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Abstract— Amazon, Google, and IBM now sell cloud comput- to the end-user (client). Instead of a business sellingr thei
ing services. We consider the setting of a for-profit businesselling  services at a set price, an auction mechanism (solicitidg, bi
data stream monitoring/management services and we invegéte  han selecting winners) allows a system to charge prices per
auction-based mechanisms for admission control of contimus lient based hat the individual client i illing t
queries. When submitting a query, each user also submits a client based on what the ”_1 vidual clien 'S_ wi '”9 o_pay.
bid of how much she will commit to paying for that query to  Those who do not get serviced are not denied arbitrarily due
run. The admission control auction mechanism then determies to the system’s limited resources, but instead feel legitaty
which queries to admit, and how much to charge each user in excluded because their bid was simply not high enough.
a way that maximizes system revenue while incentivizing use  ppnq perhaps most compellingly, an auction setting alloves th

to use the system honestly. Specifically, we require that elac -
user maximizes her payoff by bidding her true value of having system to subtly control the balance between overloadieig th

her query run. We further consider the requirement that the Servers and charging the right prices. Hence, we investigat
mechanism be sybil-immune, that is, that no user can increasher auction-based mechanisms for admission control of CQs to
payoff by submitting queries that she does not value. The mai pe serviced by the DSMS center.

combinatorial challenges come from the difficulty of effedvely One of the key challenges to designing these auction

taking advantage of the shared processing between querieg/e . . .
design several payment mechanisms and experimentally evaite mechanisms is determining how to best take advantage of the

them. We describe the provable game theoretic characterists Shared processing between CQs. The fact that some queries
of each mechanism alongside its performance with respect to can share resources obfuscates each query’s actual loae on t
maximizing profit, total user payoff, and rate of admission, system. Without clear-cut knowledge of each query’s load on
showing what tradeoffs may be in store for implementers. the system, optimally selecting the queries to admit besome
exceedingly challenging from a combinatorial perspective
From a business point of view, the most obvious design
The growing need formonitoring applicationssuch as goal for the admission control mechanism is to maximize
the real-time detection of disease outbreaks, tracking tpeofit. Another first class design goal for the mechanism is to
stock market, environmental monitoring via sensor netwprknot be manipulable by users. Specifically, we desire that the
and personalized and customized Web alerts, has led tonachanism istrategyproof(also known asncentive compat-
paradigm shift in data processing paradigms, from Datababée or truthful), which means a client always maximizes her
Management Systems (DBMSs) to Data Stream Managemealyoff by bidding her true valuation for having her query.run
Systems (DSMSs) (e.g., [1], [2], [3]). In contrast to DBMS#\uction-based profit-driven businesses like eBay and Goog|
in which data is stored, in DSMSs, monitoring applicationd&dWords attempt to design and use strategyproof auction
register Continuous Queries (CQs) which continuously @ec mechanisms, even at the expense of potential short-terfit, pro
unbounded data streams looking for data that representsevdsecause when users perceive that the system is manipulable,
of interest to the end-user. they have less trust in the system and are less likely tomoati
There are already a number of commercial stand-aloosing it. Hence requiring that the auction based admission
DSMSs on the market, such as Streambase [4], S-stream d&htrol mechanisms be strategyproof is an investment in the
and Coral8 [6], aiming to support specific applications. Weng-term success.
consider the setting of a business that seeks to profit frdm se Besides users not being truthful about their valuations,
ing data stream monitoring/management services. One mighbther way users may manipulate the system is by submitting
imagine that a DSMS rents server capacity to clients simdlar bogus queries. Specifically, a user may increase her payoff
the way Amazon, Google, and IBM now sell cloud computingy submitting queries that she has no interest in. We call a
services [7], [8], [9]. Auctions, used for example by Googlenechanism that is not susceptible to this kind of manipu-
to sell search engine ad words, are a proven way of bd#tion sybil immune Hence, toward establishing the DSMS
maximizing a system’s potential profit, as well as appealirggnter, our ultimate goal is to design a CQ admission control

I. INTRODUCTION



TABLE |

We assume an underlying query model similar to the Aurora
PROPERTIES OF OUR PROPOSED AUCTION MECHANISMS

model [1] where subnetworks are connected via connection

[ CAF | CAF+ [ CAT | CAT+ | Two-price points. During the transition phase at the end of each day, th
Strategyproof v v v v v upstream connection points that surround the subnetwbsks t
Sybil Immune | x X v X X need to be modified hold any incoming data tuples. The tuples
Profit Guarantee| x X X X v

stored inside the queues of these subnetworks are drained
through the downstream connection points. Then, the query
Planner modifies the subnetwork by adding new operators or
eleting operators. Once the query planner finishes, tHegup
'Wred at the connection points are input into the subnétwor
before the newly arriving tuples are executed. This tréorsit

their formal valldatlo_n as strat_egyprqof and/or .Syb” e phase ensures the correctness of the results output by @Qs th
We have also experimentally identified potential tradeaffs :
continue to execute for the next day.

terms of system profit, client payoff and rate of CQ admission For our purposes, it is sufficient to view a CQ as a

Clearly the most important of them for our business is system : . : . : :
. . . . S collection of operators ignoring their dependencies (Féd?).
profit and interestingly, the mechanism which is strateggpr

i . : For example, a CQ might consist of three operators:
and sybil immune offers the best tradeoff with respect tdipro P Q mig P
To summarize. oucontributions are: e A select operator on a stream of stock quotes that selects
out high value transactions,

mechanism which is strategyproof and sybil immune. Th
led us to develop a number of admission control mechanis
with different properties based on sound principles thiatwal

e We apply techniques and principles from algorithmic game

theory to a data streams query admission control problen®. A select operator on a stream of news stories that selects
. . - . . stories that mention companies with publicly traded stock
e We introduce the notion oBybil immunityfor auction

mechanisms. e A join operator that joins the results of the two selection

. _ operators on the company name attribute.
e We propose a number of mechanisms for this problem P pany .
(four natural, greedy mechanisms and one randomizedV/é @ssume that each operatgr has an as§OC|ated_I0ad
mechanism) and show that they ateategyproofbut only € that represents the fraction of the system’s capacity that

one, called CAT, is also sybil immune. These results afis operator will use, and this load can at least be reaspnab
summarized in Table I. approximated by the system [1], [3]. It is expected that many

