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Abstract We continue the study of the effects of selfish behavior inrtewvork
design problem. We provide new bounds for the price of stglidr network design
with fair cost allocation for undirected graphs. We consitie most general case,
for which the best known upper bound is the Harmonic nuntygmwheren is the
number of agents, and the best previously known lower bosith@/i7 ~ 1.778.

We present a nontrivial lower bound of AZ3~ 1.8261. Furthermore, we show
that for two players, the price of stability is exactly3} while for three players itis at
least 7448~ 1.542 and at most.85. These are the first improvements on the bound
of Hy, for general networks. In particular, this demonstrategasion between the
price of stability on undirected graphs and that on diregiegbhs, wherél, is tight.
Previously, such a gap was only known for the cases wherdagiers have a shared
source, and for weighted players.
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1 Introduction

The effects of selfish behavior in networks is a natural groblvith long-standing
and wide-spread practical relevance. As such, a wide yaofehetwork design and
connection games have received attention in the algoritlyaime theory literature
(for a survey, see [17]).

One natural question is how much the users’ selfish behaffecta the perfor-
mance of the system. Koutsoupias and Papadimitriou [10addiessed this question
using a worst-case measure, namelyRmiee of Anarchy(PoA). This notion com-
pares the cost of the worst-case Nash equilibrium to thatesbcial optimum (the
best that could be obtained by central coordination). Fronogtimistic point of
view, Anshelevich et al. [2] proposed thrice of Stability(PoS), the ratio of the
lowest Nash equilibrium cost to the social cost, as a measuhe minimal effect of
selfishness.

There has been substantial work on the PoAcfamgestion games broad class
of games with interesting properties originally introddtg Rosenthal [15]. Conges-
tion games nicely model situations that arise in selfishingutesource allocation and
network design problems, and the PoA for these games is nitengell-understood
[16, 7, 6, 3]. By comparison, much less work has been done efPd8s: The PoS
for network design games has been studied by [2, 5, 1, 9, lHilewhe PoS for
routing gameswas studied by [2, 6, 4]. However, PoA techniques cannotyebsi
transferred to the study of PoS. New techniques thus neegldeveloped; this work
moves toward this direction.

The particular network design problem we address here isrtbevhich was ini-
tially studied by Anshelevich et al. [2], sometimes refdrte as the fair cost sharing
network design (or creation) game. In it, each player hagd afssndpoints in a net-
work that he must connect; to achieve this, he must choosesetaf the links in the
network to utilize. Each link has a cost associated withnitl & more than one player
wishes to utilize the same link, the cost of that link is splienly among the players.
Each player’s goal is to pay as little as possible to connisatfdpoints. The global
social objective is to connect all player’'s endpoints asapheas possible.

Anshelevich et al. [2] showed that@ is a directed graph, the price of anarchy
is equal ton, the number of players, whereas the price of stability ict#yahe nth
harmonic numbeH,. The upper bound is proven by using the fact that our network
design game, and in fact any congestion game, is a poteatia¢ gApotential game
first defined by Monderer and Shapley [12], is a game whereltarge to a player’s
payoff due to a deviation from a game solution can be refléntagotential function
or a function that maps game states to real numbers.

This upper bound oH, holds even in the case of undirected graphs (since the
potential function of the game does not change when the iyidgmgraph is undi-
rected), however the lower bound does not. Hence the cemteasl question we study
is:

1 Both cost-sharing network design games and network rogamges fall in the class of congestion
games and they differ only in the edge cost functions. Caastisty network design games come together
with decreasing cost functions on the edges, &(x) = ce/X, while routing games come with increasing
latency functions, e.@e(X) = Ce-X.



What is the price of stability in the fair cost sharing netiaiesign game on
undirected graphs?

In the case of two players and a single common sink vertexh@lesich et al. [2]
show that the answer is/8. Some further progress has also more recently been
made toward answering this question. Fiat et al. [9] showeatl ih the case where
there is a single common sink vertex and every other vertexsgurce vertex, the
price of stability isO(loglogn). They also give am-player lower bound instance of
12/7 [13]. For the more general case where the agents share &sintot every
vertex is a source vertex, Li [11] showed an upper bour@(@gn/loglogn). Chen
and Roughgarden [5] studied the price of stability for #eightedvariant of the
game, where each player pays a fraction of each edge cosintiooral to her weight.
Albers [1] showed that in this variant, the price of stapilg Q(logW/loglogW),
whereW is the sum of the players’ weights.

