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with fair cost allocation for undirected graphs. We consider the most general case,
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number of agents, and the best previously known lower bound is 12/7≈ 1.778.

We present a nontrivial lower bound of 42/23≈ 1.8261. Furthermore, we show
that for two players, the price of stability is exactly 4/3, while for three players it is at
least 74/48≈ 1.542 and at most 1.65. These are the first improvements on the bound
of Hn for general networks. In particular, this demonstrates a separation between the
price of stability on undirected graphs and that on directedgraphs, whereHn is tight.
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source, and for weighted players.
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1 Introduction

The effects of selfish behavior in networks is a natural problem with long-standing
and wide-spread practical relevance. As such, a wide variety of network design and
connection games have received attention in the algorithmic game theory literature
(for a survey, see [17]).

One natural question is how much the users’ selfish behavior affects the perfor-
mance of the system. Koutsoupias and Papadimitriou [10, 14]addressed this question
using a worst-case measure, namely thePrice of Anarchy(PoA). This notion com-
pares the cost of the worst-case Nash equilibrium to that of the social optimum (the
best that could be obtained by central coordination). From an optimistic point of
view, Anshelevich et al. [2] proposed thePrice of Stability(PoS), the ratio of the
lowest Nash equilibrium cost to the social cost, as a measureof the minimal effect of
selfishness.

There has been substantial work on the PoA forcongestion games, a broad class
of games with interesting properties originally introduced by Rosenthal [15]. Conges-
tion games nicely model situations that arise in selfish routing, resource allocation and
network design problems, and the PoA for these games is now quite well-understood
[16, 7, 6, 3]. By comparison, much less work has been done on the PoS: The PoS
for network design games has been studied by [2, 5, 1, 9, 11], while the PoS for
routing games1 was studied by [2, 6, 4]. However, PoA techniques cannot easily be
transferred to the study of PoS. New techniques thus need to be developed; this work
moves toward this direction.

The particular network design problem we address here is theone which was ini-
tially studied by Anshelevich et al. [2], sometimes referred to as the fair cost sharing
network design (or creation) game. In it, each player has a set of endpoints in a net-
work that he must connect; to achieve this, he must choose a subset of the links in the
network to utilize. Each link has a cost associated with it, and if more than one player
wishes to utilize the same link, the cost of that link is splitevenly among the players.
Each player’s goal is to pay as little as possible to connect his endpoints. The global
social objective is to connect all player’s endpoints as cheaply as possible.

Anshelevich et al. [2] showed that ifG is a directed graph, the price of anarchy
is equal ton, the number of players, whereas the price of stability is exactly thenth
harmonic numberHn. The upper bound is proven by using the fact that our network
design game, and in fact any congestion game, is a potential game. Apotential game,
first defined by Monderer and Shapley [12], is a game where the change to a player’s
payoff due to a deviation from a game solution can be reflectedin apotential function,
or a function that maps game states to real numbers.

This upper bound ofHn holds even in the case of undirected graphs (since the
potential function of the game does not change when the underlying graph is undi-
rected), however the lower bound does not. Hence the centralopen question we study
is:

1 Both cost-sharing network design games and network routinggames fall in the class of congestion
games and they differ only in the edge cost functions. Cost sharing network design games come together
with decreasing cost functions on the edges, e.g.ce(x) = ce/x, while routing games come with increasing
latency functions, e.g.ce(x) = ce ⋅x.
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What is the price of stability in the fair cost sharing network design game on
undirected graphs?

In the case of two players and a single common sink vertex, Anshelevich et al. [2]
show that the answer is 4/3. Some further progress has also more recently been
made toward answering this question. Fiat et al. [9] showed that in the case where
there is a single common sink vertex and every other vertex isa source vertex, the
price of stability isO(loglogn). They also give ann-player lower bound instance of
12/7 [13]. For the more general case where the agents share a sinkbut not every
vertex is a source vertex, Li [11] showed an upper bound ofO(logn/ loglogn). Chen
and Roughgarden [5] studied the price of stability for theweightedvariant of the
game, where each player pays a fraction of each edge cost proportional to her weight.
Albers [1] showed that in this variant, the price of stability is Ω(logW/ loglogW),
whereW is the sum of the players’ weights.

Our contributionsWe show for the first time that the price of stability in undi-
rected networks is definitively different from the one for directed networks in the
general case (where all players may have distinct source anddestination vertices).
In particular, we show that PoS is exactly 4/3 for two agents (strictly less than
PoS in the directed case, which isH2 = 3/2), while for three agents it is at least
74/48≈ 1.542 and at most 1.65 (again strictly less than PoS in the directed case,
which isH3 = 11/6). Furthermore, we show that the price of stability for general n is
at least 42/23> 1.8261, improving upon the previous bound due to Fiat et al. [9].