Qs may contain the same operator. Shared operator process-
g has already been proposed and utilized in the literature
1], [10], [11]). Operator sharing is based on the premiss t

ny CQs are monitoring a few hot streams, and many of
e CQs are similar, but not identical. For example, onedoul
agine many queries want to select news stories on publicly
traded companies. So in a stock monitoring application,yman
Road map. We define the system model in Section Il angiggregate CQs will be defined on few indexes, with similar
provide a summary of the relevant background in Section llhggregate functions, but different joins and differentaziws.
We present our mechanisms in Section IV, analyze their sylfihus, sharing can be expected to be heavy.
immunity in Section V, and present their empirical evaloati  \We assume that each af users submits a query; along
in Section V1. We discuss extensions of our problem in Sectigvith a bid b;. The bid expresses a declared bound on how
VIl and conclude in Section VIII. much a user is willing to pay to have the query executed.
Further each user has a private valyesxpressing how much
having queryg; run is really worth to her. It will be useful

In our model, the DSMS center has an admission contnal define a variablé to represent the largest valuation of any
mechanism that, at the end of each subscription period, saer. Thepayoff (aka utility) u; of the user that submitted
a day, accepts the users’ bids and relevant informationtabouery g; is v; — p; if ¢; is accepted, and 0 otherwise.
their CQs, and returns a decision about which CQs to admitExample 1: To make these concepts concrete, consider
and run the next ddy The mechanism also returns the prige three queriesq, ¢ andgs) which are submitted to a DSMS
charged to eacl’@; that is admitted. The aggregate load ofvith a capacity of 10 units. Figure 1 shows their query plan.
the operators in the accepted CQs can be at most the capalitye thaty; andg, share operator A. As mentioned above, it is
of the server. We model the system capacity as the amountsafficient to abstract away the dependencies between operat
work that can be executed in a time unit, given the systend$ a CQ and retain only the information seen in Figure 2: the
resources (CPU, memory, etc.). set of operators that comprise all the queries, the load df ea

operator, an indication of which queries each operatorrigso
10f course, the time span between each auction could justsily a one to, and the user bids.

week or one month. In Section VII, we discuss how our resdts extend to = the busi , int of vi th t obvi desi
a more general setting where each query may subscribe fdfesedit time rom the business: point of view, the most obvious design

span. goal for the mechanism is to maximize profit, which is the

e We experimentally show that greedy mechanisms (Whi(i‘.
take into account both the bid and the load for ea
user’s query), provide both increased system profits
well as better total user payoff, compared to a randomiz
algorithm that has a profit guarantee. In particular, CAW
provides the best tradeoff with respect to profit.

Il. SYSTEM MODEL
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Fig. 1. Queries in Example 1 as seen by the DSMS. Each querywmas Fig. 2.  Simplified query plan of queries in Figure 1 to showyottie

operators: A and B i1, A and C ing2, D and E ings. Operator A is shared operators, omitting the order of the operators informatidhis simplified,

betweeny; andgz. Each operator is also labeled with the load associated witibstract information model is the one we use for our problEne. user bids
it. The input data streams to operators A and D slreand s2 respectively. are shown above as dollar amounts.

aggregate prices charged to the accepted queries. Anatter fivhich other operators are selected. For example, consider a
class design goal for the mechanisnsisategyproofnesdn-  queryg; with low value and high load. In overload situations,
tuitively, strategyproofness means that users have nmiivee queryg; would surely be rejected in a knapsack auction. But

to “lie” about their private values, or bid strategically. if all of ¢;'s operators were shared by high value queries,
then the effective profit density of; (given that we know
Il. RELEVANT BACKGROUND these high value queries were accepted) could be very high.

A mechanism where users always maximize their payofhis dependency between queries makes the mechanism’s task
by truthfully revealingall their private information is called much more complex in the case of our CQ auction than in the
strategyproofIn many auction settings, clients’ true valuationsase of a knapsack auction. This complexity is illustrated b
are the only private information, and hence in such settingf¥e fact that there is a polynomial time approximation sobem
strategyproofnessneans that clients maximize their payoffor finding the maximum value collection of items to select
when bidding their true valuations. In this paper, we wifere in a knapsack auction, but even for a special case of our CQ
to this property adid-strategyproofnessas we also consider auction, the densest subgraph problem, it is not known how
other private information: a user might conceivably lie aboto approximate the optimal solution to within a polynomial
which operators are contained in her query, say by addifagtor in polynomial time [13].
additional operators that are not part of the query she Bigtua Characterizations of Strategyproofness.A CQ auction
desires. In the context of our CQ admission auction then, wéhere the only private information is the amount each user
call a mechanism istrategyproofwhen both bidding truthfully values her query is called a single-parameter setting. In
and submitting only the operators in the query actuallyrdési single-parameter settings, an allocation mechanism iecal
by the user maximizes the user's payoff. In this work, athonotoneif every winning bidder remains a winning bidder
the mechanisms we propose are not only bid-strategyproehen increasing her bid. Theritical value of user: is the
but also strategyproof. Several standard auction probbmms value ¢; where if the user bids higher thaf, she wins, but
special cases of our auction problem for CQs. if she bids lower tham;, she loses. Note that the existence of

Settings without Sharing. In the special case that therea critical value for each user is guaranteed by the preceding
are no shared operators, the load of each query (whichni®notonicity property. It is shown in [14] that a mechanigm i
the aggregate load of the query’s operators) is the same, dd-strategyproof if and only if it is botmonotoneand each
there is room fork queries, then this is equivalent to thewvinning user’s payment is equal to hertical value
problem of auctioningt identical goods. Charging each of One final auction setting related to our CQ auction is the
the £ highest bidders thék + 1)st highest bid is well known single minded bidders (SMB) auction problestudied by
to be bid-strategyproof. Wheh = 1, this is famously known Lehmann et al [15]. Each single-minded biddes interested
as “Vickrey’s second price” auction. in a specific collectior; from the set of items being auctioned

If CQs do not share operators, but the load of each qudifgr a CQ auction the items being auctioned would be server
may be different, then the resulting problem is what is knowsapacity units ands; would be the units needed to process
in the literature as a Knapsack Auction problem, studied hige collection of operators in the query). In addition to
Aggarwal and Hartline in [12]. bid-strategyproofness. [16], [15] provide a charactéigrafor

Operator Sharing. Operators shared between queriestrategyproofness in this setting that applies to our regtti
greatly complicate the task of the mechanism because fhigeir characterization of a strategyproof mechanism for an
profit densityof a query, which refers to the ratio of theSMB auction differs only slightly from the above characteri
bid for that query (or potential profit to be obtained frontion for bid-strategyproofness: the definition of monotutyiis
accepting the query) to the load of the query, depends exrpanded. In terms of our CQ admission auction, monotgnicit



means that not only must a winning bidder remain a winnirfgelecting WinnersWe sort the CQs in non-increasing order

bidder when increasing her bid, but also must remain a winna priority Pr;, where Pr; = b;/CF and C/ is defined as:

when submitting a query comprised of a strict subset of theDefinition 2: (Remaining Load”) The remaining load

operators in the admitted query. CF of queryi is equal to the total load of all the operators of

IV. PROPOSEDMECHANISMS q; except those operators '_chat are shared with CQs that have
) ) _already been chosen as winners.