Our contributionsWe show for the first time that the price of stability in undi-
rected networks is definitively different from the one foretited networks in the
general case (where all players may have distinct sourcalasiihation vertices).

In particular, we show that PoS is exactly3for two agents (strictly less than
PoS in the directed case, whichhl = 3/2), while for three agents it is at least
74/48~ 1.542 and at most.B5 (again strictly less than PoS in the directed case,
which isHz = 11/6). Furthermore, we show that the price of stability for gahe is

at least 4223 > 1.8261, improving upon the previous bound due to Fiat et al. [9]

1.1 The model

We are given an underlying networ®,= (V,E), whereV is the set of vertices and
E is the set of edges in the network. Each playerl...n has a set of two nodes
(endpoints}k, t; €V to connect. We refer tg as thesourceendpoint of player andt;
as thedestinatioror sinkendpoint of player. The strategy set of each play@&onsists
of all sets of edge§ C E such that§ connects all the vertices if. There is a coste
associated with each edge E. The cost to playeirof a solutionS= (S}, S,...,S)
isCi(S) = ¥ ecs Ce/Ne Wherene is the number of players iBwho chose a strategy that
containse. Each player wants to minimizeC; (S). The global objective is minimize

31 Gi(S).

2 A Lower Bound of 1.826

Consider a 3 byN grid for some largeN. There are three nodes and two horizontal
edges in every row. The levels are numbered starting frorbaltem. We denote the
horizontal edges on leveby L;j andR; (from left to right). The nodes on levekre
denoted by (j = 1,2,3) and the vertical edges connecting levad leveli+ 1 are
denoted bye;j (j = 1,2,3). Each nodeyjj fori=1,...,N—1andj =1,2,3 is the
source of some agenm j, who has nodeiq; as its sink. We say that playgx
starts at level .iAlso we will call playerp; j the ownerof edgee j, with p; j owning
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Fig. 1 On the left are two levels in our construction. The situatiorthe right is not a Nash equilibrium
because of the addexk on the horizontal edges. The numbers in the right figure g costs for each
agent that uses these edges.

only edges j (one of the possible paths for a player to reach its sink iséjust the
edge it owns).

Horizontal edges cost-6 <€ and 5+ ¢, vertical edges cost 12, 15, and 15 (from left
to right), wheree is a small positive number. We do not referstin the calculations,
but simply state when relevant that the costs of horizordges are “more than” 6
and 5, respectively. One motivation for choosing the numlasrwe do is shown in
Figure 1, right.

Proof outline Our goal is to show that in a Nash equilibrium all players tsedirect
link between their source and their sink. To do this, we wilpar bound the number
of players that can be on any horizontal edge. We will tightes bound gradually,
showing in the end that no player can use any horizontal edgé&iash Equilibrium,
and thus prove the claim.

A few useful observations follow.

Observation 1 In a Nash equilibrium, all player paths are acyclic; alsoetgraph
formed by the union of the paths of any pair of players is acyd well.

Observation 2 If &jj is used by any player, it is also used by its owney, p

Proof If this were not true, then the path of any player uségtogether with the
path ofpp; ; would form a cycle. O

Definition 1 We call a node &erminalif it has degree 1 in the graph induced by the
union of all the player paths in a Nash equilibrium.



Observation 3 Consider the graph induced by all the player paths in a Naghi-eq
librium. (This graph is not necessarily acyclic!) Any (spabh that leads to a termi-
nal and such that all intermediate nodes have degree 2 is asidby players with
sources and/or sinks on that path. In particular, an edgecWihéads to a terminal is
used by at most two players: the one whose source is the t&lraimd the one whose
sink is the terminal.

Observation 4 Any player that uses a vertical edgg evithout owning it must also
use at least one horizontal edge in some lev€lii and one in some level > i+ 1.

Proof Trivial, since otherwise the player’s path would be corgdiin a single col-
umn of the grid. This, however, can only happen if the plagasithe direct edge that
it owns and no other edge. O

Observation 5 A player with source at level i uses only one edgg jec {1,2,3}.