1.1 The model

We are given an underlying network,G= (V,E), whereV is the set of vertices and
E is the set of edges in the network. Each playeri = 1. . .n has a set of two nodes
(endpoints)si , ti ∈V to connect. We refer tosi as thesourceendpoint of playeri andti
as thedestinationorsinkendpoint of playeri. The strategy set of each playeri consists
of all sets of edgesSi ⊆E such thatSi connects all the vertices inTi . There is a costce

associated with each edgee∈ E. The cost to playeri of a solutionS= (S1,S2, . . . ,Sn)
isCi(S) =∑e∈Si

ce/ne wherene is the number of players inSwho chose a strategy that
containse. Each playeri wants to minimizeCi(S). The global objective is minimize
∑n

i=1Ci(S).

2 A Lower Bound of 1.826

Consider a 3 byN grid for some largeN. There are three nodes and two horizontal
edges in every row. The levels are numbered starting from thebottom. We denote the
horizontal edges on leveli by Li andRi (from left to right). The nodes on leveli are
denoted byvi j ( j = 1,2,3) and the vertical edges connecting leveli to level i +1 are
denoted byei j ( j = 1,2,3). Each nodevi j for i = 1, . . . ,N−1 and j = 1,2,3 is the
source of some agentpi, j , who has nodevi+1, j as its sink. We say that playerpi, j

starts at level i. Also we will call playerpi, j theownerof edgeei, j , with pi, j owning
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Fig. 1 On the left are two levels in our construction. The situationon the right is not a Nash equilibrium
because of the addedε ’s on the horizontal edges. The numbers in the right figure give the costs for each
agent that uses these edges.

only edgeei, j (one of the possible paths for a player to reach its sink is to use just the
edge it owns).

Horizontal edges cost 6+ε and 5+ε, vertical edges cost 12, 15, and 15 (from left
to right), whereε is a small positive number. We do not refer toε in the calculations,
but simply state when relevant that the costs of horizontal edges are “more than” 6
and 5, respectively. One motivation for choosing the numbers as we do is shown in
Figure 1, right.

Proof outline Our goal is to show that in a Nash equilibrium all players use the direct
link between their source and their sink. To do this, we will upper bound the number
of players that can be on any horizontal edge. We will tightenthis bound gradually,
showing in the end that no player can use any horizontal edge in a Nash Equilibrium,
and thus prove the claim.

A few useful observations follow.

Observation 1 In a Nash equilibrium, all player paths are acyclic; also, the graph
formed by the union of the paths of any pair of players is acyclic as well.

Observation 2 If ei j is used by any player, it is also used by its owner, pi, j .

Proof If this were not true, then the path of any player usingei j together with the
path ofpi, j would form a cycle. ⊓⊔

Definition 1 We call a node aterminal if it has degree 1 in the graph induced by the
union of all the player paths in a Nash equilibrium.



5

Observation 3 Consider the graph induced by all the player paths in a Nash equi-
librium. (This graph is not necessarily acyclic!) Any (sub)path that leads to a termi-
nal and such that all intermediate nodes have degree 2 is usedonly by players with
sources and/or sinks on that path. In particular, an edge which leads to a terminal is
used by at most two players: the one whose source is the terminal, and the one whose
sink is the terminal.

Observation 4 Any player that uses a vertical edge ei, j without owning it must also
use at least one horizontal edge in some level i′ ≤ i, and one in some level i′′ ≥ i+1.

Proof Trivial, since otherwise the player’s path would be contained in a single col-
umn of the grid. This, however, can only happen if the player uses the direct edge that
it owns and no other edge. ⊓⊔

Observation 5 A player with source at level i uses only one edge ei, j , j ∈ {1,2,3}.

Proof The player’s path begins at leveli and ends at leveli +1, therefore it needs to
use an odd number of edgesei, j . In order to use three it also needs to use the edge it
owns, in which case it would use no other edge. ⊓⊔

Players on the leftWe begin by making sure that players on the left always use the
edge they own (the direct link between their source and sink). To do so, for all levels
i, wesubstitute ei,1 by a path of three edges ˆei,1, êi,2, êi,3 each of which has cost 4 (and
thus the path of the three edges together has cost 12). Playerpi,1 is also substituted by
three players ˆpi, j( j = 1,2,3), with p̂i j having as source and sink the lower and upper
endpoints of edge ˆei, j , respectively. (Player ˆpi,1 has nodevi,1 as its source and player
p̂i,3 has nodevi+1,1 as its sink.) One can now see that the players ˆpi, j( j = 1,2,3) will
never deviate from their own edges; each such player would have to sharetwo edges
of cost 4 with only their owners, since its sink and/or its source would be terminals.
Given that these players will never deviate, we will treat them as one playerpi,1,
and the path ˆei,1, êi,2, êi,3 as the single edgeei,1, with pi,1 using edgeei,1 in any Nash
Equilibrium.