In th|§ section, we present several greedy C_Q auction,, every iteration through the loop, the algorithm chooses
mechanisms. We show that four of these mechanisms, CAR, query with the highest priority and if there is enough
CAF+, _CAT’ and CAT+, are strategyproof. Each of thesleemaining capacity in the system to accommodate it, places
mechanisms has the following form: it in the set of winners. At the end of each iteration, the

e Sort queries in order of decreasing profit density (bid peémaining loadsC}* as well as the priorities of the yet-

unit of required server load), and then unchosen queries are updated. We demonstrate this methanis
¢ admit queries until the server is full. with the example in Figure 2.
The intuition is that we wish to accept queries with higiCalculating PaymentsWe naturally base our first payment
valuation to load ratio. mechanism on the known bid-strategypréstinit (k + 1)th-

We consider two different definitions of the load of thegrice auction. Recall from Section Ill that a simple strate-
query. CAT assumes that the load of a query is the sum gfproof mechanism for &-unit auction is to charge each
the loads of its operators. CAF assumes that the load ofwnning bidder the bid amount of th& + 1)th highest bidder.
query is the sum of the fair-share load of its operators, ehdrence, we defing;,s; to be the CQ with highest priority that
the fair-share loadof an operator is the load of the operatois not a winner. Then, the payment of each winning Qs
divided by the number of queries that share that operator. &aculated as followsy; = C£ - b,s;/CE,,. If the query does
intuitively, CAT operates as though there will be minimal onot belong to thevinnerslist, then the payment is zero.

no operator sharing among the accepted queries, while CAEmaining Load Algorithm Applied to ExampleThe initial
operates as though there will be maximal operator Sha”F&naining loads ofj; , ¢» andgs are 5, 6, and 10 respectively.
among the accepted queries._ CAT a_nd CAF stop once the fit¥fe priorities ofg:, ¢ andgs become 11, 12 and 10. During
query is encountered that will not fit, while the mechanismge first iteration of the above algorithn, is chosen first.
CAT+ and CAF+ continue processing the queries hoping 8ince operator A is chosen as part;ef the remaining load of
find Iate_r, lower Ioad_, queries t_hat will fit. In each of t_hesg1 becomes the load of operator B (just 1 unit) and its priority
mechanisms, the price per-unit-load quoted for qUeNs pecomes 55. Consequently, during the second iteratiois
the profit density of a particular rejected query. For_each ehosen. The remaining capacity in the system is 3. During
CAT and CAF the price for each accepted query is basggk third iterationgs is chosen however it does not fit in the
on the profit density of the first rejected query. Hence th@maining capacity in the system. As a result, the winnets li
mechanisms for CAT and CAF are offering a fixed price pgg composed of;; and ¢s, and g5 iS gs. As a result, the

unit of server capacity that a query uses. The price for aYuUFayments fory; andgs is $10 per unit load, which amount to
q; in CAF+ and CAT+ is based on the minimum profit de”SitYespective payments of $10 and $60.

after whichg; would no longer have been accepted. We sho

that these mechanisms are all strategyproof. Next we mesgﬁrategyproofnes_s'.l'he above payf"e”t_ mechamsm at first
the mechanisms in detail. glance seems bid-strategyproof since it is based closely on

the well-known bid-strategyproof second-price auctiorcime
A. Clients Chosen by Remaining Load (CAR) anism. However, it is not, since a winning usewho shares

In order to set the stage, we start by describing a naiggerators with other winning users can gain by bidding lower
approach that uses the remaining additional load neededthan her true value. She can strategically bid low enough so
service a CQ for choosing winners and determining paymeiat she gets chosen for servieéter the users she shares
values. We show how this approach, while it accurategperators with, but still high enough to win. This will resul
captures the additional load each query will contributehi® t in a lower remaining load’}* and thus in a lower payment.
total load on the server, is not bid-strategyproof. . : )

Consider the following natural mechanism using the afor€: Clients Chosen by Static Fair Share Load (CAF, CAF+)
mentioned greedy scheme for choosing winners. The mech-At this point it has become clear that using remaining load
anism first chooses each winner based on a value we xﬂé’-ﬁ) for setting payments of users is problematic because of
fine called a query’s “remaining load.” Then the mechanisthe dependence of these values on the user's bid. Therefore,
charges each winner a payment that also depends on thwatconsider using a fixed load that does not change over the
user's remaining load. We refer to the mechanism as theurse of the winner selection algorithm, and we use thaesam
CAR mechanism (CQ Admission based on Remaining loatiyed load to calculate payments.

We will show that using such a payment scheme is notWe define thestatic fair share loadas follows.
bid-strategyproof, due to the fact that user’s payments areDefinition 3: Let o; be an operator that has a load @f
dependent on their bids. and is shared amonigdifferent CQs, then the static fair share



load ofo; per CQ is defined asfF = ¢;/l. Hence, thestatic We also note that CAF is not just bid-strategyproof, but
fair share loadof a CQg; is defined ag’?F = ZO]EQI, ch. strategyproof. This results from the fact that the characte
zation for SMB auctions in [15] carries over to our setting

In the following subsections we propose two bid{see Section Ill), and that CAF satisfies their additional

strategyproof payment mechanisms using the same greeignotonicity requirement that when a winning bidder asks

scheme, but based on static fair share load: CAF and CAFer only a subset of the operators in her query, she still wins

CAF (CQ Admission based on Fair share). Our first bid- CAF+: An Extension to CAF.
strategyproof mechanism that depends on the static faieshgelecting winnersCAF+ extends CAF by allowing the algo-
load as defined in Definition 3 is shown in Algorithm 1. rithm to continue until there are no unserviced CQs left that

