
Connecticut College
Digital Commons @ Connecticut College

Computer Science Faculty Publications Computer Science Department

3-2010

Admission Control Mechanisms for Continuous
Queries in the Cloud
Christine Chung
Connecticut College, cchung@conncoll.edu

Lory Al Moakar
University of Pittsburgh

Panos Chrysanthis
University of Pittsburgh

Shenoda Guirguis
University of Pittsburgh

Alexandros Labrinidis
University of Pittsburgh

See next page for additional authors

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscifacpub

Part of the Computer Sciences Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut
College. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of Digital Commons @
Connecticut College. For more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Chung, Christine; Moakar, Lory Al; Chrysanthis, Panos; Guirguis, Shenoda; Labrinidis, Alexandros; Neophytou, Panayiotis
(Panickos); and Pruhs, Kirk, "Admission Control Mechanisms for Continuous Queries in the Cloud" (2010). Computer Science Faculty
Publications. 6.
http://digitalcommons.conncoll.edu/comscifacpub/6

http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/6?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu

Admission Control Mechanisms for Continuous Queries in the Cloud

Keywords
the cloud, admission control mechanisms, data engineering

Comments
Presented at ICDE 2010 (IEEE International Conference on Data Engineering).

Authors
Christine Chung, Lory Al Moakar, Panos Chrysanthis, Shenoda Guirguis, Alexandros Labrinidis, Panayiotis
(Panickos) Neophytou, and Kirk Pruhs

This conference proceeding is available at Digital Commons @ Connecticut College: http://digitalcommons.conncoll.edu/
comscifacpub/6

http://digitalcommons.conncoll.edu/comscifacpub/6?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/6?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages

Admission Control Mechanisms for Continuous
Queries in the Cloud

Lory Al Moakar ∗, Panos K. Chrysanthis, Christine Chung, Shenoda Guirguis,
Alexandros Labrinidis, Panayiotis Neophytou, Kirk Pruhs

Department of Computer Science
University of Pittsburgh

{lorym, panos, chung, shenoda, labrinid, panickos, kirk}@cs.pitt.edu
∗Authors are listed in alphabetical order.

Abstract—Amazon, Google, and IBM now sell cloud comput-
ing services. We consider the setting of a for-profit business selling
data stream monitoring/management services and we investigate
auction-based mechanisms for admission control of continuous
queries. When submitting a query, each user also submits a
bid of how much she will commit to paying for that query to
run. The admission control auction mechanism then determines
which queries to admit, and how much to charge each user in
a way that maximizes system revenue while incentivizing users
to use the system honestly. Specifically, we require that each
user maximizes her payoff by bidding her true value of having
her query run. We further consider the requirement that the
mechanism be sybil-immune, that is, that no user can increase her
payoff by submitting queries that she does not value. The main
combinatorial challenges come from the difficulty of effectively
taking advantage of the shared processing between queries.We
design several payment mechanisms and experimentally evaluate
them. We describe the provable game theoretic characteristics
of each mechanism alongside its performance with respect to
maximizing profit, total user payoff, and rate of admission,
showing what tradeoffs may be in store for implementers.

I. I NTRODUCTION

The growing need formonitoring applicationssuch as
the real-time detection of disease outbreaks, tracking the
stock market, environmental monitoring via sensor networks,
and personalized and customized Web alerts, has led to a
paradigm shift in data processing paradigms, from Database
Management Systems (DBMSs) to Data Stream Management
Systems (DSMSs) (e.g., [1], [2], [3]). In contrast to DBMSs
in which data is stored, in DSMSs, monitoring applications
register Continuous Queries (CQs) which continuously process
unbounded data streams looking for data that represent events
of interest to the end-user.

There are already a number of commercial stand-alone
DSMSs on the market, such as Streambase [4], S-stream [5]
and Coral8 [6], aiming to support specific applications. We
consider the setting of a business that seeks to profit from sell-
ing data stream monitoring/management services. One might
imagine that a DSMS rents server capacity to clients similarto
the way Amazon, Google, and IBM now sell cloud computing
services [7], [8], [9]. Auctions, used for example by Google
to sell search engine ad words, are a proven way of both
maximizing a system’s potential profit, as well as appealing

to the end-user (client). Instead of a business selling their
services at a set price, an auction mechanism (soliciting bids,
then selecting winners) allows a system to charge prices per
client based on what the individual client is willing to pay.
Those who do not get serviced are not denied arbitrarily due
to the system’s limited resources, but instead feel legitimately
excluded because their bid was simply not high enough.
And perhaps most compellingly, an auction setting allows the
system to subtly control the balance between overloading their
servers and charging the right prices. Hence, we investigate
auction-based mechanisms for admission control of CQs to
be serviced by the DSMS center.

One of the key challenges to designing these auction
mechanisms is determining how to best take advantage of the
shared processing between CQs. The fact that some queries
can share resources obfuscates each query’s actual load on the
system. Without clear-cut knowledge of each query’s load on
the system, optimally selecting the queries to admit becomes
exceedingly challenging from a combinatorial perspective.

From a business point of view, the most obvious design
goal for the admission control mechanism is to maximize
profit. Another first class design goal for the mechanism is to
not be manipulable by users. Specifically, we desire that the
mechanism isstrategyproof(also known asincentive compat-
ible or truthful), which means a client always maximizes her
payoff by bidding her true valuation for having her query run.
Auction-based profit-driven businesses like eBay and Google
AdWords attempt to design and use strategyproof auction
mechanisms, even at the expense of potential short-term profit,
because when users perceive that the system is manipulable,
they have less trust in the system and are less likely to continue
using it. Hence requiring that the auction based admission
control mechanisms be strategyproof is an investment in the
long-term success.

Besides users not being truthful about their valuations,
another way users may manipulate the system is by submitting
bogus queries. Specifically, a user may increase her payoff
by submitting queries that she has no interest in. We call a
mechanism that is not susceptible to this kind of manipu-
lation sybil immune. Hence, toward establishing the DSMS
center, our ultimate goal is to design a CQ admission control

TABLE I

PROPERTIES OF OUR PROPOSED AUCTION MECHANISMS

CAF CAF+ CAT CAT+ Two-price

Strategyproof X X X X X

Sybil Immune × × X × ×

Profit Guarantee × × × × X

mechanism which is strategyproof and sybil immune. This
led us to develop a number of admission control mechanisms
with different properties based on sound principles that allow
their formal validation as strategyproof and/or sybil immune.
We have also experimentally identified potential tradeoffsin
terms of system profit, client payoff and rate of CQ admission.
Clearly the most important of them for our business is system
profit and interestingly, the mechanism which is strategyproof
and sybil immune offers the best tradeoff with respect to profit.

To summarize, ourcontributions are:

• We apply techniques and principles from algorithmic game
theory to a data streams query admission control problem.

• We introduce the notion ofsybil immunityfor auction
mechanisms.

• We propose a number of mechanisms for this problem
(four natural, greedy mechanisms and one randomized
mechanism) and show that they arestrategyproof, but only
one, called CAT, is also sybil immune. These results are
summarized in Table I.

• We experimentally show that greedy mechanisms (which
take into account both the bid and the load for each
user’s query), provide both increased system profits as
well as better total user payoff, compared to a randomized
algorithm that has a profit guarantee. In particular, CAT
provides the best tradeoff with respect to profit.