2.1 The Proof

We will now define two sets of players per level. One can see that the second defini-
tion is the symmetric version of the first one.

Definition 2 We define the setSℓ as the set of all players whosesink lies at some
levelk≤ ℓ, and who use some horizontal edge of some levelk′ ≥ ℓ.

Definition 3 We define the setTℓ as the set of all players whosesourcelies at some
levelk≥ ℓ, and who use some horizontal edge of some levelk′ ≤ ℓ.

Observation 4 implies the following Corollary:

Corollary 1 Consider some level i and some player p with source at level i′ that uses
an edge ei, j , (for some j∈ {1,2,3}) without owning it. If i′ ≤ i, then p∈ Si+1, while
if i ′ ≥ i, then p∈ Ti . In particular, if i′ = i then p belongs to Si+1∩Ti .
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We will now fix some setSℓ and try to bound its size.

Lemma 1 Let i be a level that contains the source of some player in Sℓ. Assume that
i is not the lowest such level.

i. There is a single player in Sℓ with source on level i.
ii. Any player that uses an edge ei, j and does not own it is in Sℓ.

Proof i. i is not the lowest level with a player inSℓ. Therefore, there is some player
q ∈ Sℓ who must use some edgeei, j to reach leveli + 1 and some other edge
ei, j ′ , j ∕= j ′ to go back down to leveli on the way to its sink. This means that
pi, j , pi, j ′ /∈ Sℓ, since, by Observation 2 they only use the edges they own and no
horizontal edge. Consequently the statement holds.

ii. Suppose there is a playerp /∈ Sℓ who usesei, j but does not own it. The source of
p is not on leveli; as discussed in i, the three players with sources oni either use
the edges they own, or belong toSℓ. Let againei, j ,ei, j ′ be the two vertical edges
of level i that are used, and letq be some player inSℓ with source belowi.

Case 1: Assume that the source ofp is below leveli. p must then reach up to
level i + 1, using one ofei, j ,ei, j ′ , and later return again toi using the other in
order to reach its sink. Notice that these two edges will alsobe used by player
q∈Sℓ. q reaches up to levelℓ while p does not (otherwise it would also use some
horizontal edge at or aboveℓ, and thus belong toSℓ); this, however, forms a cycle
using the paths ofp,q above nodesvi+1, j ,vi+1, j ′ , a contradiction.

Case 2: Assume that the source ofp is above leveli. Then also its sink is above
i, meaning that it must return back toi +1 at some point after reachingi. Thus,
again, it must use bothei, j ,ei, j ′ . But in that case, we again find a cycle if we com-
bine the paths ofp andq (p forms a continuous path linking nodesvi, j ,vi, j ′ from
below, whileq forms a continuous path linking those two nodes from above).

In both cases we reach a contradiction and the statement holds. ⊓⊔

Lemma 2 ∣Sℓ∣ ≤ 3. If the lowest level which contains a source of a player in Sℓ only
contains one such source, then∣Sℓ∣ ≤ 2.

Proof Let i be the lowest level that contains a source of a player inSℓ.
Assume first there is a unique playerp∈ Sℓ whose source is oni. LetLp be the set

of levels in the path ofp that contain sources of other players that also belong toSℓ.
p must traversetwo edgesek, j for eachk ∈ Lp, and by Lemma 1, only players inSℓ
(and the corresponding owners) traverse them. The cost ofp for these edges is then
at least(12+15)(1

3 +
1
4 + ⋅ ⋅ ⋅+ 1

∣Sℓ∣+1)> 15 if ∣Sℓ∣> 2.
Assume now that leveli contains the sources of two players that belong toSℓ,

sayp, p′, and assume that∣Sℓ∣ > 3 (and hencei < ℓ−1). Of course, none ofei,2,ei,3

is used, whileei,1 is only used byp, p′ and its owner: any other player with source
below (above)i would have to use another edgeei, j , j ∈ {2,3} to return to level
i (i + 1). Therefore,p, p′ each pay 12/3 = 4 for usingei,1. Sinceℓ > i + 1, they
must continue going upwards until they reach levelℓ and can then return to their
sinks. But then, similarly to the previous case, if∣Sℓ∣ > 3 they pay in total 4+(12+

15)
(

1
4 +

1
5 + ⋅ ⋅ ⋅+ 1

∣Sℓ∣+1

)

> 15. ⊓⊔
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The symmetric version of Lemma 2, gives the corresponding version that bounds
the number of players inTℓ, for anyℓ > 0.