Selecting winnersSteps 1 through 3 of Algorithm 1 greedilyWill fit in the remaining server capacity. While CAF stops as
select winners as follows. A priority is assigned to eachoon as it encounters a query whose load exceeds remaining
operator, where the priority is the value-load ratier; = capacity, CAF+ skips over any queries that are too costly,
bi/CSF. Then the list of CQs is sorted in descending ordé&ontinuing onto more light-weight queries in the prioritgt]
of these priority values. The algorithm admits CQs from theéSee Algorithm 2.)
priority list in this order as long as the remaining lo&f® Calculating paymentsThe algorithm calculates the payment
of hosting the next CQ does not cause system capacity dPeach winning user (or serviced query) based on each user’s
be exceeded. (Note that the load considered while checkim@vement windowintuitively, the movement window of a
capacity constraints is not the static fair share load.) Théinning user is the amount of freedom the user has to bid
algorithm stops as soon as the next CQ does not fit withiswer than her actual valuation without losing. A more fotma
server capacity. definition follows.
Definition 5: In CAF+ every query that is selected to be
Algorithm 1 Our basic fair share mechanism (CARjput: A serviced has snovement windowA user’s movement window
set of queries with their static fair share load$’” and their s defined as a sublist of the complete list of queries ordered
corresponding bid$;. Output: The set of queries to be SerViceddescending priorityPr; = bi/C{gF- We will refer to this list
and their corresponding payments. as thepriority list. The movement window of winning user

1) Set priority Pr; to b;/CF for each queny. begins with the user just after usein the priority list, and

2) Sort and renumber queries in non-increasifig; so that ends at the first usef in the priority list that both comes

Pry > Pry 2 ... > Pra. afteri and satisfies the following property: if usés bid was

3) f'?gdwti?ﬁmmsaexr'\%?lCrgsgéigtg]fhguv?,{ﬁse'rn"gt]_'s ordered listtth changed so that it directly followed the position of ugein

4) Let lost be the index of the first losing user in the abovdhe priority list, CAF+ would no longer choose querys a
priority list. winner. If such a usej does not exist, then usés movement

5) Charge each winnera payment ofp; = C;' (biost/Ciss:)-  window spans the entire remainder of the priority list.
Charge all other users 0. Definition 6: For each winning query;, last(i) is defined
to be the first query which is outsidgs movement window. If
Calculating payment€Once we have selected the winners, wthere are no queries remaining outside the movement window
calculate the payment for each winning user according fussteof ¢;, thenlast(i) is set tonull.
4 and 5 of Algorithm 1. The payment in CAF+ (Algorithm 2) is calculated for each
CAF Applied to Example 1Sinceq; shares operator A with query after the set of queries to be serviced is determined.
g2, C°F is 3 andC5* is 4. During the first iteration of CAF, For each winnet, the algorithm first calculates the identity of
the priorities ofg;, ¢» and g3 are 18.34, 18, and 10. As alast(i). Then the payment for the selected query is defined as
result, CAF choosesg, first and theng,. Again, gs is qiost. i = CP - biasi(i)/Ciamysy- If USEr i's movement window
Thus the payments fay; andg, are $10 per unit load, which included all remaining queries in the priority list, i.ef, i
amount to respective payments of $30 and $40. last(i) = null, then the payment of uséris 0.

StrategyproofnesdiVe prove the following theorem by usingStrategyproofnes3he proof that CAF+ is bid-strategyproofis

the characterization of bid-strategyproof mechanismsafoy ~ similar to that of Theorem 4; we again use the characteomati

single-parameter setting (Section ). of bid-strategyproofness from [14].

Theorem 4:The CAF mechanism is bid-strategyproof. Theorem 7:The CAF+ mechanism is bid-strategyproof.

Proof: The CAF winner selection is clearly monotone: As with CAF, we note that CAF+ is not only bid-

any winning bidder could not become a loser by increasing h&lrategyproof, but strategyproof. The reasoning is theesam

bid since she will only move up in the priority list by doingas for CAF (see Section IV-B).

so. The CAF payments are also equal to the users’ critical

values. If useri bids b} < CP¥ (bies:/CLE), then we would C. Clients Chosen by Total Load (CAT, CAT+)

haveb,/CSF < by,s/CPE, and we know that both userand Because the “fairshare” based mechanisms described above

lost

userlost could not fit together on the server with the otheare vulnerable to certain types of user manipulation (see
winners, so usei will become a loser. B Section V), we design two more robust mechanisms. These




Algorithm 2 Our aggressive fairshare mechanism (CARfput:  pe the sum of the payments that the mechanism charges or
A set of queries with their static fair share loads’” and their receives from the users.
corresponding bids;. Output: The set of queries to be servicedand A constant pricingmechanism isvalid if all winners fit
their corresponding payments. within server capacity, and so we will only consider valid
1) Set priority Pr; to b;/CF for each queny. constant pricesOptimal constant pricing profifOPT¢) then
2) Sort and renumber queries in non-increasifig; so that refers to the maximum possible profit that can be attained fro
Pri > Pry 2 ... 2 Pra. any valid constant pricing mechanism (strategyproof oi).not

3) Fori=1...n, add usetr to the winner list if doing so does . imality in thi
not exceed capacity. We choose to focus on constant pricing optimality in thisgrap

4) For each winnet, calculatelast(i), as defined in because with the shared processing of queries in our problem
Definition 6. other standard profit benchmarks seem difficult to compete
5) Charge each winnera payment of with. Two other natural profit benchmarks include optimal

_ SF FS .. . . ..
pi = O (biast(i)/ Clasii))- Charge all other users 0. pricing per unit load and optimal monotone pricing, both of

which generalize optimal constant pricing and were disediss

in the context of Knapsack Auctions in [12]. But because
mechanism are exactly analogous to the mechanism from Set-our shared processing between queries, the processing
tion IV-B, except that we replace every incidence of theistatioad required of each query is not clear cut. Hence both
fairshare loadC? ¥ with that total loadC! = ZojeQi cj. proportional and monotone pricing definitions become fuzzy

Thus we have two mechanisms. The Randomized MechanismWe now show that by only us-
« CAT (CQ Admission based on Total load): analogous timg two distinct prices, under the assumption that the uskrs
CAF described in Section 1V-B. have distinct valuations, we are able to find a bid-strategyip

« CAT+: analogous to CAF+ described in Section IV-B. mechanism that approximates optimal constant pricing tprofi
CAT Applied to Example 1n example 1C{, C¥ and C?,T We show however that there is a trade-off between the rua-tim
are 5, 6 and 10 units. Thu®r, Pr, and Prs are 11, 12, and of the mechanism and its profit. We first present a mechanism
10. Consequently, CAT chooses andg, to be serviced. The that runs in time exponential in the number of duplicate
payments forg; and ¢, are $10 per unit load, which amountvaluations, then explain how a polynomial time version of it

to respective payments of $50 and $60. gives a weaker profit guarantee.