Proof The player’s path begins at leviehnd ends at level+ 1, therefore it needs to
use an odd number of edgeg. In order to use three it also needs to use the edge it
owns, in which case it would use no other edge. O

Players on the leftWe begin by making sure that players on the left always use the
edge they own (the direct link between their source and sifkjlo so, for all levels

i, wesubstitute g by a path of three edges:;é », § 3 each of which has cost 4 (and
thus the path of the three edges together has cost 12). Riayisralso substituted by
three player;’j(j = 1,2,3), with fij having as source and sink the lower and upper
endpoints of edge j, respectively. (Playep; 1 has node; 1 as its source and player
fi.3 has node/ 11 as its sink.) One can now see that the playgigj™= 1,2, 3) will
never deviate from their own edges; each such player wowd tresharéwo edges

of cost 4 with only their owners, since its sink and/or itsreeuwould be terminals.
Given that these players will never deviate, we will trearthas one playep; 1,

and the patte 1,6 », & 3 as the single edgg 1, with p; 1 using edges 1 in any Nash
Equilibrium.

2.1 The Proof
We will now define two sets of players per level. One can sektligasecond defini-
tion is the symmetric version of the first one.

Definition 2 We define the se$, as the set of all players whosink lies at some
levelk < ¢, and who use some horizontal edge of some |kl /.

Definition 3 We define the s€l; as the set of all players whoseurcelies at some
levelk > ¢, and who use some horizontal edge of some Ikvel /.

Observation 4 implies the following Corollary:

Corollary 1 Consider some level i and some player p with source at létlei uses
an edge gj, (for some je {1,2,3}) without owning it. If { <i, then pe S, 1, while
ifi’ > i, then pe T,. In particular, if i’ =i then p belongs t0;$; N T;.



We will now fix some sef and try to bound its size.

Lemma 1 Letibe a level that contains the source of some player.if\Ssume that
i is not the lowest such level.

i. There is a single player in/Svith source on level .
ii. Any player that uses an edggjexnd does not own it is in/S

Proof i. iis notthe lowest level with a player B&. Therefore, there is some player
g € & who must use some edgg; to reach level + 1 and some other edge
&.j/,j # J' to go back down to level on the way to its sink. This means that
Pi.j, bij ¢ S, since, by Observation 2 they only use the edges they ownand n
horizontal edge. Consequently the statement holds.

ii. Suppose there is a playpr¢ S who usess j but does not own it. The source of
pis not on level; as discussed in i, the three players with sourceisaither use
the edges they own, or belong$a Let againe j, € j» be the two vertical edges
of leveli that are used, and lgthe some player i§, with source below.

Case 1: Assume that the source @fis below leveli. p must then reach up to
leveli+ 1, using one of j,e j,, and later return again tiousing the other in
order to reach its sink. Notice that these two edges will alsaised by player
g€ S. greaches up to levélwhile p does not (otherwise it would also use some
horizontal edge at or aboveand thus belong t&); this, however, forms a cycle
using the paths op, q above nodes; . 1 j,Vi,1 j, @ contradiction.

Case 2: Assume that the source pfis above levei. Then also its sink is above
i, meaning that it must return backite- 1 at some point after reachimgThus,
again, itmust use bot j, e ;.. Butin that case, we again find a cycle if we com-
bine the paths op andq (p forms a continuous path linking nodes;, v; ;» from
below, whileq forms a continuous path linking those two nodes from above).
In both cases we reach a contradiction and the statemerd.hold O

Lemma 2 || < 3. If the lowest level which contains a source of a player &y
contains one such source, thg| < 2.

Proof Leti be the lowest level that contains a source of a play&.in

Assume first there is a unique playee S, whose source is onLetL, be the set
of levels in the path op that contain sources of other players that also belorg.to
p must traverséwo edgesg ; for eachk € L, and by Lemma 1, only players B
(and the corresponding owners) traverse them. The cgsfafthese edges is then
atleas12+15)(3+z+ -+ gtrg) > 151 S| > 2.

Assume now that level contains the sources of two players that belon&to
sayp, p/, and assume th#%| > 3 (and hencé < ¢ —1). Of course, none & 7,6 3
is used, whileg 1 is only used byp, p’ and its owner: any other player with source
below (above) would have to use another edgg,j € {2,3} to return to level
i (i+1). Thereforep,p’ each pay 123 = 4 for usinge ;. Since/ > i+ 1, they
must continue going upwards until they reach le¢end can then return to their
sinks. But then, similarly to the previous caselSf| > 3 they pay in total 4 (12+

1 1 1



The symmetric version of Lemma 2, gives the correspondingjme that bounds
the number of players if,, for any/¢ > 0.