Road map. We define the system model in Section II and
provide a summary of the relevant background in Section III.
We present our mechanisms in Section IV, analyze their sybil
immunity in Section V, and present their empirical evaluation
in Section VI. We discuss extensions of our problem in Section
VII and conclude in Section VIII.

II. SYSTEM MODEL

In our model, the DSMS center has an admission control
mechanism that, at the end of each subscription period, say
a day, accepts the users’ bids and relevant information about
their CQs, and returns a decision about which CQs to admit
and run the next day1. The mechanism also returns the pricepi

charged to eachCQi that is admitted. The aggregate load of
the operators in the accepted CQs can be at most the capacity
of the server. We model the system capacity as the amount of
work that can be executed in a time unit, given the system’s
resources (CPU, memory, etc.).

1Of course, the time span between each auction could just as easily be one
week or one month. In Section VII, we discuss how our results can extend to
a more general setting where each query may subscribe for a different time
span.

We assume an underlying query model similar to the Aurora
model [1] where subnetworks are connected via connection
points. During the transition phase at the end of each day, the
upstream connection points that surround the subnetworks that
need to be modified hold any incoming data tuples. The tuples
stored inside the queues of these subnetworks are drained
through the downstream connection points. Then, the query
planner modifies the subnetwork by adding new operators or
deleting operators. Once the query planner finishes, the tuples
stored at the connection points are input into the subnetwork
before the newly arriving tuples are executed. This transition
phase ensures the correctness of the results output by CQs that
continue to execute for the next day.

For our purposes, it is sufficient to view a CQ as a
collection of operators ignoring their dependencies (Figure 2).
For example, a CQ might consist of three operators:

• A select operator on a stream of stock quotes that selects
out high value transactions,

• A select operator on a stream of news stories that selects
stories that mention companies with publicly traded stock

• A join operator that joins the results of the two selection
operators on the company name attribute.

We assume that each operatoroj has an associated load
cj that represents the fraction of the system’s capacity that
this operator will use, and this load can at least be reasonably
approximated by the system [1], [3]. It is expected that many
CQs may contain the same operator. Shared operator process-
ing has already been proposed and utilized in the literature
([1], [10], [11]). Operator sharing is based on the premise that
many CQs are monitoring a few hot streams, and many of
the CQs are similar, but not identical. For example, one could
imagine many queries want to select news stories on publicly
traded companies. So in a stock monitoring application, many
aggregate CQs will be defined on few indexes, with similar
aggregate functions, but different joins and different windows.
Thus, sharing can be expected to be heavy.

We assume that each ofn users submits a queryqi along
with a bid bi. The bid expresses a declared bound on how
much a user is willing to pay to have the query executed.
Further each user has a private valuevi expressing how much
having queryqi run is really worth to her. It will be useful
to define a variableh to represent the largest valuation of any
user. Thepayoff (aka utility) ui of the user that submitted
queryqi is vi − pi if qi is accepted, and 0 otherwise.

Example 1:To make these concepts concrete, consider
three queries (q1, q2 andq3) which are submitted to a DSMS
with a capacity of 10 units. Figure 1 shows their query plan.
Note thatq1 andq2 share operator A. As mentioned above, it is
sufficient to abstract away the dependencies between operators
of a CQ and retain only the information seen in Figure 2: the
set of operators that comprise all the queries, the load of each
operator, an indication of which queries each operator belongs
to, and the user bids.

From the business’ point of view, the most obvious design
goal for the mechanism is to maximize profit, which is the

Fig. 1. Queries in Example 1 as seen by the DSMS. Each query hastwo
operators: A and B inq1, A and C inq2, D and E inq3. Operator A is shared
betweenq1 andq2. Each operator is also labeled with the load associated with
it. The input data streams to operators A and D ares1 ands2 respectively.

aggregate prices charged to the accepted queries. Another first
class design goal for the mechanism isstrategyproofness. In-
tuitively, strategyproofness means that users have no incentive
to “lie” about their private values, or bid strategically.

III. R ELEVANT BACKGROUND

A mechanism where users always maximize their payoff
by truthfully revealingall their private information is called
strategyproof. In many auction settings, clients’ true valuations
are the only private information, and hence in such settings
strategyproofnessmeans that clients maximize their payoff
when bidding their true valuations. In this paper, we will refer
to this property asbid-strategyproofness, as we also consider
other private information: a user might conceivably lie about
which operators are contained in her query, say by adding
additional operators that are not part of the query she actually
desires. In the context of our CQ admission auction then, we
call a mechanism isstrategyproofwhen both bidding truthfully
and submitting only the operators in the query actually desired
by the user maximizes the user’s payoff. In this work, all
the mechanisms we propose are not only bid-strategyproof,
but also strategyproof. Several standard auction problemsare
special cases of our auction problem for CQs.

Settings without Sharing. In the special case that there
are no shared operators, the load of each query (which is
the aggregate load of the query’s operators) is the same, and
there is room fork queries, then this is equivalent to the
problem of auctioningk identical goods. Charging each of
the k highest bidders the(k + 1)st highest bid is well known
to be bid-strategyproof. Whenk = 1, this is famously known
as “Vickrey’s second price” auction.

If CQs do not share operators, but the load of each query
may be different, then the resulting problem is what is known
in the literature as a Knapsack Auction problem, studied by
Aggarwal and Hartline in [12].

Operator Sharing. Operators shared between queries
greatly complicate the task of the mechanism because the
profit densityof a query, which refers to the ratio of the
bid for that query (or potential profit to be obtained from
accepting the query) to the load of the query, depends on

Fig. 2. Simplified query plan of queries in Figure 1 to show only the
operators, omitting the order of the operators information. This simplified,
abstract information model is the one we use for our problem.The user bids
are shown above as dollar amounts.

which other operators are selected. For example, consider a
queryqi with low value and high load. In overload situations,
queryqi would surely be rejected in a knapsack auction. But
if all of qi’s operators were shared by high value queries,
then the effective profit density ofqi (given that we know
these high value queries were accepted) could be very high.
This dependency between queries makes the mechanism’s task
much more complex in the case of our CQ auction than in the
case of a knapsack auction. This complexity is illustrated by
the fact that there is a polynomial time approximation scheme
for finding the maximum value collection of items to select
in a knapsack auction, but even for a special case of our CQ
auction, the densest subgraph problem, it is not known how
to approximate the optimal solution to within a polynomial
factor in polynomial time [13].

Characterizations of Strategyproofness.A CQ auction
where the only private information is the amount each user
values her query is called a single-parameter setting. In
single-parameter settings, an allocation mechanism is called
monotoneif every winning bidder remains a winning bidder
when increasing her bid. Thecritical value of user i is the
value ci where if the user bids higher thanci, she wins, but
if she bids lower thanci, she loses. Note that the existence of
a critical value for each user is guaranteed by the preceding
monotonicity property. It is shown in [14] that a mechanism is
bid-strategyproof if and only if it is bothmonotoneand each
winning user’s payment is equal to hercritical value.