It is easy to verify that the proofs of bid-strategyproofnes We refer to our mechanism as tAgvo-price Mechanism
carry over to these modified versions of the algorithms aride first phase of the mechanism (Steps 1 and 2) follows our
payments. We therefore have the following two theorems. greedy scheme (using user valuations), the second phase (St

Theorem 8:The CAT mechanism is bid-strategyproof. ~ 3) is an exhaustive search that gives the potential exp@hent

Theorem 9:The CAT+ mechanism is bid-strategyproof. running time in terms of number of duplicate valuations, and

As with CAF and CAF+, we note that both CAT and CAT+he last phase (Steps 4 through 6) contains the randomizatio
are not only bid-strategyproof, but strategyproof. and is essentially identical to the Random Sampling Optimal
) Price auction of [17].

D. A Profit Guarantee Note that in Step 3 of the mechanism we run an exhaustive

While we will experimentally show that the above greedgearch on all possible subsets of the critical set of queries
mechanisms perform quite well for profit maximization (Seawith duplicate valuations. The possibility of sharing ofve
tion V), they do not admiprovableprofit guarantees that arecapacity between queries is what requires us to take this po-
reasonable (due to some special, pathological input ine&n tentially arduous step, as the problem of optimally detaing
We thus turn to a basic mechanism that is based only on uggtich subset of queries to admit in the face of such sharing
bids rather than density: the CQs are simply sorted in deeregeems hard to approximate. For the proof of the following
ing bid order, and then selected from the top until the next CReorem, and any remaining theorems, please see [18].
does not fit in system capacity. The chosen CQs then pay aheorem 10:The Two-price mechanism is bid-
price equal to the bid of the first losing CQ. We refer to thistrategyproof.
basic solution as the Greedy-by-Valuation (GV) mechanism. Note that because the Two-price mechanism allocates win-
While GV also does not admit a profit guarantee, we proposers and sets payments entirely independent of each query’s
a strategyproof randomized mechanism based on GV calledd, it is not only bid-strategyproof, but strategyprodfe
Two-Price, that has a provable profit guarantee. Specificalhow state the competitiveness of Two-price for profit maxi-
it is competitive (in expectation) with the best optimal sant mization. We assume user valuations range from L tnd
pricing mechanism. Aonstant pricingnechanism as definedwe use OPT to refer to the optimal constant pricing profit.
in [12], is any mechanism (strategyproof or not) where the Theorem 11:The expected profit of th&wo-pricemecha-
users are all charged the same price, call, iand those who nism is at leasOPT — 2h.
bid strictly higher tharp are winners, those who bid strictly The next theorem applies to the polynomial-time mecha-
lower thanp are losers, and those who bid equalgtonay nism that results when Step 3 of Algorithm 3 is omitted.
be designated winners or losers arbitrarily by the mechanis Theorem 12:The expected profit of the polynomial-time
Winners must all pay and losers pay OProfit is defined to mechanism defined by thiwo-pricemechanism without Step



Algorithm 3 Two-price mechanismnput: Set of n queries and
corresponding user valuations . . . v,,. Output: Set of winners and
their corresponding payments.

1) Sort and renumber the queries in order of decreasing tiafya
Sow1 > w2 > v3 > ... > vp, breaking ties arbitrarily.

2) Let H be the ordered set of queries that comprise the maximal
prefix of queries from this sorted list that fits within ourar 2 Bt
capacity. LetL be the ordered set of losers (remaining queries =
not chosen forH) and letv;, be the valuation corresponding
to the first query inL.

3) If the last query inH has valuatiorvy,, the set of queries in
H must be adjusted as follows. L& be the set of all users

with Vfiluatlon equal twf’ and letd be the cardinality OD' Fig. 3. This figure illustrates the third user from Exampleekpgetrating a
LetH'=H —D. Let )’ be/ the largest subse{t @ that fits  gypij attack by forging two additional fake users. The rezxes are indicated
within capacity along with/{’. Redefinel = H' + D* in solid lines while the fake queries are indicated in dadme. The presence

4) Partition the users frond evenly into two setsA and B, of these fake queries creates the illusion that user 3'sabper are in higher
uniformly at random. Renumber queries separately in eatch siemand, which could conceivably influence the mechanisnitherecharge
as in step 1. lL.eys > v2 > ... > v, for the a queries in set the third user less, or service her when she would not havenwibe been
A, andwv; > vy > ... > v, for the b queries in setB, again serviced.
breaking ties arbitrarily.

5) Calculate the optimal constant price profit of each set of
queries:OPT(A) = max;ca iv; and sybil attack if there exists an input instance where there is
OPT(B) = maxiep ivi. Let k = argmaxica iv; and let g yser who can increase her payoff by perpetrating a sybil
pa = vi. Similarly, letj = arg max;ecp iv; and letpg = v;. attack

6) Use the price4 to determine the winners from s8tand use . ) . .
the priceps to determine the winners from sdt Specifically, ~ Definition 14: We define a mechanism to heniversally
the winners from seB are those users whose valuations argulnerableto sybil attack if in every input instance, every
greater thamp.4, and these winners are each charged a paymearer has a way to improve her payoff by perpetrating a sybil
of pa. Similarly determine winners and payments for users igttgck.
setA.

Capacity = 10

C'//

A. Attacks Against the Fair Share Mechanisms

) Unfortunately, our proposed fair-share schemes of Section
3 is at leastOPT — dh. IV-B are vulnerable to sybil attack. A usércan employ the

In this section we presented mechanisms that are strai§towing strategy using a sybil attack to improve her pdyof
gyproof. Next, we investigate their sybil immunity. simply create fake users with negligible valuations whose
gueries share operators with A sybil attack of this kind will
lower the attacker’s fair share load, improving her rankang