Lemma 3 |T;| < 3. If the highest level which contains a source of a playerinfly
contains one such source, thgn| < 2.

Combining Lemmata 2, 3, we obtain the following bounds onrhenber of
players on any edge:

Corollary 2 There are at most 6 players on any horizontal edge, and at ihost
any vertical edge.

Proof Consider some horizontal edge at some lévéllayers that use it either have
sources below and thus belong to the s&t, or they have sources at or abayeén
which case they belong t§. Lemmata 2, 3 bound the cardinalities of either of the
sets to at most 3; thus, any horizontal edge ain be used at most by 6 players.
Similarly, for anyey j, j € {1,2,3}, it is enough to note that any player that uses it,
apart from the owner, belongs to at least on&af, T, (Corollary 1). O

Now, we can show the following.

Lemma 4 S, does not contain two players whose sources lie at the sarake There-
fore, || < 2.

Proof Consider the smallegt> 0 such thatS,| = 3. Again, leti be the lowest level
that contains sources of players3n Leveli contains the sources of two players in
S and hencé < ¢ — 1. Following the lines of the proof of Lemma 2, letp’ be these
two players. More specifically, lgt be playerm; », andp’ be playermp; 3.

Since two players from levéldo not use their own edges, they will both use edge
& 1 to reach level 4 1. They cannot use edgg; ; since therp would reach its sink
and would not reach up to levéb> i+ 1. MoreoverL;,1 is not used by any player,
since that would create a cycle witiis path. Thereforep, p’ continue one 11,
while they share 1,1 1 only with the corresponding owners. No other player can
use them. Note that only one vertical edge from léi®lised. Any player with source
abovei usinge 1 1 and necessarily alsg 1 would have no way of returning back to
levels above without creating a cycle; similarly, a player with sourcédvei would
have no way of returning back to levielThereforep, p’ pay 2- 12/3 = 8 for these
two edges.

At some point after usin@ 11 they also use some other vertical edge to re-
turn to leveli + 1. That edge cannot &, 1 1, therefore they pay at least ABfor it
(Corollary 2). Also, after usingi;11, P must return to the rightmost column of the
grid, where its source is. Therefore it must use two morezionital edges (see also
Figure 2). Corollary 2 then implies that it will have to pay madghan(6+ 5)/6 for
them.

Intotal, p’ pays atleast 8 15/7+11/6 > 11.9 just to reach its sink after reaching
nodevi.

We can now observe that cannot include nodes of level 1 in its path: if it
did, it would have to use two more vertical edges (one to réaaii — 1 and another
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Fig. 2 Depicting the path of playep’ for the proof of Lemma 4 along with lower bounds on the cost of
each part. The part from the soungg of p’ until nodev; ., 1 is fixed.

to return back ta), at most one of which can be of cost 12. Then its total costi@vou
be more than 19+ (12+15)/7 > 15.

p’' uses therefor®, L while p can only usé;. Any other player on either of these
edges must belong 1§. However,/ is the lowest possible level such tH&| = 3;
thus|S| < 2. p’ pays then more thar/3 and €4 for R, L, respectively, and its total
cost becomes more than.@% 5/3+ 6/4 > 15. This is too expensive, 58 would
have used its direct edge instead. Theref8re< 2 and no two players with sources
at the same level can belong$a O

Again the symmetric version bounds the cardinalitylof

Lemma 5 T, does not contain two players with sources at the same lekietefore,
Ty < 2.

Combining now Lemmata 4, 5, we can improve the bound given dnplary 2
for the number of players that can be on any edge. We therefwethe following:

Corollary 3 Any horizontal (vertical) edge is used at most by four (fivayers.
Lemma 6 The path of any player spans at m8devels.