One final auction setting related to our CQ auction is the
single minded bidders (SMB) auction problem, studied by
Lehmann et al [15]. Each single-minded bidderi is interested
in a specific collectionSi from the set of items being auctioned
(for a CQ auction the items being auctioned would be server
capacity units andSi would be the units needed to process
the collection of operators in the queryqi). In addition to
bid-strategyproofness. [16], [15] provide a characterization for
strategyproofness in this setting that applies to our setting.
Their characterization of a strategyproof mechanism for an
SMB auction differs only slightly from the above characteriza-
tion for bid-strategyproofness: the definition of monotonicity is
expanded. In terms of our CQ admission auction, monotonicity

means that not only must a winning bidder remain a winning
bidder when increasing her bid, but also must remain a winner
when submitting a query comprised of a strict subset of the
operators in the admitted query.

IV. PROPOSEDMECHANISMS

In this section, we present several greedy CQ auction
mechanisms. We show that four of these mechanisms, CAF,
CAF+, CAT, and CAT+, are strategyproof. Each of these
mechanisms has the following form:

• Sort queries in order of decreasing profit density (bid per
unit of required server load), and then

• admit queries until the server is full.

The intuition is that we wish to accept queries with high
valuation to load ratio.

We consider two different definitions of the load of the
query. CAT assumes that the load of a query is the sum of
the loads of its operators. CAF assumes that the load of a
query is the sum of the fair-share load of its operators, where
the fair-share loadof an operator is the load of the operator
divided by the number of queries that share that operator. So
intuitively, CAT operates as though there will be minimal or
no operator sharing among the accepted queries, while CAF
operates as though there will be maximal operator sharing
among the accepted queries. CAT and CAF stop once the first
query is encountered that will not fit, while the mechanisms
CAT+ and CAF+ continue processing the queries hoping to
find later, lower load, queries that will fit. In each of these
mechanisms, the price per-unit-load quoted for queryqi is
the profit density of a particular rejected query. For each of
CAT and CAF the price for each accepted query is based
on the profit density of the first rejected query. Hence the
mechanisms for CAT and CAF are offering a fixed price per
unit of server capacity that a query uses. The price for a query
qi in CAF+ and CAT+ is based on the minimum profit density
after whichqi would no longer have been accepted. We show
that these mechanisms are all strategyproof. Next we present
the mechanisms in detail.

A. Clients Chosen by Remaining Load (CAR)

In order to set the stage, we start by describing a naı̈ve
approach that uses the remaining additional load needed to
service a CQ for choosing winners and determining payment
values. We show how this approach, while it accurately
captures the additional load each query will contribute to the
total load on the server, is not bid-strategyproof.

Consider the following natural mechanism using the afore-
mentioned greedy scheme for choosing winners. The mech-
anism first chooses each winner based on a value we de-
fine called a query’s “remaining load.” Then the mechanism
charges each winner a payment that also depends on that
user’s remaining load. We refer to the mechanism as the
CAR mechanism (CQ Admission based on Remaining load)
We will show that using such a payment scheme is not
bid-strategyproof, due to the fact that user’s payments are
dependent on their bids.

Selecting Winners.We sort the CQs in non-increasing order
of priority Pri, wherePri = bi/CR

i andCR
i is defined as:

Definition 2: (Remaining LoadCR
i) The remaining load

CR
i of queryi is equal to the total load of all the operators of

qi except those operators that are shared with CQs that have
already been chosen as winners.

In every iteration through the loop, the algorithm chooses
the query with the highest priority and if there is enough
remaining capacity in the system to accommodate it, places
it in the set of winners. At the end of each iteration, the
remaining loadsCR

i as well as the priorities of the yet-
unchosen queries are updated. We demonstrate this mechanism
with the example in Figure 2.

Calculating Payments.We naturally base our first payment
mechanism on the known bid-strategyproofk-unit (k + 1)th-
price auction. Recall from Section III that a simple strate-
gyproof mechanism for ak-unit auction is to charge each
winning bidder the bid amount of the(k+1)th highest bidder.
Hence, we defineqlost to be the CQ with highest priority that
is not a winner. Then, the payment of each winning CQqi is
calculated as follows:pi = CR

i · blost/CR
lost. If the query does

not belong to thewinnerslist, then the payment is zero.

Remaining Load Algorithm Applied to Example 1.The initial
remaining loads ofq1 , q2 andq3 are 5, 6, and 10 respectively.
The priorities ofq1, q2 andq3 become 11, 12 and 10. During
the first iteration of the above algorithm,q2 is chosen first.
Since operator A is chosen as part ofq2, the remaining load of
q1 becomes the load of operator B (just 1 unit) and its priority
becomes 55. Consequently, during the second iterationq1 is
chosen. The remaining capacity in the system is 3. During
the third iteration,q3 is chosen however it does not fit in the
remaining capacity in the system. As a result, the winners list
is composed ofq1 and q2, and qlost is q3. As a result, the
payments forq1 andq2 is $10 per unit load, which amount to
respective payments of $10 and $60.

Strategyproofness.The above payment mechanism at first
glance seems bid-strategyproof since it is based closely on
the well-known bid-strategyproof second-price auction mech-
anism. However, it is not, since a winning useri who shares
operators with other winning users can gain by bidding lower
than her true value. She can strategically bid low enough so
that she gets chosen for serviceafter the users she shares
operators with, but still high enough to win. This will result
in a lower remaining loadCR

i and thus in a lower payment.

B. Clients Chosen by Static Fair Share Load (CAF, CAF+)

At this point it has become clear that using remaining load
(

CR
i

)

for setting payments of users is problematic because of
the dependence of these values on the user’s bid. Therefore,
we consider using a fixed load that does not change over the
course of the winner selection algorithm, and we use that same
fixed load to calculate payments.

We define thestatic fair share loadas follows.
Definition 3: Let oj be an operator that has a load ofcj

and is shared amongl different CQs, then the static fair share

load of oj per CQ is defined ascSF
j = cj/l. Hence, thestatic

fair share loadof a CQqi is defined asCSF
i =

∑

oj∈Qi
cSF
j .

In the following subsections we propose two bid-
strategyproof payment mechanisms using the same greedy
scheme, but based on static fair share load: CAF and CAF+.

CAF (CQ Admission based on Fair share). Our first bid-
strategyproof mechanism that depends on the static fair share
load as defined in Definition 3 is shown in Algorithm 1.

Selecting winners.Steps 1 through 3 of Algorithm 1 greedily
select winners as follows. A priority is assigned to each
operator, where the priority is the value-load ratio:Pri =
bi/CSF

i . Then the list of CQs is sorted in descending order
of these priority values. The algorithm admits CQs from the
priority list in this order as long as the remaining loadCR

i

of hosting the next CQ does not cause system capacity to
be exceeded. (Note that the load considered while checking
capacity constraints is not the static fair share load.) The
algorithm stops as soon as the next CQ does not fit within
server capacity.

Algorithm 1 Our basic fair share mechanism (CAF).Input: A
set of queries with their static fair share loadsCSF

i and their
corresponding bidsbi. Output: The set of queries to be serviced
and their corresponding payments.

1) Set priorityPri to bi/CSF
i for each queryi.

2) Sort and renumber queries in non-increasingPri so that
Pr1 ≥ Pr2 ≥ . . . ≥ Prn.

3) Add the maximal prefix of the queries in this ordered list that
fits within server capacity to the winner list.

4) Let lost be the index of the first losing user in the above
priority list.

5) Charge each winneri a payment ofpi = CSF
i (blost/CSF

lost).
Charge all other users 0.