In this section we consider a strategic behavior that is-we#inabling her to be selected as a winner while simultaneously
known in the context of reputation systems like that of eBayecreasing her payment to an affordable amount. Note that
and Amazon for rating sellers, buyers and products: a sylhilis always possible for the attacker to set her fake users’
attack. A user who behaves strategically using a sybil ttacaluations low enough so that they are not in danger of being
forges multiple (“fake”) identities to manipulate the syt selected as winners, and hence will require no additional
In reputation systems a user might try to boost the reputatipayment from the attacker.
of some entity by perhaps adding positive recommendationdndeed, we can prove that amy given instance of the CQ
from false users [19]. In our setting, a sybil attack amoungimission problemany user can gain from employing a sybil
to creating false identities to submit additional querikatt attack against our fair share mechanism.
the user does not need or value in order to manipulate theTheorem 15:Both the CAF or CAF+ mechanisms anai-
mechanism. (See Figure 3.) Thus we define a mechanisersally vulnerableo sybil attack.
to be sybil immuneif a user can never increase her payoff ) )
by submitting additional fake, no-value queries. We makd Attacks Against the Total Load Mechanisms
the natural assumption that if a fake query is chosen to beln contrast to this vulnerability of our fair share mecha-
serviced, the sybil attacker is responsible for making #ief nisms, the total load payment mechanisms (CAT and CAT+),
query’s payments, so a user’'s payoff is the aggregate paydfscribed in Section IV-C, seem at first to be robust to such
that she gains from the queries of all of her identities. Wi wiattacks. While we've seen that a user’s fair share can ebsily
show here that CAT is sybil immune, while the rest of theeduced by creating fake identities, a user’s total loadois n
mechanisms are not. To the best of our knowledge, this is ttiependent on the number of other users sharing her load, and
first time that sybil immunity has been proposed, and we nateerefore CAT and CAT+ should not (at least at first glance)
that the notion of sybil immunity can apply to any mechanisioe prone to such sybil attack strategies.
design problem. Definition 16: We say that a mechanismiimmune to sybil

Definition 13: We define a mechanism to lvalnerableto attack if for every input instance, no user can increase her

V. SyBIL ATTACK



payoff by perpetrating a sybil attack (i.e., it is not vulalele). fact we can make an even stronger claim. Thus far in our

We also use the termybil immunityto refer to this property. discussion of sybil attacks, we have been considering sybil
However, one of our total load mechanisms is notimmune &ttack in isolation from bid-strategyproofness. Howevers

sybil attack. We begin by giving the following charactetiaa possible that a user can use a sybil attéickconjunction

of sybil immunity. A mechanism is sybil immune if and onlywith lying about her valuation in order to increase her payof

if both of the following properties hold: This possibility raises the question of whether adding Isybi
1) The arrival of additional queries will never cause a los@ttacks to each user’s set of possible strategies has reémove
to become a winner with positive payoff. our mechanism’s bid-strategyproofness.

2) If the arrival of additional queries reduces a winner’s It turns out that our CAT mechanism remains bid-

payment bys, the additional queries that become winstrategyproof even if we allow sybil attackand it remains
ners must be charged a total of at leastby the immune to sybil attack, even if we allow users to lie about

mechanism. their valuations.
We now show that CAT+ is vulnerable to sybil attack Definition 18:We define a mechanism to beybil-

because it does not satisfy the above property 1. strategyproofif no user can improve her payoff by either lying
Theorem 17:For the CQ admission problem, CAT+ isdbout her valuation, perpetrating a sybil attack, or doiathb

vulnerable to sybil attack. simultaneou_sly_ o _
We now give a characterization of sybil-strategyproof mech

TABLE I anisms. A mechanism is sybil-strategyproof if and only ifrbo
AN EXAMPLE OF A SYBIL ATTACK THAT BEATS CAT+. of the following properties hold:
User i > 3 1) It is bid-strategyproof.
o 100 89 100cfe 2) The arrival of additional users (e.g., via a sybil attack)
cr 1 0.9 € cannot decrease anyone’s critical value by an amount
Pr 100 <100  >100 more than the total payment charged to the additional
Round 1 100 < 100 picked
Round 2 exceeds cap. picked picked users.
Paymentsp; 0 0 <~ 100e The above characterization is used to prove that CAT is
Payoffs 0 89 —100e N/A sybil-strategyproof.

) ) ) ) ~ Theorem 19:For the CQ admission problem, the CAT
To see why, consider the example in Table I, in which a syhechanism is sybil-strategyproof.

attacker defeats our total load algorithm, CAT+. User 2 is a
sybil attacker, creating a fake query that appears to thiesys C- Attacks Against the Randomized Mechanism
as “user 3". Heree represents an arbitrarily small positive Our randomizedTwo-price mechanism, however, is not
value. In this example, if user 2 does not perpetrate thelgttaimmune to sybil attack. This fact is proven by showing that
user 1 will get chosen for service, and then server capacthe mechanism violates property 2 of our characterization o
will be reached, so user 2 would not get serviced. Wheresgbil immunity: a winning user can reduce her payment (in
when user 2 introduces the fake “user 3,” she is able to triekpectation) by introducing fake queries such that the fake
the system into choosing her instead of user 1. While usgueries incur less expected total charges than the amount he
2 is responsible for the fake user’s payment, user 2 cayefupayment was reduced by.
created “user 3" so that its payment would be a negligible Theorem 20:The Two-price mechanism is vulnerable to
amount. Note that user 2's payment for query 2 is O singgbil attack.
there is no one left after she is chosen. Finally, we note that even if we modify Step 4 of the
Note that in this kind of sybil attack, the danger for user thechanism so that each query is placed in4eir B based
(the attacker) is that when the fake “user 3” was chosen fon independent coin flips (so thd@ may not be evenly
service, user 2 had to make user 3's payment. Hence user@stitioned), the mechanism is still vulnerable to sybihek.
fake valuation and fake load had to be carefully chosen Igain, the vulnerability is due to a violation of property 2 o
user 2 so that user 2 found paying user 3's fee worthwhileur characterization of sybil immunity. Consider the imsta
(Recall from Section IV-C that payment of a winning uger where user 1 has valuatignandn. users (which get placed
is calculated aﬂ-Tvzost/ClTost. so in our example, that makesinto H along with user 1) all have a valuation of< b. Set
p3 = 100¢). In this particular instance, user 2 had no paymestzes for the users il so that server capacity is exactly filled.
of her own to pay because there are no users that have lowddser 1 creates a fake user with valuatiba: c+e¢, with size
priority than user 2. This makes paying “user 3”s paymergqual to the combined size of all the users with valuatipn
affordable to user 2. kicking them out ofH . While before user 1 was chargeavith
The good news is: our total load mechanisms are not alwgy®bability 1 — (1/2)"< and O with probability(1/2)", now
bad. First, while our fair share mechanisms argversally that only user and the fake user are iff, user 1 and her fake
vulnerableto attack, there are instances under the total sharser is charged 0 with probability 1/2, addwith probability
mechanism that are robust to sybil attack. Second, and mdr@. For choice ok that ensuregl/2 < ¢(1 — (1/2)"<), user
notably, the CAT mechanism is immune to sybil attack. I4's expected payoff has decreased.