Proof For the sake of contradiction, consider some plgpM@hose path spans at least
4 levels. Leti be the level of its source. The source and the sink afe only one
level apart. Therefore, apart from levels+ 1, any other level thap reaches implies
that it uses two additional vertical edges: one to reachlévat, and one to return.
Also, at most one of these two edges can be of cost 12. Theréfdtrvisits at least
k > 4 levels then it must use at leagtk2- 2) + 1 vertical edges in total (with the
“+1" referring to the edge it will use to reach leviel 1 fromi). Each of these edges
can be used by at most 5 players in total, according to CayoBaTherefore, its
cost for vertical edges only is at le k’”l%*ls(k’z). It must also use at least two
horizontal edges (otherwise it would have to use its own pdygain, Corollary 3
implies that its cost for these edges will be at Ieasj.Z\low assuming that > 4, its
total cost is at leas#12:21% + 2.5 > 15, implying thatp would have used its direct
edge instead. Therefoke< 3. a



This immediately gives the following Corollary.

Corollary 4 Let p be any player whose source is at level i. p never readhes |
i—2,orlevel i+ 3.

Lemma 7 There is no levef such thaiS,| > 0.

Proof Assume that the statementis false. Consider the smékesh that, # 0. Let

i be the lowermost level containing the source of some plpysuch thap € S,. The
other two players of levaluse only the edges they own: the leftmost player always
does so by construction; if the other player used an edge titae the one it owns,
then it would also have to use a horizontal edge in some lexvéh- 1. However the
definition of ¢, p together with Lemma 4 imply that this is not possible.

All players that have source at any leVek i use the edges they own: Corollary 1
implies that a player with sourceiathat does not use the edge it owns would belong
t0 S q, Withi’+1 <i < £. ButS» = 0 for anyi” < ¢ due to the definition of.

Consider now again playgy. Let g j be the vertical edge of levélit is using.
Corollary 1 implies thap € T;. Any other playeip’ that uses edge, ; without owning
it will belong to T; as well (remember that no player with source at any I€vsli
apart formp uses a horizontal edge). Lemma 5 implies that there can besttane
such playerp’. The source ofy is higher than level, meaning that after it reachées
it needs to return back up. Therefore it uses two of the \edrédges of level and
apart from the corresponding owners, it shares only oneasfghvithp, while only
one can cost 12, see also Figure 3 (left). This already coktast 122+ 15/3=11.

Of coursep’ must use also one edge connecting the level of its sourcelhwthof its
sink, which will cost at least 15 (Corollary 3). Finally, it needs to use at least one
horizontal edge of levelor below which can be shared with at most one more player
(i.e., p), at cost at least 2. In total, this sums up to :£2.4+2.5> 15. Therefore,

no player is inT; together withp, andp sharess j only with its owner.

This implies thatp does not reach level- 1. If it did, it would have to use at
least two more vertical edges (first to reach lavell and then to leave it again), but
given that it is the only player if;, it would only share the costs with their owners.
That would immediately imply cost more than 22/2+ 15/2 > 15. Similarly, p
does notreach levek-2; its cost this time would be more than/22+ (12+15) /5+
5 (for a horizontal edge of levé] > 15.

Hence,p only uses horizontal edges of levé]s+ 1, and a single vertical edge
&,j, for somej € {1,2,3}. Also, ¢ =i + 1. Let us consider some horizontal edge of
leveli+ 1 thatp uses. Any other player on it will belong either %, 1, or to T ;.
S.1 consists, however, only gf. Note also that if there is only one playerin.;
thenp would have used its direct edge instead: Iplfised. 1, then its cost would be
more than 6+ 12/2+6/2=15. If pusesR; (and not.;), then the vertical edgeuses
is of total cost 15, implying it would pay more thant5l5/2+5/2= 15. Therefore,
there must be two players i, 1. Lemma 5 and Corollary 4 imply that one of these
players must have source at level 1, and the other at+ 2. Letq be the player with
source at leveil+ 1, anddg’ the one with source at- 2, see also Figure 3 (right).

g only uses one vertical edge of level 1, while g must use two. One of these
two edges will be shared wittp The other one will only be shared with the owner:
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Fig. 3 Possible paths of players in the proof of Lemma 7. Left: A pmespath for playerp’ along with
lower bounds on the cost of (some of) the edges it must usesdlfeelines indicate edges that would be
used both byp and p’. The dotted (dashed) line completes the patip ¢p'), along with the solid line.
Right: Possible paths gf,q,q . The solid, dotted, dashed lines correspond to the pathayepp,q,d,
respectively.

any other player that uses it without being the owner mustrigetoT; . ; which only
consists ofg,q. Of courseq’ also needs to use some vertical edge connecting level
i + 2 to leveli + 3 (at cost at least ¥5); it also needs to use at least one horizontal
edge of level + 1 (possibly) sharing only witlp, q (at cost more than /3), as well
as some horizontal edge at level 3 or above (at cost more than/4), see also
Figure 3 (right). Therefore, its total cost is more than4a2 15/3+ 12/5+5/3+
5/4 > 15. Henceq would have used its direct edge.

