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Abstract

Lorentz-violating models are a class of theories in which a fundamental field breaks the underlying
Lorentz symmetry of a system action by assuming a nonzero vacuum expectation value. In this work,
we consider a model which achieves such a Lorentz violation through a rank-2, anti-symmetric tensor
field. We present a derivation of the equations governing the time evolution of this tensor field, the
specifications of a program capable of numerically simulating this evolution through the solving of
differential equations, evidence for the success of our simulation in accurately representing the model,
and evidence against the physical viability of such a field. In particular, we find that monopole topological
defects would develop in abundance in the early universe and would maintain a relative proliferation.
These monopoles have clear observational signatures and have yet to be found experimentally. We also
determine that the fundamental field in question is only correlated over short scales and, therefore,
appears randomized over long distances. The combination of these factors casts doubt on the viability
of this model, but a more sophisticated simulation is necessary to draw definitive conclusions.
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Introduction

1.1 Background

Lorentz symmetry has been a central component in the modern study of physics since the introduction
of special relativity by Albert Einstein in 1905 [1]. However, there is much to learn from models which
break Lorentz symmetry in some way. A number of theories have found great success in considering
situations in which some symmetry is violated. Many such theoretical models involve the introduction
of a field with a nonzero field value at the potential minimum, effectively breaking the symmetry of
the underlying Lagrangian [2] [3] [4] [5]. The set of all field values for which the potential energy is
minimized is known as the vacuum manifold. Perhaps the most well-known of these models is the Higgs
field in particle physics, which arises from the introduction of a symmetry-breaking scalar field [6]. These
models also underlie the modern study of phase transitions in condensed matter systems, most notably
the Ginzburg-Landau model of superconductivity [7].

An important classification of solutions that may arise in any model with a spontaneously broken
symmetry are topological defects, which arise when the vacuum manifold has certain nontrivial topo-
logical properties [8]. Topological defects are generally separated into three classifications depending on
their effective number of spatial dimensions: two-dimensional ‘domain walls’, one-dimensional ‘cosmic
strings’, and point-like ‘monopoles’. These topological defects arise from a conceptually straightforward
principle. Any field which breaks a symmetry will, in general, restore the broken symmetry at sufficiently
high temperatures. This fact implies that a phase transition from a highly symmetric to a spontaneously
broken system should occur at some point in the Universe’s expansion. In the event that the minimum
of the potential is not unique, causally separated parts of the universe can settle into different parts of
the vacuum manifold and be unable to evolve into equivalent minima without substantial input energy.
These field configurations give rise to topological defects [9]. The Kibble Mechanism describes how this
process can occur naturally in the Universe [10] [11].

In particular, we consider topological defects in a rank-2, anti-symmetric tensor field capable of vio-
lating Lorentz symmetry by taking on a nonzero vacuum expectation value (VEV). This particular field
has been shown by Seifert to only produce monopole topological defects [8]. Lau and Seifert have also
described the behavior of these monopole topological defects when coupling to electromagnetic radia-
tion, providing a potential mechanism for their observation through gravitational lensing effects [12].
The direct observation of a monopole topological defect could be relevant to our understanding of cos-
mic inflation, a phenomenon which would greatly suppress the number of monopoles one would expect
to find in the Universe [13]. Monopole topological defects have also been proposed as one mechanism
through which large-scale structure may have formed in the Universe [14]. Because of these potential
implications, we aim in this work to predict how many monopole topological defects we should expect
to find in the modern Universe.

Topological defects have been studied for some time through numerical simulation, including a no-
table paper published by Bennett and Rhie in 1990 [15]. A previous study attempted to establish the
recombination rate of monopole topological defects in a Lorentz-violating, rank-2, anti-symmetric tensor
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field model through numerical simulation, and was ultimately unsuccessful [16]. We have reason to be-
lieve this failure was due to a systematic problem in models constrained by a potential later identified by
Seifert [17]. We instead propose the use of a Lagrange multiplier to constrain the tensor field to a nonzero
VEV, which has been shown by Seifert to avoid this systematic issue [17]. Lagrange multiplier models
differ from potential models in that the system state is always strictly on the vacuum manifold, unlike
that of a potential model which is capable of evolving some amount away from the vacuum manifold
[18].