Calculating payments.Once we have selected the winners, we
calculate the payment for each winning user according to steps
4 and 5 of Algorithm 1.

CAF Applied to Example 1.Sinceq1 shares operator A with
q2, CSF

1 is 3 andCSF
2 is 4. During the first iteration of CAF,

the priorities ofq1, q2 and q3 are 18.34, 18, and 10. As a
result, CAF choosesq1 first and thenq2. Again, q3 is qlost.
Thus the payments forq1 andq2 are $10 per unit load, which
amount to respective payments of $30 and $40.

Strategyproofness.We prove the following theorem by using
the characterization of bid-strategyproof mechanisms forany
single-parameter setting (Section III).

Theorem 4:The CAF mechanism is bid-strategyproof.
Proof: The CAF winner selection is clearly monotone:

any winning bidder could not become a loser by increasing her
bid since she will only move up in the priority list by doing
so. The CAF payments are also equal to the users’ critical
values. If useri bids b′i < CSF

i (blost/CSF
lost), then we would

haveb′i/CSF
i < blost/CSF

lost and we know that both useri and
user lost could not fit together on the server with the other
winners, so useri will become a loser.

We also note that CAF is not just bid-strategyproof, but
strategyproof. This results from the fact that the characteri-
zation for SMB auctions in [15] carries over to our setting
(see Section III), and that CAF satisfies their additional
monotonicity requirement that when a winning bidder asks
for only a subset of the operators in her query, she still wins.

CAF+: An Extension to CAF.
Selecting winners.CAF+ extends CAF by allowing the algo-
rithm to continue until there are no unserviced CQs left that
will fit in the remaining server capacity. While CAF stops as
soon as it encounters a query whose load exceeds remaining
capacity, CAF+ skips over any queries that are too costly,
continuing onto more light-weight queries in the priority list.
(See Algorithm 2.)

Calculating payments.The algorithm calculates the payment
of each winning user (or serviced query) based on each user’s
movement window. Intuitively, the movement window of a
winning user is the amount of freedom the user has to bid
lower than her actual valuation without losing. A more formal
definition follows.

Definition 5: In CAF+ every query that is selected to be
serviced has amovement window. A user’s movement window
is defined as a sublist of the complete list of queries orderedin
descending priorityPri = bi/CSF

i . We will refer to this list
as thepriority list. The movement window of winning useri
begins with the user just after useri in the priority list, and
ends at the first userj in the priority list that both comes
after i and satisfies the following property: if useri’s bid was
changed so that it directly followed the position of userj in
the priority list, CAF+ would no longer choose queryi as a
winner. If such a userj does not exist, then useri’s movement
window spans the entire remainder of the priority list.

Definition 6: For each winning queryqi, last(i) is defined
to be the first query which is outsideqi’s movement window. If
there are no queries remaining outside the movement window
of qi, then last(i) is set tonull.

The payment in CAF+ (Algorithm 2) is calculated for each
query after the set of queries to be serviced is determined.
For each winneri, the algorithm first calculates the identity of
last(i). Then the payment for the selected query is defined as
pi = CSF

i · blast(i)/CSF
last(i). If user i’s movement window

included all remaining queries in the priority list, i.e., if
last(i) = null, then the payment of useri is 0.

Strategyproofness.The proof that CAF+ is bid-strategyproof is
similar to that of Theorem 4; we again use the characterization
of bid-strategyproofness from [14].

Theorem 7:The CAF+ mechanism is bid-strategyproof.
As with CAF, we note that CAF+ is not only bid-

strategyproof, but strategyproof. The reasoning is the same
as for CAF (see Section IV-B).

C. Clients Chosen by Total Load (CAT, CAT+)

Because the “fairshare” based mechanisms described above
are vulnerable to certain types of user manipulation (see
Section V), we design two more robust mechanisms. These

Algorithm 2 Our aggressive fairshare mechanism (CAF+).Input:
A set of queries with their static fair share loadsCSF

i and their
corresponding bidsbi. Output: The set of queries to be serviced and
their corresponding payments.

1) Set priorityPri to bi/CSF
i for each queryi.

2) Sort and renumber queries in non-increasingPri so that
Pr1 ≥ Pr2 ≥ . . . ≥ Prn.

3) For i = 1 . . . n, add useri to the winner list if doing so does
not exceed capacity.

4) For each winneri, calculatelast(i), as defined in
Definition 6.

5) Charge each winneri a payment of
pi = CSF

i (blast(i)/CFS
last(i)). Charge all other users 0.

mechanism are exactly analogous to the mechanism from Sec-
tion IV-B, except that we replace every incidence of the static
fairshare loadCSF

i with that total loadCT
i =

∑

oj∈Qi
cj .

Thus we have two mechanisms.
• CAT (CQ Admission based on Total load): analogous to

CAF described in Section IV-B.
• CAT+ : analogous to CAF+ described in Section IV-B.
CAT Applied to Example 1.In example 1CT

1 , CT
2 andCT

3

are 5, 6 and 10 units. ThusPr1, Pr2 andPr3 are 11, 12, and
10. Consequently, CAT choosesq1 andq2 to be serviced. The
payments forq1 and q2 are $10 per unit load, which amount
to respective payments of $50 and $60.

It is easy to verify that the proofs of bid-strategyproofness
carry over to these modified versions of the algorithms and
payments. We therefore have the following two theorems.

Theorem 8:The CAT mechanism is bid-strategyproof.
Theorem 9:The CAT+ mechanism is bid-strategyproof.
As with CAF and CAF+, we note that both CAT and CAT+

are not only bid-strategyproof, but strategyproof.

D. A Profit Guarantee

While we will experimentally show that the above greedy
mechanisms perform quite well for profit maximization (Sec-
tion VI), they do not admitprovableprofit guarantees that are
reasonable (due to some special, pathological input instances).
We thus turn to a basic mechanism that is based only on user
bids rather than density: the CQs are simply sorted in decreas-
ing bid order, and then selected from the top until the next CQ
does not fit in system capacity. The chosen CQs then pay a
price equal to the bid of the first losing CQ. We refer to this
basic solution as the Greedy-by-Valuation (GV) mechanism.
While GV also does not admit a profit guarantee, we propose
a strategyproof randomized mechanism based on GV called
Two-Price, that has a provable profit guarantee. Specifically,
it is competitive (in expectation) with the best optimal constant
pricing mechanism. Aconstant pricingmechanism as defined
in [12], is any mechanism (strategyproof or not) where the
users are all charged the same price, call itp, and those who
bid strictly higher thanp are winners, those who bid strictly
lower thanp are losers, and those who bid equal top may
be designated winners or losers arbitrarily by the mechanism.
Winners must all payp and losers pay 0.Profit is defined to

be the sum of the payments that the mechanism charges or
receives from the users.

A constant pricingmechanism isvalid if all winners fit
within server capacity, and so we will only consider valid
constant prices.Optimal constant pricing profit(OPTC) then
refers to the maximum possible profit that can be attained from
any valid constant pricing mechanism (strategyproof or not).
We choose to focus on constant pricing optimality in this paper
because with the shared processing of queries in our problem,
other standard profit benchmarks seem difficult to compete
with. Two other natural profit benchmarks include optimal
pricing per unit load and optimal monotone pricing, both of
which generalize optimal constant pricing and were discussed
in the context of Knapsack Auctions in [12]. But because
of our shared processing between queries, the processing
load required of each query is not clear cut. Hence both
proportional and monotone pricing definitions become fuzzy.

