affects working memory.  Future studies should determine 

if other neurons outside the hippocampus such as the medial prefrontal cortex (Lee & 

Kesner, 2003) are active during working memory in rats with an impaired hippocampus 

following developmental Pb2+ exposure.    

Future studies should address the different components of enrichment including 

physical exercise, social interactions, and inanimate object stimuli, to determine their 

individual impacts on memory performance.  Enrichment causes epigenetic changes 

(Fischer et al., 2007), however it is not known what impact each component of 

enrichment has on memory performance.  Knowledge about the individual components of 

enrichment has implications in child development.  Each component of EE represents 

environmental aspects of human development, and knowledge about how these different 

environmental components influence the expression of memory-related genes in the 

hippocampus would affect how children are developed.   

 Intervention programs with different approaches of adding enrichment to the 

development of children should be applied to improve cognitive function of developing 

children.  These programs should be applied to children subject to Pb2+ exposure or other 

environmental settings that are known to impact cognitive function.  Social networking 

programs, exercise programs, and programs that expose children to different objects in 

the environment for them to play with are three human correlates to what rats experience 

in an EE setting, and these settings should be explored in humans to improve cognitive 

functioning.  Continued research into how developmental Pb2+ exposure specifically 
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affects different types of memory is required.  Research into how these effects of Pb2+ 

exposure can be ameliorated by rearing in an EE has implications to human development. 
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