1.2 Overview

In Section 2, we present derivations and justifications for equations and algorithms necessary to con-
struct and benchmark our simulation and track monopole topological defects. In Section 3, we present
a technical overview of the simulation we developed, and describe the data which was collected for our
study. In Section 4, we present data and analysis relevant to the stability and performance of our simula-
tion and to the counting of monopole topological defects. In Section 5, we discuss the implications of the
data produced by our simulation. In Section 6, we conclude that our limited simulation casts doubt on
the viability of this model and suggest directions for follow-up studies. Appendix A.1 contains relevant
mathematical background on derivatives with respect to vector quantities. Appendix A.2 contains a
more general form of our model which considers both possible definitions for invariants. Appendix A.3
contains code files used to run an instance of our simulation. Appendix A.4 contains supplementary
results to complement those highlighted in the main body of the text.

The metric signature (−,+,+,+) and the units h = c = 1 are used implicitly throughout this work.
We also assume the use of Einstein summation notation, i.e. any tensor index which is raised on one
term and lowered on an adjacent term implies a sum over all possible values of the index. For example,

BνBν =
∑
ν

BνBν .

2



Theory

2.1 System Action and Hamiltonian For a Single Invariant

In this work, we study the time evolution of an anti-symmetric, rank-2 tensor field, denoted Bab. In
particular, we consider a model in which the invariant vacuum expectation value of the norm of Bab,
defined as

X = BabBab, (2.1.1)

is nonzero. A second invariant can be written, but is not used for the majority of this work (See Appendix
A.2). This class of models has been studied at length by Seifert [19], whose notation we will adopt. The
remainder of this subsection is a brief summary of his work.

The tensor Bab can be decomposed into ‘electric’ and ‘magnetic’ parts,

P i = B0i (2.1.2)

Qi =
1

2
ϵijkBjk, (2.1.3)

where ϵijk is the volume element on a constant-t hyper-surface in spacetime. We will find it convenient
to define

F abc = 3∂[aBbc], (2.1.4)

which allows us to write the kinetic component of the field Lagrangian as

− 1

12
FabcF

abc =
1

2

[
(
˙⃗
Q− ∇⃗ × P⃗ )2 − (∇⃗ · Q⃗)2

]
. (2.1.5)

It is also possible to write the vacuum expectation value X as

X = 2Q2 − 2P 2. (2.1.6)

We will take the system action to be

S =

∫
− 1

12
F abcFabc − λ(X − b)dx4, (2.1.7)

where the vacuum expectation value X has been constrained to the nonzero constant b by the Lagrange
multiplier λ. Writing out the Lagrangian explicitly in terms of the fields P⃗ and Q⃗ gives

L =
1

2

[
(
˙⃗
Q− ∇⃗ × P⃗ )2 − (∇⃗ · Q⃗)2

]
− λ(2Q2 − 2P 2 − b). (2.1.8)

From this form of the Lagrangian, it is relatively easy to determine the conjugate momenta to the fields
P⃗ and Q⃗ to be

Π⃗Q =
∂L

∂
˙⃗
Q

=
˙⃗
Q− (∇⃗ × P⃗ ) (2.1.9)
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Π⃗P =
∂L

∂
˙⃗
P

= 0, (2.1.10)

respectively1. We also define the conjugate momentum to the field λ to be

ϖ =
∂L
∂λ̇

= 0. (2.1.11)

One can show, through Dirac-Bergmann analysis [20], that the augmented Hamiltonian of this action
is

HA =
1

2
Π2

Q + Π⃗Q · (∇⃗ × P⃗ ) +
1

2
(∇⃗ · Q⃗)2 (2.1.12)

+ λ(X − b) + u⃗ · Π⃗p + uλϖ.

where we have included the extra Lagrange multipliers u⃗ and uλ to enforce the primary constraints
Π⃗P = 0 and ϖ = 0, respectively. The secondary constraints for this system are

Ψ⃗ = 4λP⃗ − ∇⃗ × Π⃗Q (2.1.13)

and

Ψ = −(X − b). (2.1.14)

The secondary constraints must also be preserved under time evolution, and enforcing this fact deter-
mines the values of the additional Lagrange multipliers to be

uλ = − 1

P 2

[
P⃗ · ∇⃗ × (λQ⃗) + λQ⃗ · (Π⃗Q + ∇⃗ × P⃗ )

]
(2.1.15)

u⃗ = − 1

λ

[
uλP⃗ + ∇⃗ × (λQ⃗)

]
, (2.1.16)

so long as P 2 ̸= 0 and λ ̸= 0. Seifert concludes his analysis at this point.