The Randomized Mechanism.We now show that by only us-
ing two distinct prices, under the assumption that the usersall
have distinct valuations, we are able to find a bid-strategyproof
mechanism that approximates optimal constant pricing profit.
We show however that there is a trade-off between the run-time
of the mechanism and its profit. We first present a mechanism
that runs in time exponential in the number of duplicate
valuations, then explain how a polynomial time version of it
gives a weaker profit guarantee.

We refer to our mechanism as theTwo-price Mechanism.
The first phase of the mechanism (Steps 1 and 2) follows our
greedy scheme (using user valuations), the second phase (Step
3) is an exhaustive search that gives the potential exponential
running time in terms of number of duplicate valuations, and
the last phase (Steps 4 through 6) contains the randomization
and is essentially identical to the Random Sampling Optimal
Price auction of [17].

Note that in Step 3 of the mechanism we run an exhaustive
search on all possible subsets of the critical set of queries
with duplicate valuations. The possibility of sharing of server
capacity between queries is what requires us to take this po-
tentially arduous step, as the problem of optimally determining
which subset of queries to admit in the face of such sharing
seems hard to approximate. For the proof of the following
theorem, and any remaining theorems, please see [18].

Theorem 10:The Two-price mechanism is bid-
strategyproof.

Note that because the Two-price mechanism allocates win-
ners and sets payments entirely independent of each query’s
load, it is not only bid-strategyproof, but strategyproof.We
now state the competitiveness of Two-price for profit maxi-
mization. We assume user valuations range from 1 toh and
we use OPTC to refer to the optimal constant pricing profit.

Theorem 11:The expected profit of theTwo-pricemecha-
nism is at leastOPT − 2h.

The next theorem applies to the polynomial-time mecha-
nism that results when Step 3 of Algorithm 3 is omitted.

Theorem 12:The expected profit of the polynomial-time
mechanism defined by theTwo-pricemechanism without Step

Algorithm 3 Two-price mechanism. Input: Set of n queries and
corresponding user valuationsv1 . . . vn. Output: Set of winners and
their corresponding payments.

1) Sort and renumber the queries in order of decreasing valuation,
so v1 ≥ v2 ≥ v3 ≥ . . . ≥ vn, breaking ties arbitrarily.

2) LetH be the ordered set of queries that comprise the maximal
prefix of queries from this sorted list that fits within our server
capacity. LetL be the ordered set of losers (remaining queries
not chosen forH) and letvL be the valuation corresponding
to the first query inL.

3) If the last query inH has valuationvL, the set of queries in
H must be adjusted as follows. LetD be the set of all users
with valuation equal tovL, and letd be the cardinality ofD.
Let H ′ = H −D. Let D∗ be the largest subset ofD that fits
within capacity along withH ′. RedefineH = H ′ + D∗

4) Partition the users fromH evenly into two sets,A and B,
uniformly at random. Renumber queries separately in each set
as in step 1. I.e.,v1 ≥ v2 ≥ . . . ≥ va for the a queries in set
A, andv1 ≥ v2 ≥ . . . ≥ vb for the b queries in setB, again
breaking ties arbitrarily.

5) Calculate the optimal constant price profit of each set of
queries:OPT (A) = maxi∈A ivi and
OPT (B) = maxi∈B ivi. Let k = arg maxi∈A ivi and let
pA = vk. Similarly, let j = arg maxi∈B ivi and letpB = vj .

6) Use the pricepA to determine the winners from setB and use
the pricepB to determine the winners from setA. Specifically,
the winners from setB are those users whose valuations are
greater thanpA, and these winners are each charged a payment
of pA. Similarly determine winners and payments for users in
setA.

3 is at leastOPT − dh.
In this section we presented mechanisms that are strate-

gyproof. Next, we investigate their sybil immunity.

V. SYBIL ATTACK

In this section we consider a strategic behavior that is well-
known in the context of reputation systems like that of eBay
and Amazon for rating sellers, buyers and products: a sybil
attack. A user who behaves strategically using a sybil attack
forges multiple (“fake”) identities to manipulate the system.
In reputation systems a user might try to boost the reputation
of some entity by perhaps adding positive recommendations
from false users [19]. In our setting, a sybil attack amounts
to creating false identities to submit additional queries that
the user does not need or value in order to manipulate the
mechanism. (See Figure 3.) Thus we define a mechanism
to be sybil immuneif a user can never increase her payoff
by submitting additional fake, no-value queries. We make
the natural assumption that if a fake query is chosen to be
serviced, the sybil attacker is responsible for making the fake
query’s payments, so a user’s payoff is the aggregate payoff
that she gains from the queries of all of her identities. We will
show here that CAT is sybil immune, while the rest of the
mechanisms are not. To the best of our knowledge, this is the
first time that sybil immunity has been proposed, and we note
that the notion of sybil immunity can apply to any mechanism
design problem.

Definition 13: We define a mechanism to bevulnerableto

Fig. 3. This figure illustrates the third user from Example 1 perpetrating a
sybil attack by forging two additional fake users. The real queries are indicated
in solid lines while the fake queries are indicated in dashedlines. The presence
of these fake queries creates the illusion that user 3’s operators are in higher
demand, which could conceivably influence the mechanism to either charge
the third user less, or service her when she would not have otherwise been
serviced.

sybil attack if there exists an input instance where there is
a user who can increase her payoff by perpetrating a sybil
attack.

Definition 14: We define a mechanism to beuniversally
vulnerable to sybil attack if in every input instance, every
user has a way to improve her payoff by perpetrating a sybil
attack.

A. Attacks Against the Fair Share Mechanisms

Unfortunately, our proposed fair-share schemes of Section
IV-B are vulnerable to sybil attack. A useri can employ the
following strategy using a sybil attack to improve her payoff:
simply create fake users with negligible valuations whose
queries share operators withqi. A sybil attack of this kind will
lower the attacker’s fair share load, improving her rankingand
enabling her to be selected as a winner while simultaneously
decreasing her payment to an affordable amount. Note that
it is always possible for the attacker to set her fake users’
valuations low enough so that they are not in danger of being
selected as winners, and hence will require no additional
payment from the attacker.

Indeed, we can prove that inany given instance of the CQ
admission problem,anyuser can gain from employing a sybil
attack against our fair share mechanism.

Theorem 15:Both the CAF or CAF+ mechanisms areuni-
versally vulnerableto sybil attack.

B. Attacks Against the Total Load Mechanisms

In contrast to this vulnerability of our fair share mecha-
nisms, the total load payment mechanisms (CAT and CAT+),
described in Section IV-C, seem at first to be robust to such
attacks. While we’ve seen that a user’s fair share can easilybe
reduced by creating fake identities, a user’s total load is not
dependent on the number of other users sharing her load, and
therefore CAT and CAT+ should not (at least at first glance)
be prone to such sybil attack strategies.

Definition 16: We say that a mechanism isimmune to sybil
attack if for every input instance, no user can increase her

payoff by perpetrating a sybil attack (i.e., it is not vulnerable).
We also use the termsybil immunityto refer to this property.