This implies thafl; ;1 consists of a single player, causing afsto use its direct
edge, and therefoi® = 0. O

Theorem 1 The Price of Stability in undirected networks is at |e42t23 > 1.826.

Proof If a player with source at levéldoes not use the edge it owns, tHgpn # 0.
Lemma 7 states that this is not possible. Therefore, themeuisique Nash Equilib-
rium, in which every player uses its own edge.

On every level, the total cost of the players in the Nash égquiim is 12+ 15+
15=42, whereas the optimal cost is only-£8+ 5= 23. The optimal solution has an
additional cost of 11 for the two horizontal edges on levdiut this cost is negligible
for largeK. O

3 Two and Three Players

We will describe here a lower and an upper bound for threegptayas well as an
unconditional upper bound for two players.
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Lower bound for three player&igure 4 shows a three-player instance where the
best Nash equilibrium has cost 24 times that of OPT. Nods,t; is the source,
destination, respectively of player € {1,2,3}. The optimal solution would only use
the edgess;, ), (S2,%3), (S3,11), (t1,t2), while the Nash solution uses the direct edges
(s1,t1), (S2,t2), (ss,t3). The cost of the optimal solution sums then up to4&,
while the Nash Equilibrium solution has cost 74. We havedfae the following
theorem.

Fig. 4 Athree-player instance with price of stability more tha4l

Theorem 2 In the fair cost sharing network design game with three pisythe price
of stability is at leas?4/48~ 1.5417.

Proof Let ps, p2, ps be the three players (with; having to connecs to t). It is
clear that a solution of value 484¢ exists. We will show that there is no other Nash
Equilibrium besides the one mentioned above of cost 74,ewery playem; uses
edge(s,t). Note first that edgés;,s3) cannot be used by both playeps and ps
(since their paths would create a cycle, given that they batke to reacky).

First, we will show that playep; must use (only) the edge;,t1). Assume that
p1 does not use the direct ed¢®,t1) (and also no other player is using it, as this
would create a cycle witps).

— Assume first thap; is using edgés;,s;). p1 must then use either edge,t) or
(s2,88).

p1 uses(sp,t2) Then it must also us@;,t3). p2 will also then be or(s,t,) (and
will not be using any other edge). b is on(s,t) as well, therp; must be alone
on(s1,s) and(ty,ty), implying a total cost foip; equal to 8+ € + 2—3"' +8+¢e=
24+ 2¢ > 24 sop; would have preferred to use the direct edgget;) instead.
If p3is not on(sy,tz), then it is also not orsy, sp) (otherwise there would be a
cycle withpy). p1's cost would then be 8 € + 2—24 + Sizf > 24. Sop; again would
prefer(sy,ty).

p1 uses(sy,s3) No player usesss, s3) (since that would create a cycle wifh),
and sincgs,ty) is also not in usep; is alone on(s;, ). Moreover, at most one
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of py, p3 can be on(s;,s3). Thenp; pays at least & €+ ﬁzg > 15+ € in order
to reachs;. Therefore it would have used ed@s,t;) instead.
Thereforep; is not on(sy,t1).

— Suppose is on(s;,s3). Then it has to use eith@p, s3) or (ss,t1).

p1 uses(sy,s3) Then it must also usés,,ty) (implying that p, is only using
(s2,t2)) and (t1,t2). Even if playerps was on all edgeg; uses, its total cost
would still be at leastHEELHEEEE | 24~ 94, s0p; would have preferred edge
(s1,t1) instead.

p1 uses(ss,t;) Consider then playep,. Assume thap, is not using the direct
edge(sp,ty). Given that(s,t;) is not usedp, has only two options: Either it uses
(S1,52) and(sy,Ss), or it uses(s,, Sg).

If p2ison(s1,s2) and(s1,ss), playerps cannot have used, s) without creating
a cycle either in its own path or witp, (remember that edges;,t1) is not in
use). Therefore the cost pb would be at least § & + 15 4 18- | 8Le . 24,
implying thatp, would have used the direct ed@®,t,) instead.