2.2 Time Evolution Equations For a Single Invariant

There are a total of fourteen fields which are capable of evolving in time, all of which are represented in
the Hamiltonian as vector or scalar quantities. We take vector fields to each be composed of three scalar
fields corresponding to the three dimensions of space. We note that uλ and u⃗ are fully determined by
other field quantities, so do not need explicit time evolution. In this section, we present the derivations
of time evolution equations for the ten currently unconstrained fields. Together, these equations form a
system of differential equations, which we ultimately aim to solve numerically.

It is possible to construct time evolution equations through the use of a Poisson bracket, defined as

df

dt
= {f,HA} ≡

∑
α

∂f

∂qα

∂HA

∂pα
− ∂HA

∂qα

∂f

∂pα
, (2.2.1)

where the sum is over all pairs of Hamiltonian coordinates qα with their conjugate momenta pα [21].
Using this, we find

˙⃗
Q =

dQ⃗

dt
=

∂HA

∂Π⃗Q

(2.2.2)

˙⃗
ΠQ =

dΠ⃗Q

dt
= −∂HA

∂Q⃗
(2.2.3)

1See Appendix A.1 for an explanation of derivatives with respect to vector fields.
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˙⃗
P =

dP⃗

dt
=

∂HA

∂Π⃗P

= u⃗ (2.2.4)

˙⃗
ΠP =

dΠ⃗P

dt
= −∂HA

∂P⃗
(2.2.5)

λ̇ =
dλ

dt
=

∂HA

∂ϖ
= uλ (2.2.6)

ϖ̇ =
dϖ

dt
= −∂HA

∂λ
. (2.2.7)

A few of these derivatives are simple to take and are represented above. For the remainder, we will need
to make use of a few vector derivative identities, whose proofs are available in Appendix A.1. For ease,
these identities have been replicated below.

Vector Derivative Identities Suppose A⃗ and B⃗ are vector fields and f is a scalar field. Then,

∂

∂A⃗

[
B⃗ · (∇⃗ × A⃗)

]
= ∇⃗ × B⃗ (2.2.8)

∂

∂A⃗

[
(∇⃗ · A⃗)2

]
= −2∇⃗(∇⃗ · A⃗) (2.2.9)

∂

∂A⃗

[
B⃗ ·
(
∇⃗ × (fA⃗)

)]
= f(∇⃗ × B⃗)− (∇⃗f × B⃗) (2.2.10)

∂

∂f

[
∇⃗ × (fA⃗)

]
= ∇⃗ × A⃗. (2.2.11)

With these rules in mind, the remaining derivatives in Equations (2.2.2-7) are relatively straightfor-
ward. The direct product between two vector quantities (without an explicit dot product) should be
interpreted as dyads for the remainder of this section, so as to imply contraction along the appropriate
indices without explicit Einstein summation notation. In order, the remaining derivatives are

∂HA

∂Π⃗Q

= Π⃗Q + (∇⃗ × P⃗ ) +
∂uλ

∂Π⃗Q

ϖ +
∂u⃗

∂Π⃗Q

· Π⃗P (2.2.12)

∂HA

∂Q⃗
= −∇⃗(∇⃗ · Q⃗) + 4λQ⃗+

∂uλ

∂Q⃗
ϖ +

∂

∂Q⃗
(u⃗ · Π⃗P ) (2.2.13)

∂HA

∂P⃗
= ∇⃗ × Π⃗Q − 4λP⃗ +

∂uλ

∂P⃗
ϖ +

∂u⃗

∂P⃗
· Π⃗P (2.2.14)

∂HA

∂λ
= 2Q2 − 2P 2 − b+

∂uλ

∂λ
ϖ +

∂u⃗

∂λ
· Π⃗P , (2.2.15)

where the derivatives of uλ are

∂uλ

∂Π⃗Q

= −λQ⃗

P 2
(2.2.16)