However, one of our total load mechanisms is not immune to
sybil attack. We begin by giving the following characterization
of sybil immunity. A mechanism is sybil immune if and only
if both of the following properties hold:

1) The arrival of additional queries will never cause a loser
to become a winner with positive payoff.

2) If the arrival of additional queries reduces a winner’s
payment byδ, the additional queries that become win-
ners must be charged a total of at leastδ by the
mechanism.

We now show that CAT+ is vulnerable to sybil attack
because it does not satisfy the above property 1.

Theorem 17:For the CQ admission problem, CAT+ is
vulnerable to sybil attack.

TABLE II

AN EXAMPLE OF A SYBIL ATTACK THAT BEATS CAT+.

User 1 2 “3”
vi 100 89 100ǫ + ǫ

CT
i 1 0.9 ǫ

Pri 100 < 100 > 100
Round 1 100 < 100 picked
Round 2 exceeds cap. picked picked

Paymentspi 0 0 ← 100ǫ

Payoffs 0 89− 100ǫ N/A

To see why, consider the example in Table II, in which a sybil
attacker defeats our total load algorithm, CAT+. User 2 is a
sybil attacker, creating a fake query that appears to the system
as “user 3”. Here,ǫ represents an arbitrarily small positive
value. In this example, if user 2 does not perpetrate the attack,
user 1 will get chosen for service, and then server capacity
will be reached, so user 2 would not get serviced. Whereas
when user 2 introduces the fake “user 3,” she is able to trick
the system into choosing her instead of user 1. While user
2 is responsible for the fake user’s payment, user 2 carefully
created “user 3” so that its payment would be a negligible
amount. Note that user 2’s payment for query 2 is 0 since
there is no one left after she is chosen.

Note that in this kind of sybil attack, the danger for user 2
(the attacker) is that when the fake “user 3” was chosen for
service, user 2 had to make user 3’s payment. Hence user 3’s
fake valuation and fake load had to be carefully chosen by
user 2 so that user 2 found paying user 3’s fee worthwhile.
(Recall from Section IV-C that payment of a winning useri
is calculated asCT

i vlost/CT
lost, so in our example, that makes

p3 = 100ǫ). In this particular instance, user 2 had no payment
of her own to pay because there are no users that have lower
priority than user 2. This makes paying “user 3”’s payment
affordable to user 2.

The good news is: our total load mechanisms are not always
bad. First, while our fair share mechanisms areuniversally
vulnerableto attack, there are instances under the total share
mechanism that are robust to sybil attack. Second, and more
notably, the CAT mechanism is immune to sybil attack. In

fact we can make an even stronger claim. Thus far in our
discussion of sybil attacks, we have been considering sybil
attack in isolation from bid-strategyproofness. However,it is
possible that a user can use a sybil attackin conjunction
with lying about her valuation in order to increase her payoff.
This possibility raises the question of whether adding sybil
attacks to each user’s set of possible strategies has removed
our mechanism’s bid-strategyproofness.

It turns out that our CAT mechanism remains bid-
strategyproof even if we allow sybil attacks,and it remains
immune to sybil attack, even if we allow users to lie about
their valuations.

Definition 18: We define a mechanism to besybil-
strategyproofif no user can improve her payoff by either lying
about her valuation, perpetrating a sybil attack, or doing both
simultaneously.

We now give a characterization of sybil-strategyproof mech-
anisms. A mechanism is sybil-strategyproof if and only if both
of the following properties hold:

1) It is bid-strategyproof.
2) The arrival of additional users (e.g., via a sybil attack)

cannot decrease anyone’s critical value by an amount
more than the total payment charged to the additional
users.

The above characterization is used to prove that CAT is
sybil-strategyproof.

Theorem 19:For the CQ admission problem, the CAT
mechanism is sybil-strategyproof.

C. Attacks Against the Randomized Mechanism

Our randomizedTwo-price mechanism, however, is not
immune to sybil attack. This fact is proven by showing that
the mechanism violates property 2 of our characterization of
sybil immunity: a winning user can reduce her payment (in
expectation) by introducing fake queries such that the fake
queries incur less expected total charges than the amount her
payment was reduced by.

Theorem 20:The Two-price mechanism is vulnerable to
sybil attack.

Finally, we note that even if we modify Step 4 of the
mechanism so that each query is placed in setA or B based
on independent coin flips (so thatH may not be evenly
partitioned), the mechanism is still vulnerable to sybil attack.
Again, the vulnerability is due to a violation of property 2 of
our characterization of sybil immunity. Consider the instance
where user 1 has valuationb andnc users (which get placed
into H along with user 1) all have a valuation ofc < b. Set
sizes for the users inH so that server capacity is exactly filled.

User 1 creates a fake user with valuationd = c+ǫ, with size
equal to the combined size of all the users with valuationc,
kicking them out ofH . While before user 1 was chargedc with
probability1 − (1/2)nc and 0 with probability(1/2)nc , now
that only user1 and the fake user are inH , user 1 and her fake
user is charged 0 with probability 1/2, andd with probability
1/2. For choice ofǫ that ensuresd/2 < c(1 − (1/2)nc), user
1’s expected payoff has decreased.

VI. EXPERIMENTAL EVALUATION

In this section, we experimentally demonstrate the behavior
of the different proposed auction-based admission control
mechanisms. First we present the experimental setup. Then
we discuss the results.

A. Experimental Platform

Mechanisms.We implemented all the proposed admission
control mechanisms in Java, including the strategyproof GV
(Greedy by Valuation) mechanism (described in Section IV).
We also implemented the optimal constant pricing profit
(OPTC) algorithm, described in Section IV-D.

Metrics. For each mechanism, we measured the following
performance metrics:

• Profit: the sum of the payments of the admitted queries.
• Admission rate: The percentage of queries admitted.
• Total user payoff: the sum of the valuations (bids) of the

admitted queries minus the payments. Total user payoff
can be seen as an indication of total user satisfaction
under each mechanism.

• System utilization: the used capacity of the server.
• The runtime for each mechanism.

The reported results are the average of running each algorithm
on 50 different sets of workload. Note that, for clarity, our
figures do not show GV or OPTC as they echo the behavior
of Two-price in all experiments.

TABLE III

WORKLOAD CHARACTERISTICS

Number of workload sets 50
Number of queries 2000
Number of operators 700 ∼ 8800
Max Degree of Sharing [1− 60] - Zipf, skewness: 1
Maximum Bid 100 - Zipf, skewness: 0.5
Maximum Operator Load 10 - Zipf, skewness: 1
System Capacity 5K-10K-15K-20K

Workload. We summarize the workload parameters in Table
III. We generated 50 sets of workload for four different system
capacities. Each set contains a number of different input
instances. An input instance consists of users’ queries along
with their bids, and is parameterized by:

• A system capacity.
• Maximum degree of sharing: The degree of sharing of

an operator is the number of queries that share a single
operator, and the maximum is taken over all the operators.