Lemma 3 ∣Tℓ∣ ≤ 3. If the highest level which contains a source of a player in Tℓ only
contains one such source, then∣Tℓ∣ ≤ 2.

Combining Lemmata 2, 3, we obtain the following bounds on thenumber of
players on any edge:

Corollary 2 There are at most 6 players on any horizontal edge, and at most7 on
any vertical edge.

Proof Consider some horizontal edge at some levelℓ. Players that use it either have
sources belowℓ and thus belong to the setSℓ, or they have sources at or aboveℓ, in
which case they belong toTℓ. Lemmata 2, 3 bound the cardinalities of either of the
sets to at most 3; thus, any horizontal edge ofℓ can be used at most by 6 players.
Similarly, for anyeℓ, j , j ∈ {1,2,3}, it is enough to note that any player that uses it,
apart from the owner, belongs to at least one ofSℓ+1,Tℓ (Corollary 1). ⊓⊔

Now, we can show the following.

Lemma 4 Sℓ does not contain two players whose sources lie at the same level. There-
fore, ∣Sℓ∣ ≤ 2.

Proof Consider the smallestℓ > 0 such that∣Sℓ∣= 3. Again, leti be the lowest level
that contains sources of players inSℓ. Level i contains the sources of two players in
Sℓ and hencei < ℓ−1. Following the lines of the proof of Lemma 2, letp, p′ be these
two players. More specifically, letp be playerpi,2, andp′ be playerpi,3.

Since two players from leveli do not use their own edges, they will both use edge
ei,1 to reach leveli +1. They cannot use edgeLi+1 since thenp would reach its sink
and would not reach up to levelℓ > i +1. Moreover,Li+1 is not used by any player,
since that would create a cycle withp’s path. Therefore,p, p′ continue onei+1,1,
while they shareei,1,ei+1,1 only with the corresponding owners. No other player can
use them. Note that only one vertical edge from leveli is used. Any player with source
abovei usingei+1,1 and necessarily alsoei,1 would have no way of returning back to
levels abovei without creating a cycle; similarly, a player with source below i would
have no way of returning back to leveli. Therefore,p, p′ pay 2⋅12/3= 8 for these
two edges.

At some point after usingei+1,1 they also use some other vertical edge to re-
turn to leveli +1. That edge cannot beei+1,1, therefore they pay at least 15/7 for it
(Corollary 2). Also, after usingei+1,1, p′ must return to the rightmost column of the
grid, where its source is. Therefore it must use two more horizontal edges (see also
Figure 2). Corollary 2 then implies that it will have to pay more than(6+5)/6 for
them.

In total,p′ pays at least 8+15/7+11/6> 11.9 just to reach its sink after reaching
nodevi1.

We can now observe thatp′ cannot include nodes of leveli − 1 in its path: if it
did, it would have to use two more vertical edges (one to reachlevel i−1 and another
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Fig. 2 Depicting the path of playerp′ for the proof of Lemma 4 along with lower bounds on the cost of
each part. The part from the sourcevi3 of p′ until nodevi+2,1 is fixed.

to return back toi), at most one of which can be of cost 12. Then its total cost would
be more than 11.9+(12+15)/7> 15.

p′ uses thereforeRi ,Li while p can only useLi . Any other player on either of these
edges must belong toSi . However,ℓ is the lowest possible level such that∣Sℓ∣ = 3;
thus∣Si∣ ≤ 2. p′ pays then more than 5/3 and 6/4 for Ri ,Li , respectively, and its total
cost becomes more than 11.9+5/3+6/4> 15. This is too expensive, sop′ would
have used its direct edge instead. Therefore∣Sℓ∣ ≤ 2 and no two players with sources
at the same level can belong toSℓ. ⊓⊔

Again the symmetric version bounds the cardinality ofTℓ.

Lemma 5 Tℓ does not contain two players with sources at the same level. Therefore,
∣Tℓ∣ ≤ 2.

Combining now Lemmata 4, 5, we can improve the bound given by Corollary 2
for the number of players that can be on any edge. We thereforehave the following:

Corollary 3 Any horizontal (vertical) edge is used at most by four (five) players.

Lemma 6 The path of any player spans at most3 levels.

Proof For the sake of contradiction, consider some playerp whose path spans at least
4 levels. Leti be the level of its source. The source and the sink ofp are only one
level apart. Therefore, apart from levelsi, i+1, any other level thatp reaches implies
that it uses two additional vertical edges: one to reach thatlevel, and one to return.
Also, at most one of these two edges can be of cost 12. Therefore, if it visits at least
k ≥ 4 levels then it must use at least 2(k− 2) + 1 vertical edges in total (with the
“+1” referring to the edge it will use to reach leveli +1 from i). Each of these edges
can be used by at most 5 players in total, according to Corollary 3. Therefore, its
cost for vertical edges only is at least12(k−2+1)+15(k−2)

5 . It must also use at least two
horizontal edges (otherwise it would have to use its own edge). Again, Corollary 3
implies that its cost for these edges will be at least 2⋅ 5

4. Now assuming thatk≥ 4, its
total cost is at least3⋅12+2⋅15

5 +2.5> 15, implying thatp would have used its direct
edge instead. Thereforek≤ 3. ⊓⊔
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This immediately gives the following Corollary.