∂uλ

∂Q⃗
= − 1

P 2

[
λ∇⃗ × P⃗ − (∇⃗λ)× P⃗ + λ(Π⃗Q + ∇⃗ × P⃗ )

]
(2.2.17)

∂uλ

∂P⃗
=

2P⃗

P 4

[
λQ⃗ · (Π⃗Q + ∇⃗ × P⃗ )

]
(2.2.18)

∂uλ

∂λ
= − 1

P 2

[
P⃗ · (∇⃗ × Q⃗) + Q⃗ · (Π⃗Q + ∇⃗ × P⃗ )

]
(2.2.19)

and the derivatives of u⃗ are

∂u⃗

∂Π⃗Q

= − P⃗

λ

∂uλ

∂Π⃗Q

(2.2.20)
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∂

∂Q⃗
(u⃗ · Π⃗P ) = −

1

λ

[
∂uλ

∂Q⃗
(P⃗ · Π⃗P ) + λ∇⃗ × Π⃗P − (∇⃗λ)× Π⃗P

]
(2.2.21)

∂u⃗

∂P⃗
= − 1

λ

[
∂uλ

∂P⃗
P⃗ + uλ

←→
I

]
(2.2.22)

∂u⃗

∂λ
= − 1

λ2

[
λ(

∂uλ

∂λ
P⃗ + ∇⃗ × Q⃗)− uλP⃗ − ∇⃗ × (λQ⃗)

]
, (2.2.23)

where
←→
I is the unit dyadic.

A number of simplifications can be made to these equations in practice. First of all, while we needed
to retain weakly constrained quantities for the purposes of differentiation, we can now safely impose
Π⃗P = 0 and ϖ = 0. We also note that X = b by definition. Thus, the simplest form of the equations of
motion are

dQ⃗

dt
= Π⃗Q + ∇⃗ × P⃗ (2.2.24)

dΠ⃗Q

dt
= ∇⃗(∇⃗ · Q⃗)− 4λQ⃗ (2.2.25)

dP⃗

dt
= u⃗ (2.2.26)

dΠ⃗P

dt
= 4λP⃗ − ∇⃗ × Π⃗Q (2.2.27)

dλ

dt
= uλ (2.2.28)

dϖ

dt
= b+ 2P 2 − 2Q2 = b−X = 0. (2.2.29)

In addition, dΠ⃗P

dt = 0 because Π⃗P = 0. This fact uniquely determines λ as

λ =
1

4P 2
(P⃗ · ∇⃗ × Π⃗Q), (2.2.30)

so long as P 2 ̸= 0.

2.3 Initial Conditions

Generating initial field values will be a necessary step in constructing a numerical simulation of the
field evolution. While purely random field values could be used in principle, they are unlikely to preserve
the constraints placed on the system in practice. In this section, we determine a procedural method to
generate an initial field state.

In addition to the ten fields necessary to fully describe the system (the components of P⃗ , Q⃗, and Π⃗Q,
and the scalar field λ), there are four equations which constrain the values which these fields can attain.
In particular, we have

b = 2Q2 − 2P 2

uλ = − 1

P 2

[
P⃗ · ∇⃗ × (λQ⃗) + λQ⃗ · (Π⃗Q + ∇⃗ × P⃗ )

]
u⃗ = − 1

λ

[
uλP⃗ + ∇⃗ × (λQ⃗)

]
λ =

1

4P 2
(P⃗ · ∇⃗ × Π⃗Q).
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For the purposes of this analysis, we will treat the constant b as having been determined, since it is a
measure of the norm of the tensor Bab in arbitrary units. The existence of these equations leaves only
six degrees of freedom in the initial conditions of the system. Therefore, we generate six fields randomly
and determine the others from the random fields. We will choose to determine the fields in the following
way:

1. Generate Π⃗Q under the condition that the resulting field has a nonzero curl everywhere. Step 5
shows why we need this condition. We were unable to find a reliable algorithm capable of generating
such a field, and have instead used a determined form for Π⃗Q with the hopes of randomizing it
under equilibration, as detailed in Section 3.2.1.