V1. EXPERIMENTAL EVALUATION degrees 4,2,1,1 (four operators). This will generate 460 ne

In this section, we experimentally demonstrate the bemavigPerators with the same load as the original operators. The
of the different proposed auction-based admission cont@f€ries associated with that operator will be distributadiag

mechanisms. First we present the experimental setup. THBR resulting operators. Each input instance consists 6020
we discuss the results. gueries and between 700 and 8800 operators (the number of

operators decreases as the degree of sharing increases).
A. Experimental Platform The bids of each query are randomly generated according

Mechanisms.We implemented all the proposed admissio? @ Zipf distribution with maximum bid value set to 100
control mechanisms in Java, including the strategyproof Gid skewness parameter set to 0.5. The load of each operator
(Greedy by Valuation) mechanism (described in Section IVi§ also randomly generated according to a Zipf distribution
We also implemented the optimal constant pricing proff¥ith the maximum operator load set to 10 units and skewness
(OPT) algorithm, described in Section IV-D. parameter set to 1. Operators are assigned to queries rndom

Metrics. For each mechanism, we measured the followir‘ghere for each operator, the number of queries sharing it is
performance metrics: rawn from a Zipf distribution with skewness parameter eet t

« Profit: the sum of the payments of the admitted querie%.anOI the maximum degree of sharing changes from 1 to 60.

- Admission rate: The percentage of queries admitted. B Experimental Results.

« Total user payoff: the sum of the valuations (bids) of the _. . .
admitted queries minus the payments. Total user payoffF'gure 4(a) shows the percentage of admitted queries as

can be seen as an indication of total user satisfactig?]e degree_ of sharing ranges fro_m 1 to 69’ for a syst_em
under each mechanism. with capacity 15,000. All mechanisms admit more queries

e : as the degree of sharing increases. This is due to the fact
« System utilization: the used capacity of the server. .
. : that the mechanisms are able to take advantage of the shared
« The runtime for each mechanism. : . . :
i _processing between queries, so more queries can be serviced
The rep(_)rted results are the average of running each _eﬂgu)rltusing the same system capacity. Two-price always admits
on 50 different sets of workload. Note that, for clarity, OUL smaller percentage of the queries than the density-based
figures dq nqt show GV_ or ORTas they echo the behavior ,ochanisms (CAF, CAF+, CAT, CAT+) because it chooses
of Two-price in all experiments. gueries by user bid only, without regard to query load.
TABLE III Interestingly, profit (in Figure 4(e)) does not follow thersa
trend. CAF and CAT are the best for profit, as they do not
admit queries as greedily as CAF+ and CAT+ do, which means

WORKLOAD CHARACTERISTICS

Number of workload sets 50 the prices they charge admitted queries are much higher than
mﬂmgg g; g:g:'aeus)rs 7002308%00 CAF+ and CAT+. The profit of CAF+ and CAT+ decrease as
Max Degree of Sharing | [ — 60] - Zipf, skewness: 1 degree of sha_ring increas_es pecause they are simply auynitti
Maximum Bid 100 - Zipf, skewness: 0.5 S0 many queries (as sharing increases) that the prices they a
Maximum Operator Load 10 - Zipf, skewness: 1 charging admitted queries continues to be driven downward.
System Capacity 5K-10K-15K-20K

Due to the fact that queries are selected in decreasing ofder

_ ) density and charged a per-unit price equal to the per-udit bi
Workload. We summarize the workload parameters in Tablgr 11 first losing query, very few queries means higher srice

i. We_ _ge”erated 50 sets of \{vorkload for four dlffgrent eys_t more queries means lower prices. The Two-price mechanism
capacities. Each set contains a number of different inpityiqes profit that consistently improves as degree ofispar
m_stance_s. An input _mstance CODS'StS of users’ queriesgalgncreases because its profit is close to the optimal constant
with their bids, and is parameterized by: pricing profit, which only improves as the number of queries
« A system capacity. that can fit within capacity increases. At the point where
« Maximum degree of sharing: The degree of sharing qfyo-price crosses over CAF and CAT, we observe the same
an operator is the number of queries that share a singlenomenon that caused decreasing profitin CAF+ and CAT+.
operator, and the maximum is taken over all the operatop: the crossover point, CAF and CAT begin to admit such a
We varied the maximum degree of sharing from 1 to 60. Wegh rate of queries that the prices they are charging aregbei
keep the average query load the same throughout a worklaliven dramatically downward (remember, query valuations
set, while varying the maximum degree of sharing. To achieeee drawn from a skewed distribution), reducing overalffipro
this, we generate a workload with the highest maximum degrisster than the gain in profit from admitting more queries.
of sharing (i.e. 60) and then gradually split the operatéth® The profit of CAF in particular begins to really dive, as the
highest degree and distribute the resulting operatorsatiter payments are an increasing function of each query’s fairesha
varying degrees within a workload. For example, to generdtead, which also shrinks as the degree of sharing increases.
an input instance of maximum degree of sharing 7, usingWith respect to maximizing total user payoff (Figure 4(b)),
the input instance of max degree of sharing 8, if there wetiee density based mechanisms always perform better than
100 operators with degree 8, we split each one of them Tavo-price because they are able to admit more queries and
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Fig. 4. Figure 4(a) shows the percentage of queries serviogér each mechanism. Figure 4(b) shows total user paybfthacan be interpreted as a
measure of total user-satisfaction. A user’s payoff is @efias her valuation minus her payment. Seen here is the suinmhy users’ payoffs. The sequence
of figures in 4(c) through 4(f) shows system profit as systepaciy varies from 5000 to 20,000 in increments of 5000.



satisfy more customers. CAF+, of course, has the highe
payoff because not only are the most queries admitted uni
CAF+, but users are only paying for their fair share loacheat
than for their total load. As the degree of sharing increase
CAF begins to overtake CAT+ in total user payoff because fe =~ 15000
share load per user is decreasing, which decreases payme %
increasing payoffs. Each query’s total load on the othedhar &
remains constant as the degree of sharing increases. & 10000

In terms of utilization, we found that all proposed mech @
anisms admit queries so as to utilize more than 98 perce
of the system capacity, except for Two-price which utilize
between 96 percent and 98 percent.