Corollary 4 Let p be any player whose source is at level i. p never reaches level
i −2, or level i+3.

Lemma 7 There is no levelℓ such that∣Sℓ∣> 0.

Proof Assume that the statement is false. Consider the smallestℓ such thatSℓ ∕= /0. Let
i be the lowermost level containing the source of some playerp, such thatp∈ Sℓ. The
other two players of leveli use only the edges they own: the leftmost player always
does so by construction; if the other player used an edge other than the one it owns,
then it would also have to use a horizontal edge in some leveli ≥ i +1. However the
definition ofℓ, p together with Lemma 4 imply that this is not possible.

All players that have source at any leveli′ < i use the edges they own: Corollary 1
implies that a player with source ati′ that does not use the edge it owns would belong
to Si′+1, with i′+1≤ i < ℓ. But Si′′ = /0 for anyi′′ < ℓ due to the definition ofℓ.

Consider now again playerp. Let ei, j be the vertical edge of leveli it is using.
Corollary 1 implies thatp∈ Ti . Any other playerp′ that uses edgeei, j without owning
it will belong to Ti as well (remember that no player with source at any leveli′ ≤ i
apart formp uses a horizontal edge). Lemma 5 implies that there can be at most one
such playerp′. The source ofp′ is higher than leveli, meaning that after it reachesi
it needs to return back up. Therefore it uses two of the vertical edges of leveli and
apart from the corresponding owners, it shares only one of those withp, while only
one can cost 12, see also Figure 3 (left). This already costs at least 12/2+15/3= 11.
Of coursep′ must use also one edge connecting the level of its source withthat of its
sink, which will cost at least 12/5 (Corollary 3). Finally, it needs to use at least one
horizontal edge of leveli or below which can be shared with at most one more player
(i.e., p), at cost at least 5/2. In total, this sums up to 11+2.4+2.5> 15. Therefore,
no player is inTi together withp, andp sharesei, j only with its owner.

This implies thatp does not reach leveli −1. If it did, it would have to use at
least two more vertical edges (first to reach leveli −1 and then to leave it again), but
given that it is the only player inTi , it would only share the costs with their owners.
That would immediately imply cost more than 2⋅ 12/2+ 15/2 > 15. Similarly, p
does not reach leveli+2; its cost this time would be more than 12/2+(12+15)/5+
5 (for a horizontal edge of leveli) > 15.

Hence,p only uses horizontal edges of levelsi, i +1, and a single vertical edge
ei, j , for somej ∈ {1,2,3}. Also, ℓ = i +1. Let us consider some horizontal edge of
level i +1 that p uses. Any other player on it will belong either toSi+1, or to Ti+1.
Si+1 consists, however, only ofp. Note also that if there is only one player inTi+1

thenp would have used its direct edge instead: If Ifp usesL1, then its cost would be
more than 6+12/2+6/2= 15. If p usesRi (and notLi ), then the vertical edgep uses
is of total cost 15, implying it would pay more than 5+15/2+5/2= 15. Therefore,
there must be two players inTi+1. Lemma 5 and Corollary 4 imply that one of these
players must have source at leveli+1, and the other ati+2. Letq be the player with
source at leveli +1, andq′ the one with source ati +2, see also Figure 3 (right).

q only uses one vertical edge of leveli +1, whileq′ must use two. One of these
two edges will be shared withq. The other one will only be shared with the owner:
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15

3

level i

eij

source of p

12

2

5

2

12

2 source of p′

eij

source of p

12

5

12

2

level i + 1

level i + 2

level i + 3

source of q′

15

3

5

4

source of q

5

3

Fig. 3 Possible paths of players in the proof of Lemma 7. Left: A possible path for playerp′ along with
lower bounds on the cost of (some of) the edges it must use. Thesolid lines indicate edges that would be
used both byp and p′. The dotted (dashed) line completes the path ofp (p′), along with the solid line.
Right: Possible paths ofp,q,q′ . The solid, dotted, dashed lines correspond to the path of player p,q,q′ ,
respectively.

any other player that uses it without being the owner must belong toTi+1 which only
consists ofq,q′. Of courseq′ also needs to use some vertical edge connecting level
i +2 to leveli +3 (at cost at least 12/5); it also needs to use at least one horizontal
edge of leveli +1 (possibly) sharing only withp,q (at cost more than 5/3), as well
as some horizontal edge at leveli + 3 or above (at cost more than 5/4), see also
Figure 3 (right). Therefore, its total cost is more than 12/2+ 15/3+ 12/5+ 5/3+
5/4> 15. Hence,q′ would have used its direct edge.