If p2is on(sy,s3) thenpz cannot be using it. Thereforp; pays at least 14 € +
18:2 1 B4E > 24,

Thus, pz will be using(s,, t2).

Given now thatp; is only using(s,t;) and the fact thaps cannot be both on
(s1,%3) and(ss,t1), the cost ofp is at least 15- € + % > 24 (if ps is not on
(s1,53)), Or 3£ + 18+ & > 24 (if ps is not on(sz, ).

In all casesp; would therefore prefer to use the direct edggets).

We next consider playgr,. Assume thap, is not using the direct edge,,t2)
(and thusps cannot use it either)p, will not use(sy, s3), since its cost will then be at
least 14+ £+ 2 > 24.

Therefore p, uses edgés, s) and afterwards it either usés;, s3) or (sg,t1).

— Assumep; uses(si,Ss). In this caseps cannot be in either ofs;, s3) or (s1,%),
as this would create a cycle (either in its own path, or togrettith p,). p, would
then have to pay at leasti8e + 15+ £+ 2 > 24.

— Assumep, useqs,t1). Consider playeps. Assume thaps is not using the direct
edge(ss,tp), or (s3,t1) and then(ty, tp).

Since(sy,t2) is not used by any playeps must be usings;,t;) with direction
from s; to t; (just asp, does). The cheapest way thad has to reach nods,
though is via edgés;, s3). Thereforepz would pay in total at least 15 € + 2—;‘ +
SLZS > 26, so it would rather use the direct ed@®,tp) instead. Thereforgs
is either on(sz,tp), or (ss,t1) and (t1,t2). As a result, the cost gb, is at least
8+e+ 5+ 852 > 24,
Thus, alsop, uses the direct eddep,ty). Now playerps would not use edgésy, ty)
since it would require a total cost of at least-14 + 2—24 > 26. It cannot then reach
nodes, as this would create a cycle wigh. If it uses(s,s3) it must also usésy,t;),
and pay at least 15 €+ 2—24 + 8> 26. Edge(ss, t2) results in a lower cost than using
both(sz,t1) and(ty,t2), and thusps also using the direct eddss,ty).
The above imply that the Nash Equilibrium is unique. O
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Upper bound for three player&iven an instance of our problem, let OPT refer to
an optimal solution. We refer to the union of the playershgaat OPT as th©PT
graph Recall that our game is a potential game, with potentiatfion ®(X) =
Y ecE CeH (Xe) Wherec, is the cost of edge, H(X) is thexth harmonic numbeiX is
a game state or solution, aid is the number of players on edgén X. Let N be
a potential minimizing Nash solution (or, alternativelcan be defined as a Nash
solution reached by starting from OPT and making alterigaigst-response moves).
Hence, we have

®(N) < ®(OPT). 1)

We now give names for various sets of edges, each of which mayay not
be empty. LetA, B, andC be the sets of edges that player 1, player 2, and player 3
(respectively) use alone iN. LetSj fori=1...2 andj =i+1...3 be the set of
edges that playetisand j alonesharein N. Let S;23 be the set of edges that all three
players share ilN. Let A*,B*,C*, S;,,S[3,S;53 and Sj,4 be defined analogously for
OPT. We will also use the same names to refer to the tatstiof the edges in each
set.

Let C(X) refer to the cost of the solutiox and letC;(X) refer to the cost just to
playeri of the solutionX. By definition, we have

C(N) = A+B+C+ Si2+ S3+ S13+ Si23
C(OPT) = A" +B"+C" + S|, + S35+ Si3+ Si»3

B Si2 | S13, Siz3
Cl(N)—A+7+7+T
_py2 53 S
Cz(N)—B+2+2+3
@(N):C+%+%+%m

Lemmas 8,9 show how to bound the PoS depending on whsther 0 or not.

Lemma 8 In the fair cost sharing network design game with three play# all
three players share at least one edge of positive cost ingiimal solution, the price
of stability is at mos83/20= 1.65.

Proof First observe that the edges in the Sgt; must form a contiguous path, that
is, once the three players’ paths in the OPT graph merge pasasoone player’s path
breaks off, the three may never merge again. (Otherwise Biegdaph would have a
cycle, contradicting the fact that it is an optimal solutjdvithout loss of generality,

we can exchange the labels on the endpoint vertices so thitrise endpoints on the
same side of the edges$p,; are all source endpoints, and the three endpoints on the
other side are all destination endpoints.