We varied the maximum degree of sharing from 1 to 60. We
keep the average query load the same throughout a workload
set, while varying the maximum degree of sharing. To achieve
this, we generate a workload with the highest maximum degree
of sharing (i.e. 60) and then gradually split the operators of the
highest degree and distribute the resulting operators intoother
varying degrees within a workload. For example, to generate
an input instance of maximum degree of sharing 7, using
the input instance of max degree of sharing 8, if there were
100 operators with degree 8, we split each one of them to

degrees 4,2,1,1 (four operators). This will generate 400 new
operators with the same load as the original operators. The
queries associated with that operator will be distributed among
the resulting operators. Each input instance consists of 2000
queries and between 700 and 8800 operators (the number of
operators decreases as the degree of sharing increases).

The bids of each query are randomly generated according
to a Zipf distribution with maximum bid value set to 100
and skewness parameter set to 0.5. The load of each operator
is also randomly generated according to a Zipf distribution
with the maximum operator load set to 10 units and skewness
parameter set to 1. Operators are assigned to queries randomly,
where for each operator, the number of queries sharing it is
drawn from a Zipf distribution with skewness parameter set to
1 and the maximum degree of sharing changes from 1 to 60.

B. Experimental Results.

Figure 4(a) shows the percentage of admitted queries as
the degree of sharing ranges from 1 to 60, for a system
with capacity 15,000. All mechanisms admit more queries
as the degree of sharing increases. This is due to the fact
that the mechanisms are able to take advantage of the shared
processing between queries, so more queries can be serviced
using the same system capacity. Two-price always admits
a smaller percentage of the queries than the density-based
mechanisms (CAF, CAF+, CAT, CAT+) because it chooses
queries by user bid only, without regard to query load.

Interestingly, profit (in Figure 4(e)) does not follow the same
trend. CAF and CAT are the best for profit, as they do not
admit queries as greedily as CAF+ and CAT+ do, which means
the prices they charge admitted queries are much higher than
CAF+ and CAT+. The profit of CAF+ and CAT+ decrease as
degree of sharing increases because they are simply admitting
so many queries (as sharing increases) that the prices they are
charging admitted queries continues to be driven downward.
Due to the fact that queries are selected in decreasing orderof
density and charged a per-unit price equal to the per-unit bid
of the first losing query, very few queries means higher prices,
more queries means lower prices. The Two-price mechanism
provides profit that consistently improves as degree of sharing
increases because its profit is close to the optimal constant
pricing profit, which only improves as the number of queries
that can fit within capacity increases. At the point where
Two-price crosses over CAF and CAT, we observe the same
phenomenon that caused decreasing profit in CAF+ and CAT+.
At the crossover point, CAF and CAT begin to admit such a
high rate of queries that the prices they are charging are being
driven dramatically downward (remember, query valuations
are drawn from a skewed distribution), reducing overall profit
faster than the gain in profit from admitting more queries.
The profit of CAF in particular begins to really dive, as the
payments are an increasing function of each query’s fair share
load, which also shrinks as the degree of sharing increases.

With respect to maximizing total user payoff (Figure 4(b)),
the density based mechanisms always perform better than
Two-price because they are able to admit more queries and

(a) System Capacity = 15,000 (b) System Capacity = 15,000

(c) System Capacity = 5000 (d) System Capacity = 10,000

(e) System Capacity = 15,000 (f) System Capacity = 20,000

Fig. 4. Figure 4(a) shows the percentage of queries servicedunder each mechanism. Figure 4(b) shows total user payoff, which can be interpreted as a
measure of total user-satisfaction. A user’s payoff is defined as her valuation minus her payment. Seen here is the sum of winning users’ payoffs. The sequence
of figures in 4(c) through 4(f) shows system profit as system capacity varies from 5000 to 20,000 in increments of 5000.

satisfy more customers. CAF+, of course, has the highest
payoff because not only are the most queries admitted under
CAF+, but users are only paying for their fair share load, rather
than for their total load. As the degree of sharing increases,
CAF begins to overtake CAT+ in total user payoff because fair
share load per user is decreasing, which decreases payments,
increasing payoffs. Each query’s total load on the other hand,
remains constant as the degree of sharing increases.

In terms of utilization, we found that all proposed mech-
anisms admit queries so as to utilize more than 98 percent
of the system capacity, except for Two-price which utilizes
between 96 percent and 98 percent.

In Figure 4, we show the system profit for three other system
capacities. As system capacity increases, it is apparent that the
crossover points (between CAF+, CAT+ and Two-price and
between CAF, CAT and Two-price) are shifted to the left, to
lower degrees of sharing. Indeed, as capacity increases, the
picture as a whole seems to shift and scale downward to the
lower end of max degree of sharing. When system capacity
is close to the total query demand and sharing is high, the
Two-price mechanism has clearly overtaken all the density
mechanisms for highest profit. As described above, this is due
to the fact that so many of the queries are being serviced by the
density mechanisms, driving down the prices being charged.

TABLE IV

RUNTIME PERFORMANCE AVERAGES FOR EACH ALGORITHM ON50

WORKLOADS WITH 2000QUERIES

Random GV Two-price CAF CAF+ CAT CAT+
0.92 2.003 3.72 7.088 12555.5 7.26 10091.2

We list the average runtime performance of each mechanism
over all workloads with 2000 queries and capacity 15K in
Table IV. As a baseline, we also implemented a randomly
admitting algorithm, which picks queries at random and stops
at the first query that does not fit in the remaining capacity. The
algorithms ran on an Intel Xeon 8 core 2.3GHz, with 16GB of
RAM. The mechanisms only utilized one core. It is clear that
the more aggressive mechanisms (CAF+ and CAT+) cannot
scale compared to the simple ones. We note here that even
though the density based mechanisms’ runtime is only three
to seven times more than the baseline random algorithm, they
provide strategyproofness, and moreover CAT also provides
sybil-immunity.

Manipulation of the System.Finally, we evaluate CAR for
profit both in a setting where users are being truthful about
their valuations, and in a setting where they strategize andbid
less than their true valuations (i.e., “lie”). Since CAR is the
only mechanism that is not strategyproof, such lying under
CAR is to be expected.

To simulate strategizing users, we add an alternative bid to
each client, which represents a lower bid than her valuation,
and it is the product of her query valuation (original bid)
and a lying factor. If a user’s query shares many operators
with other queries, she would strategize by bidding lower
than her valuation thus lowering her payment and increasing

Fig. 5. Profit of the three strategyproof mechanisms, (CAF, CAT, and
Two-price), in comparison with the following different representations of
the non-strategyproof mechanism CAR: CAR when no user lies,CAR-
ML(CAR running the Moderate Lying workload) and CAR-AL(CARrunning
the Aggressive Lying workload). System capacity = 15,000.

her payoff. Therefore, if the ratio ofStatic Fair Share/Total
Load is less than a certain threshold, the client will lie
(i.e., submit the alternative bid) with a certain probability.
We generated two workloads: a moderately lying workload
and an aggressively lying workload. In the moderately lying
workload, the threshold is set to 0.25, the probability of lying
to 0.5, and the lying factor to 0.5, while in the aggressively
lying workload, they are set to 0.35, 0.7 and 0.3 respectively.

Figure 5 shows the profit for three strategyproof mecha-
nisms, CAF, CAT and Two-price, along with three different
representations of the profit of CAR: CAR when no user lies,
CAR-ML (CAR running the Moderate Lying workload) and
CAR-AL (CAR running the Aggressive Lying workload). We
see that when some users lie, the system profit decreases, mo-
tivating the need and desire of the system for a strategyproof
mechanism. The profit of the three strategyproof mechanisms
is dependable, while the profit from CAR is manipulable.