This implies thatTi+1 consists of a single player, causing alsop to use its direct
edge, and thereforeSℓ = /0. ⊓⊔

Theorem 1 The Price of Stability in undirected networks is at least42/23> 1.826.

Proof If a player with source at leveli does not use the edge it owns, thenSi+1 ∕= /0.
Lemma 7 states that this is not possible. Therefore, there isa unique Nash Equilib-
rium, in which every player uses its own edge.

On every level, the total cost of the players in the Nash equilibrium is 12+15+
15= 42, whereas the optimal cost is only 12+6+5= 23. The optimal solution has an
additional cost of 11 for the two horizontal edges on level 1,but this cost is negligible
for largeK. ⊓⊔

3 Two and Three Players

We will describe here a lower and an upper bound for three players, as well as an
unconditional upper bound for two players.
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Lower bound for three playersFigure 4 shows a three-player instance where the
best Nash equilibrium has cost 37/24 times that of OPT. Nodesi , ti is the source,
destination, respectively of playeri, i ∈ {1,2,3}. The optimal solution would only use
the edges(s1,s2),(s2,s3),(s3, t1),(t1, t2), while the Nash solution uses the direct edges
(s1, t1), (s2, t2), (s3, t3). The cost of the optimal solution sums then up to 48+ 4ε,
while the Nash Equilibrium solution has cost 74. We have therefore the following
theorem.

24

24

26

s2 s3 t1s1 t2 = t3

15 + ǫ

8 + ǫ14 + ǫ8 + ǫ 18 + ǫ

Fig. 4 A three-player instance with price of stability more than 1.54.

Theorem 2 In the fair cost sharing network design game with three players, the price
of stability is at least74/48≈ 1.5417.

Proof Let p1, p2, p3 be the three players (withpi having to connectsi to ti ). It is
clear that a solution of value 48+4ε exists. We will show that there is no other Nash
Equilibrium besides the one mentioned above of cost 74, i.e., every playerpi uses
edge(si , ti). Note first that edge(s2,s3) cannot be used by both playersp2 and p3

(since their paths would create a cycle, given that they bothhave to reacht2).
First, we will show that playerp1 must use (only) the edge(s1, t1). Assume that

p1 does not use the direct edge(s1, t1) (and also no other player is using it, as this
would create a cycle withp1).

– Assume first thatp1 is using edge(s1,s2). p1 must then use either edge(s2, t2) or
(s2,s3).

p1 uses(s2, t2) Then it must also use(t1, t3). p2 will also then be on(s2, t2) (and
will not be using any other edge). Ifp3 is on(s2, t2) as well, thenp1 must be alone
on (s1,s2) and(t1, t2), implying a total cost forp1 equal to 8+ ε + 24

3 +8+ ε =
24+2ε > 24 sop1 would have preferred to use the direct edge(s1, t1) instead.
If p3 is not on(s2, t2), then it is also not on(s1,s2) (otherwise there would be a
cycle withp2). p1’s cost would then be 8+ε+ 24

2 + 8+ε
2 > 24. Sop1 again would

prefer(s1, t1).

p1 uses(s2,s3) No player uses(s1,s3) (since that would create a cycle withp1),
and since(s1, t1) is also not in use,p1 is alone on(s1,s2). Moreover, at most one
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of p2, p3 can be on(s2,s3). Thenp1 pays at least 8+ ε + 14+ε
2 > 15+ ε in order

to reachs3. Therefore it would have used edge(s1, t1) instead.
Thereforep1 is not on(s1, t1).

– Supposep1 is on(s1,s3). Then it has to use either(s2,s3) or (s3, t1).

p1 uses(s2,s3) Then it must also use(s2, t2) (implying that p2 is only using
(s2, t2)) and (t1, t2). Even if playerp3 was on all edgesp1 uses, its total cost
would still be at least15+ε+14+ε+8ε

2 + 24
3 > 24, sop1 would have preferred edge

(s1, t1) instead.

p1 uses(s3, t1) Consider then playerp2. Assume thatp2 is not using the direct
edge(s2, t2). Given that(s1, t1) is not used,p2 has only two options: Either it uses
(s1,s2) and(s1,s3), or it uses(s2,s3).
If p2 is on(s1,s2) and(s1,s3), playerp3 cannot have used(s1,s2) without creating
a cycle either in its own path or withp2 (remember that edge(s1, t1) is not in
use). Therefore the cost ofp2 would be at least 8+ ε + 15+ε

2 + 18+ε
3 + 8+ε

2 > 24,
implying thatp2 would have used the direct edge(s2, t2) instead.
If p2 is on(s2,s3) thenp3 cannot be using it. Therefore,p2 pays at least 14+ ε +
18+ε

3 + 8+ε
2 > 24.