Then observe that at least oneSjf, S;5, andS;; must be empty. Otherwise the
OPT graph would have a cycle, contradicting the definitio@&fT. Without loss of
generality, we assume th&{; is empty, henc&;; =0 andC(OPT) = A" +B*+C* +
Stz +S3+ Sz

We know by definition ofN that each playerr pays not more aN than by uni-
laterally defecting to any alternate—t; connection path. The right hand sides of



14

each of the following inequalities represents an upper daumthe cost of a feasible
alternates —t; path for each playar The existence of these alternate paths depends
on the assumption that the OPT graph is connectedsané 0.

B S 93 S

< A* + B B S22 &3 Si23
CiN) SA+B + S+ S+ 5+ 5+ @)
A
CoN) B HA g S ©
C S3 Si3 Sizz

2723 3 @

| pt B S35, Si2, Sizs
Ca(N) <C'+B"+Sp+ 5+ =+ 5+ 3 (5)

To interpret the above inequalities intuitively, consifler example the first in-
equality. It states the fact that player 1 pays an amount ahNaat is at most the
cost of unilaterally deviating and instead taking the patlthie OPT graph frons;
to s, where player 2's OPT path begins (possibly using edges AgrB*, andsS;s),
then following along player 2's path N from s, to t, (using edges fromB, S12, 3,
and S;23), then taking edges in the OPT graph frapmo t; (again possibly using
edges fromA*, B*, andS;,). The costs of5, andS,; need not be included in the
right-hand side of the first inequality for the following seaing. Recall that by as-
sumption, source vertices are on one side of the edg8g,iand sink vertices are
on the other side of the edgesS¥,,, so traversing any edges8j,, is not necessary
for player 1 to go froms; to s, or fromt, to t in the OPT graph. Also note that the
edges inS;, must be adjacent to the contiguous path formed by edg8s.ir(since
otherwise, the OPT graph would contain a cycle), and so in$aands, are on one
side ofS}, U §},5, whilet; andt; are on the other.

Co(N) < B*+C*+Sj,+

Fig. 5 A sample OPT graph. Each edge is labeled with the name of thef selges it belongs to. Each
edge here may represent a sequence of edges forming a p&ttthsiomore generally, any of the séts
B*, C*, S}, S;3, andS;; could be empty.

From inequality (1) and the assumption tisy = 0, we can say

3 11 . . .3 11
A+B+C+ 5(Si2+ S+ S3) + 5 S123< A"+ B+ C7 + 5(Sia+ ) + 5 S2s
(6)
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Scaling the inequalities 2 and 5 each by/29, 3 and 4 each by/89, and 6 by
6/11, then summing all five resulting inequalities yields

20 257 245
@(A—F B+C)+ 797513+ E?(Slz +S3) + S123 -
8 .. 10,
< 1—1(A +C )+1—18 + S5+ S35+ Sios
Hence 2033C(N) < C(OPT). O

Lemma 9 In the fair cost sharing network design game with three play#d no
positive-cost edge is shared by all three players in thenogtisolution, the price of
stability is at most 3/2.

We are now ready to present our main theorem of this section.

Theorem 3 Inthe fair cost sharing network design game with three pisythe price
of stability is at mos83/20= 1.65.

Proof All possible OPT graph structures are handled by Lemmas 8ahde worst
upper bound for price of stability over these two exhaustiaees is that given by
Lemma 8. O

Upper bound for two playerd\nshelevich et al. [2] gave a two player lower bound
instance for our problem showing that the price of stabilityat least 43. They
then show that if both players share a sink, the price of Btais at most 43. The
following theorem, which is proven in an analogous mannditteorem 3, states an
unconditional two-player upper bound on the price of stighdlf 4 /3.

Theorem 4 In the fair cost sharing network design game with two playprice of
stability is at mos#/3.

4 Conclusions

The lower bound instance that we use for lang®uld be generalized by adding more
columns. However, it seems that this would require a siganifiy longer and more
involved proof. More importantly, we believe that even wathunbounded number of
columns we could only show a lower bound of a small constaendsd, the question
of whether the price of stability grows withremains open. We conjecture that it is
in fact constant.
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