In Figure 4, we show the system profit for three other syste
capacities. As system capacity increases, it is apparantha
crossover points (between CAF+, CAT+ and Two-price ar
between CAF, CAT and Two-price) are shifted to the left, t
lower degrees of sharing. Indeed, as capacity increases, ..
picture as a whole seems to shlft_and scale downward to '558 5. Profit of the three strategyproof mechanisms, (CART.Cand
lower end of max degree of sharing. When system capacityo-price), in comparison with the following different mesentations of
is close to the total query demand and sharing is high, tHg non-strategyproof mechanism CAR: CAR when no user @AR-
Two-prige mechar_ﬂsm has (_:Iearly overtaken all the _de_ns (/Eg;gggicg‘%;ﬁ%“fv?)?ﬁ[)agg)lf%;gt\gr?}rt'ggggi?yng ?@Ebﬁgcmnmng
mechanisms for highest profit. As described above, thisés du
to the fact that so many of the queries are being servicedéy th
density mechanisms, driving down the prices being charge@er payoff. Therefore, if the ratio dtatic Fair Share/Total
Load is less than a certain threshold, the client will lie
(i.e., submit the alternative bid) with a certain probdili
We generated two workloads: a moderately lying workload
and an aggressively lying workload. In the moderately lying

Random| GV | Two-price | CAF | CAF+ | CAT | CAT+ workload, the threshold is set to 0.25, the probability ofidy

092 [2003] 372 |[7.088]12555.5] 7.26 | 100912  to 0.5, and the lying factor to 0.5, while in the aggressively

lying workload, they are set to 0.35, 0.7 and 0.3 respegtivel

We list the average runtime performance of each mechanisnFigure 5 shows the profit for three strategyproof mecha-
over all workloads with 2000 queries and capacity 15K iRisms, CAF, CAT and Two-price, along with three different
Table IV. As a baseline, we also implemented a randomf¥presentations of the profit of CAR: CAR when no user lies,
admitting algorithm, which picks queries at random and stog AR-ML (CAR running the Moderate Lying workload) and
at the first query that does not fit in the remaining capacite TCAR-AL (CAR running the Aggressive Lying workload). We
algorithms ran on an Intel Xeon 8 core 2.3GHz, with 16GB dfee that when some users lie, the system profit decreases, mo-
RAM. The mechanisms only utilized one core. It is clear thQNating the need and desire of the system for a strategyproo
the more aggressive mechanisms (CAF+ and CAT+) cannfitchanism. The profit of the three strategyproof mechanisms
scale compared to the simple ones. We note here that ewg@ependable, while the profit from CAR is manipulable.
though the density based mechanisms’ runtime is only three
to seven times more than the baseline random algorithm, they
provide strategyproofness, and moreover CAT also providesTable VIl summarizes the desirable characteristics of each
sybil-immunity. mechanism alongside its performance for various metries li

Manipulation of the System.Finally, we evaluate CAR for profit maximization, total user payoff, and rate of admissio
profit both in a setting where users are being truthful aboutTo extend the proposed solutions to the more general setting
their valuations, and in a setting where they strategizebathd of different queries wanting different minimum subscripti
less than their true valuations (i.e., “lie”). Since CAR et lengths, we propose the following. Assume without loss of
only mechanism that is not strategyproof, such lying undgenerality that the minimum subscription lengths the syste
CAR is to be expected. wishes to offer are one day, one week, one month, and

To simulate strategizing users, we add an alternative biddoe year. Let each of these lengths be referred to as a
each client, which represents a lower bid than her valuatisubscription category. Partition system resources so dahat
and it is the product of her query valuation (original bidappropriate fraction of total system capacity is allocated
and a lying factor. If a user's query shares many operataach subscription category. For the queries in each categor
with other queries, she would strategize by bidding loweun the strategyproof auction mechanism of your choice (see
than her valuation thus lowering her payment and increasiiigble VII) with the amount of system capacity allotted tottha
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TABLE IV
RUNTIME PERFORMANCE AVERAGES FOR EACH ALGORITHM ONb0
WORKLOADS WITH 2000QUERIES

VII. DISCUSSION



category. At the end of each day, reclaim the system capadjeedy and randomized auction mechanisms for this problem
from those whose subscriptions expire that day and iteratéhich are all strategyproof We conducted experiments to
partition the currently remaining available system resesr evaluate the performance of these mechanisms for metrits su
among the different categories of subscriptions and again ras profit, admission rate, and total user payoff, and we stiowe

a separate auction mechanism for each category.

TABLE V
PROPERTIES OF OUR PROPOSED AUCTION MECHANISMS

that one of the mechanisms is sybil immune.

Our results show that, generally speaking, CAT and CAF are
the best mechanisms to use for profit maximization. However,
if you have a high degree of operator sharing, and your
system capacity is close to the total demand of the queries

Mechanisrft Sybil Profit Admiss | User | Profit

Immune | Guarantee| Rate | Payoff requesting service, then Two-price performs better foffipro
CAF X X High Med | High maximization. As expected, the greedy mechanisms (CAF,
gﬁ?* ; x ';'Aigg ';'Aigz h?v‘é CAF+, CAT, and CAT+) provide better admission rate and
CATT > > Med | High LO%V payoff than qu-price. CAF+ and CAT+ are b_est for total
Two-price < e Cow Cow | Med user payoff, while CAF and CAF+ have the highest query

aAll mechanisms listed here are strategyproof. Admissiote Reotal User
Payoff, and Profit are in terms of relative performance agetegf sharing
increases. For Profit, in the special case that degree oinghiarhigh and
system capacity is almost as high as total system demangrtie from
CAF and CAT begins to dwindle and the profit from Two-price ighest.

admission rate as the degree of sharing increases. We showed
that CAT, the one mechanism which is sybil immune, offers the
best tradeoff with respect to profit. All things considertds
mechanism currently provides most of the desirable pragsert

to be used for admitting CQs in the cloud.
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strategyproof, this scheme as a whole is still bid-strgieggf.
However, introducing these repeated rounds of auctiome-int
duces a new type of potential strategic behavior. Under such
a scheme, users may not be honest about the subscription
periods they are interested in. For example, a user who warlts
to run a CQ for one month in July may instead bid for a two
month subscription starting in June if she believes demand i2]
low enough in June to get charged a sufficiently low price theLg]
paying for two months is cheaper than paying for one mont
starting in July. Guarding against this sort of strategicdwéor
in addition to maintaining bid-strategyproofness would&e
challenging problem for future work.

Another issue to consider is the energy consumption of thié]
DSMS center. Different levels of system operation incur dif v
ferent energy costs. This can be coupled with the observatio
that it might be more profitable not to fully utilize the aale [8]
capacity. Indeed, this is what our experiments clearly sagg
Hence, an extension is to decide what is the most beneficia
capacity for a given auction, while considering both thefipro [10]
as well as the savings from energy reduction.

[4]
(5]

[11]
VIIl. CONCLUSION [12]

This work sits at the intersection of two different lines of">!
data management research, namely user-centric data manage
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