Thus,p2 will be using(s2, t2).
Given now thatp2 is only using(s2, t2) and the fact thatp3 cannot be both on
(s1,s3) and(s3, t1), the cost ofp is at least 15+ ε + 18+ε

2 > 24 (if p3 is not on
(s1,s3)), or 15+ε

2 +18+ ε > 24 (if p3 is not on(s3, t1)).
In all cases,p1 would therefore prefer to use the direct edge(s1, t1).

We next consider playerp2. Assume thatp2 is not using the direct edge(s2, t2)
(and thusp3 cannot use it either).p2 will not use(s2,s3), since its cost will then be at
least 14+ ε+ 26

2 > 24.
Therefore,p2 uses edge(s1,s2) and afterwards it either uses(s1,s3) or (s1, t1).

– Assumep2 uses(s1,s3). In this casep3 cannot be in either of(s1,s3) or (s1,s2),
as this would create a cycle (either in its own path, or together with p2). p2 would
then have to pay at least 8+ ε +15+ ε+ 26

2 > 24.
– Assumep2 uses(s1, t1). Consider playerp3. Assume thatp3 is not using the direct

edge(s3, t2), or (s3, t1) and then(t1, t2).
Since(s2, t2) is not used by any player,p3 must be using(s1, t1) with direction
from s1 to t1 (just asp2 does). The cheapest way thatp3 has to reach nodes1

though is via edge(s1,s3). Thereforep3 would pay in total at least 15+ ε + 24
3 +

8+ε
2 > 26, so it would rather use the direct edge(s3, t2) instead. Thereforep3

is either on(s3, t2), or (s3, t1) and (t1, t2). As a result, the cost ofp2 is at least
8+ ε+ 24

2 + 8+ε
2 > 24.

Thus, alsop2 uses the direct edge(s2, t2). Now playerp3 would not use edge(s2, t2)
since it would require a total cost of at least 14+ ε + 24

2 > 26. It cannot then reach
nodes2 as this would create a cycle withp2. If it uses(s1,s3) it must also use(s1, t1),
and pay at least 15+ ε + 24

2 +8> 26. Edge(s3, t2) results in a lower cost than using
both(s3, t1) and(t1, t2), and thusp3 also using the direct edge(s3, t2).

The above imply that the Nash Equilibrium is unique. ⊓⊔
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Upper bound for three playersGiven an instance of our problem, let OPT refer to
an optimal solution. We refer to the union of the players’ paths at OPT as theOPT
graph. Recall that our game is a potential game, with potential function Φ(X) =

∑e∈E ceH(Xe) wherece is the cost of edgee, H(x) is thexth harmonic number,X is
a game state or solution, andXe is the number of players on edgee in X. Let N be
a potential minimizing Nash solution (or, alternatively,N can be defined as a Nash
solution reached by starting from OPT and making alternating best-response moves).
Hence, we have

Φ(N) ≤ Φ(OPT). (1)

We now give names for various sets of edges, each of which may or may not
be empty. LetA,B, andC be the sets of edges that player 1, player 2, and player 3
(respectively) use alone inN. Let Si j for i = 1. . .2 and j = i + 1. . .3 be the set of
edges that playersi and j alonesharein N. Let S123 be the set of edges that all three
players share inN. Let A∗,B∗,C∗,S∗12,S

∗
13,S

∗
23 andS∗123 be defined analogously for

OPT. We will also use the same names to refer to the totalcostof the edges in each
set.

Let C(X) refer to the cost of the solutionX and letCi(X) refer to the cost just to
playeri of the solutionX. By definition, we have

C(N) = A+B+C+S12+S23+S13+S123

C(OPT) = A∗+B∗+C∗+S∗12+S∗23+S∗13+S∗123

C1(N) = A+
S12

2
+

S13

2
+

S123

3

C2(N) = B+
S12

2
+

S23

2
+

S123

3

C3(N) = C+
S13

2
+

S23

2
+

S123

3

Lemmas 8,9 show how to bound the PoS depending on whetherS∗123> 0 or not.

Lemma 8 In the fair cost sharing network design game with three players, if all
three players share at least one edge of positive cost in the optimal solution, the price
of stability is at most33/20= 1.65.

Proof First observe that the edges in the setS∗123 must form a contiguous path, that
is, once the three players’ paths in the OPT graph merge, as soon as one player’s path
breaks off, the three may never merge again. (Otherwise the OPT graph would have a
cycle, contradicting the fact that it is an optimal solution.) Without loss of generality,
we can exchange the labels on the endpoint vertices so that the three endpoints on the
same side of the edges inS∗123 are all source endpoints, and the three endpoints on the
other side are all destination endpoints.