VII. D ISCUSSION

Table VII summarizes the desirable characteristics of each
mechanism alongside its performance for various metrics like
profit maximization, total user payoff, and rate of admission.

To extend the proposed solutions to the more general setting
of different queries wanting different minimum subscription
lengths, we propose the following. Assume without loss of
generality that the minimum subscription lengths the system
wishes to offer are one day, one week, one month, and
one year. Let each of these lengths be referred to as a
subscription category. Partition system resources so thatan
appropriate fraction of total system capacity is allocatedto
each subscription category. For the queries in each category,
run the strategyproof auction mechanism of your choice (see
Table VII) with the amount of system capacity allotted to that

category. At the end of each day, reclaim the system capacity
from those whose subscriptions expire that day and iterate:
partition the currently remaining available system resources
among the different categories of subscriptions and again run
a separate auction mechanism for each category.

TABLE V

PROPERTIES OF OUR PROPOSED AUCTION MECHANISMS.

Mechanisma Sybil Profit Admiss User Profit
Immune Guarantee Rate Payoff

CAF × × High Med High
CAF+ × × High High Low
CAT X × Med Med High
CAT+ × × Med High Low
Two-price × X Low Low Med

aAll mechanisms listed here are strategyproof. Admission Rate, Total User
Payoff, and Profit are in terms of relative performance as degree of sharing
increases. For Profit, in the special case that degree of sharing is high and
system capacity is almost as high as total system demand, theprofit from
CAF and CAT begins to dwindle and the profit from Two-price is highest.

The good news is that because each auction is being run
independently and separately, and all our auctions are bid-
strategyproof, this scheme as a whole is still bid-strategyproof.
However, introducing these repeated rounds of auctions intro-
duces a new type of potential strategic behavior. Under such
a scheme, users may not be honest about the subscription
periods they are interested in. For example, a user who wants
to run a CQ for one month in July may instead bid for a two
month subscription starting in June if she believes demand is
low enough in June to get charged a sufficiently low price that
paying for two months is cheaper than paying for one month
starting in July. Guarding against this sort of strategic behavior
in addition to maintaining bid-strategyproofness would bea
challenging problem for future work.

Another issue to consider is the energy consumption of the
DSMS center. Different levels of system operation incur dif-
ferent energy costs. This can be coupled with the observation
that it might be more profitable not to fully utilize the available
capacity. Indeed, this is what our experiments clearly suggest.
Hence, an extension is to decide what is the most beneficial
capacity for a given auction, while considering both the profit
as well as the savings from energy reduction.

VIII. C ONCLUSION

This work sits at the intersection of two different lines of
data management research, namely user-centric data manage-
ment and data stream management, and utilizes techniques
from the domain of game theory. By using an auction model,
we are able to explore a novel way of describing user prefer-
ences in the CQ admission control problem. Although, most
data stream admission control (load shedding) algorithms work
at the tuple level, we believe that focusing on the query level,
as we do in this work, is equally important.

We provided a model for the problem that allows us to
establish its difficulty and complexity. We introduced the
notion ofsybil immunityfor auction mechanisms and designed

greedy and randomized auction mechanisms for this problem
which are all strategyproof. We conducted experiments to
evaluate the performance of these mechanisms for metrics such
as profit, admission rate, and total user payoff, and we showed
that one of the mechanisms is sybil immune.

Our results show that, generally speaking, CAT and CAF are
the best mechanisms to use for profit maximization. However,
if you have a high degree of operator sharing, and your
system capacity is close to the total demand of the queries
requesting service, then Two-price performs better for profit
maximization. As expected, the greedy mechanisms (CAF,
CAF+, CAT, and CAT+) provide better admission rate and
payoff than Two-price. CAF+ and CAT+ are best for total
user payoff, while CAF and CAF+ have the highest query
admission rate as the degree of sharing increases. We showed
that CAT, the one mechanism which is sybil immune, offers the
best tradeoff with respect to profit. All things considered,this
mechanism currently provides most of the desirable properties
to be used for admitting CQs in the cloud.

Acknowledgments: This research was supported in part by
an IBM faculty award, and from NSF grants CNS-0325353,
CCF-0514058, IIS-0534531, IIS-0746696 and CCF-0830558.

REFERENCES

[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model and
architecture for data stream management,”VLDBJ, 12(2):120–139, 2003.

[2] T. S. Group, “Stream: The stanford stream data manager,”IEEE Data
Engineering Bulletin, 2003.

[3] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs, “Algo-
rithms and metrics for processing multiple heterogeneous continuous
queries,”ACM Trans. Database Syst., 33(1):1–44, 2008.

[4] “Streambase,” 2006. Available: http://www.streambase.com
[5] System S. Available: http://domino.research.ibm.com/

comm/researchprojects.nsf/pages/esps.index.html
[6] Coral8. Available: http://www.coral8.com/
[7] S. Reiss, “Cloud computing. available at amazon.com today,” Wired,

April 2008. Available: http://www.wired.com/techbiz/it/magazine/16-
05/mf amazon

[8] S. Baker, “Google and the wisdom of clouds,”Business Week, Dec.
2007.

[9] P. McDougall, “Google, ibm join forces to dominate ‘cloud computing’,”
Information Week, May 2009.

[10] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman, “Continuously
adaptive continuous queries over streams,” inSIGMOD 2002, pp. 49–60.

[11] S. Krishnamurthy, C. Wu, and M. Franklin, “On-the-fly sharing for
streamed aggregation,” inSIGMOD 2006. ACM, pp. 623–634.

[12] G. Aggarwal and J. D. Hartline, “Knapsack auctions,” inSODA, 2006.
[13] U. Feige, D. Peleg, and G. Kortsarz, “The dense -subgraph problem,”

Algorithmica, 29(3):410–421, 2001.
[14] N. Nisan, “Introduction to mechanism design,” inAlgorithmic Game

Theory, 2007.
[15] D. J. Lehmann, L. O’Callaghan, and Y. Shoham, “Truth revelation in

approximately efficient combinatorial auctions,”J. ACM, 49(5):577–602,
2002.

[16] L. Blumrosen and N. Nisan, “Combinatorial auctions,” in Algorithmic
Game Theory, 2007.

[17] A. V. Goldberg, J. D. Hartline, A. R. Karlin, M. Saks, andA. Wright,
“Competitive auctions,” inGames and Economic Behavior, 2006.

[18] C. Chung, “Evolutionary solutions and internet applications for algorith-
mic game theory,” Ph.D. dissertation, U. of Pittsburgh, Pittsburgh, PA,
Aug. 2009.

[19] E. Friedman, P. Resnick, and R. Sami, “Manipulation-resistant reputation
systems,” inAlgorithmic Game Theory, 2007.

	Connecticut College
	Digital Commons @ Connecticut College
	3-2010

	Admission Control Mechanisms for Continuous Queries in the Cloud
	Christine Chung
	Lory Al Moakar
	Panos Chrysanthis
	Shenoda Guirguis
	Alexandros Labrinidis
	See next page for additional authors
	Recommended Citation

	Admission Control Mechanisms for Continuous Queries in the Cloud
	Keywords
	Comments
	Authors

	Admission Control Mechanisms for Continuous Queries in the Cloud