Then observe that at least one ofS∗12, S∗23, andS∗13 must be empty. Otherwise the
OPT graph would have a cycle, contradicting the definition ofOPT. Without loss of
generality, we assume thatS∗13 is empty, henceS∗13= 0 andC(OPT) =A∗+B∗+C∗+
S∗12+S∗23+S∗123.

We know by definition ofN that each playeri pays not more atN than by uni-
laterally defecting to any alternatesi − ti connection path. The right hand sides of
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each of the following inequalities represents an upper bound on the cost of a feasible
alternatesi − ti path for each playeri. The existence of these alternate paths depends
on the assumption that the OPT graph is connected andS∗13= 0.

C1(N) ≤ A∗+B∗+S∗23+
B
2
+

S12

2
+

S23

3
+

S123

3
(2)

C2(N) ≤ B∗+A∗+S∗23+
A
2
+

S12

2
+

S13

3
+

S123

3
(3)

C2(N)≤ B∗+C∗+S∗12+
C
2
+

S23

2
+

S13

3
+

S123

3
(4)

C3(N)≤C∗+B∗+S∗12+
B
2
+

S23

2
+

S12

3
+

S123

3
(5)

To interpret the above inequalities intuitively, considerfor example the first in-
equality. It states the fact that player 1 pays an amount at Nash that is at most the
cost of unilaterally deviating and instead taking the path in the OPT graph froms1

to s2 where player 2’s OPT path begins (possibly using edges fromA∗, B∗, andS∗23),
then following along player 2’s path inN from s2 to t2 (using edges fromB, S12, S23,
andS123), then taking edges in the OPT graph fromt2 to t1 (again possibly using
edges fromA∗, B∗, andS∗23). The costs ofS∗12 andS∗123 need not be included in the
right-hand side of the first inequality for the following reasoning. Recall that by as-
sumption, source vertices are on one side of the edges inS∗123 and sink vertices are
on the other side of the edges inS∗123, so traversing any edges inS∗123 is not necessary
for player 1 to go froms1 to s2 or from t2 to t1 in the OPT graph. Also note that the
edges inS∗12 must be adjacent to the contiguous path formed by edges inS∗123 (since
otherwise, the OPT graph would contain a cycle), and so in fact, s1 ands2 are on one
side ofS∗12∪S∗123, while t1 andt2 are on the other.

Fig. 5 A sample OPT graph. Each edge is labeled with the name of the set of edges it belongs to. Each
edge here may represent a sequence of edges forming a path. Note that more generally, any of the setsA∗,
B∗, C∗, S∗12, S∗23, andS∗13 could be empty.

From inequality (1) and the assumption thatS∗13= 0, we can say

A+B+C+
3
2
(S12+S13+S23)+

11
6

S123≤ A∗+B∗+C∗+
3
2
(S∗12+S∗23)+

11
6

S∗123.

(6)
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Scaling the inequalities 2 and 5 each by 10/99, 3 and 4 each by 8/99, and 6 by
6/11, then summing all five resulting inequalities yields

20
33

(A+B+C)+
257
297

S13+
245
297

(S12+S23)+S123

≤
8
11

(A∗+C∗)+
10
11

B∗+S∗12+S∗23+S∗123.

(7)

Hence 20/33C(N)≤C(OPT). ⊓⊔

Lemma 9 In the fair cost sharing network design game with three players, if no
positive-cost edge is shared by all three players in the optimal solution, the price of
stability is at most 3/2.

We are now ready to present our main theorem of this section.

Theorem 3 In the fair cost sharing network design game with three players, the price
of stability is at most33/20= 1.65.

Proof All possible OPT graph structures are handled by Lemmas 9 and8. The worst
upper bound for price of stability over these two exhaustivecases is that given by
Lemma 8. ⊓⊔

Upper bound for two playersAnshelevich et al. [2] gave a two player lower bound
instance for our problem showing that the price of stabilityis at least 4/3. They
then show that if both players share a sink, the price of stability is at most 4/3. The
following theorem, which is proven in an analogous manner toTheorem 3, states an
unconditional two-player upper bound on the price of stability of 4/3.

Theorem 4 In the fair cost sharing network design game with two players, price of
stability is at most4/3.

4 Conclusions

The lower bound instance that we use for largen could be generalized by adding more
columns. However, it seems that this would require a significantly longer and more
involved proof. More importantly, we believe that even withan unbounded number of
columns we could only show a lower bound of a small constant. Hence, the question
of whether the price of stability grows withn remains open. We conjecture that it is
in fact constant.
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