2. Generate Q⃗ randomly.

3. Determine the direction of P⃗ by noticing that

P⃗ =
∇⃗ × Π⃗Q

4λ
(2.3.1)

implies that P⃗ and ∇⃗ × Π⃗Q share a direction.

4. Determine the magnitude of P⃗ according to

|P⃗ | =
√

Q⃗2 − b

2
. (2.3.2)

At this point, we see that it will be most convenient to take b to be a negative constant to guarantee
that the magnitude of P⃗ is real-valued. It is worth noting that a negative value for b is analogous
to a timelike vector field. Likewise, a positive b would be analogous to a spacelike vector field. In
principle, b can take any nonzero value, but we choose to define b ≡ −1 in arbitrary units for the
duration of this work. Now, P⃗ is fully determined.

5. Determine λ according to

λ =
1

4P 2
(P⃗ · ∇⃗ × Π⃗Q). (2.3.3)

Note that this definition of λ requires P 2 ̸= 0, as discussed previously. However, we can now see
that this restriction also imposes the requirement that Π⃗Q has a nonzero curl, such that λ ̸= 0.
This condition was already imposed for consistency in the determined form of u⃗, c.f. Equation
2.1.16.

This process results in the full specification of the initial conditions for the simulation.

2.4 Monopole Definition and Detection

In this work, we are ultimately interested in counting the number of monopole topological defects
present in a given volume of space. To do so, it will be necessary to create an algorithm capable of
determining whether a given point contains a monopole defect. Because our study is confined to a
discrete computer simulation, we will first consider monopoles in a continuous context and then extend
that result to the discrete case. In this section, we give a rigorous definition of a monopole and outline
two algorithms for their detection.

Our simulation runs on a discrete grid of finite size, with periodic boundary conditions to remove any
complications that may be caused by having a boundary in the arguments that follow. These periodic
boundary conditions also recover the ability to take gradients, divergences, and curls of the fields near
the boundaries of the grid. To simplify our wording, we let ‘grid-space’ refer to the set of points in
physical space (or in our case, the discretized simulation grid), and we let ‘field-space’ refer to the set of

values for the fields P⃗ , Q⃗, Π⃗Q, and λ at each point in grid-space.
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2.4.1 Monopole Definition

Consider the map represented by the tensor Bab : R3 → F, where F represents 6-dimensional field-
space. This map formalizes the idea that the tensor field relates each point in grid-space to a 6-
dimensional collection of field values. Because this tensor can be represented by a constrained com-
bination of P⃗ and Q⃗, we will consider field-space to be F = {R6|2Q⃗2 − 2P⃗ 2 = b}. This set is effectively
5-dimensional, since it has six free variables (the components of P⃗ and Q⃗) and one constraint. This set is
also homeomorphic to S2×R3 [8], and there exists a deformation retraction from F to the sub-manifold
homotopic to S2 on which Q2 = 0. This sub-manifold then also constrains P 2 = −b/2 (recall that we
have taken b < 0). Regarding the domain of the map, we consider the set of points on a sphere ‘at
infinity’, which is homeomorphic to S2.

With the above in mind, we consider the inclusion map ι : S2 → R3, the tensor Bab : R3 → F, and the
deformation retraction r : F → S2 as a single map Bab : S2 → S2, i.e. from a 2-sphere onto itself (note
the abuse of notation, effectively redefining Bab). The degree of a map from an N -sphere onto itself is
well defined, is constrained by definition to be an integer, and is equivalent to the winding number of the
image in field-space [22]. At last, we can define a monopole topological defect as occurring somewhere
within grid-space when the degree of this map is nonzero, i.e. the image in field-space (constricted to

P⃗ -space) has a nonzero winding number. Note that the degree is a generalization of the concept of a
winding number to higher dimensions. By restricting the scope of our consideration to a subset of grid-
space and otherwise arguing as above, we can make a statement about whether a monopole is contained
at a given ‘point’ (i.e. within some small region of grid-space).

In certain cases, we will divide monopole topological defects into sub-types; depending on whether
the degree of the map is positive or negative, we will call the topological defect a ‘monopole’ or an
‘anti-monopole’, respectively. In addition, we will include the magnitude of the degree as a qualifier, e.g.
a monopole arising from a map with degree 2 would be called a ‘degree 2 monopole’.

We are now prepared to outline an algorithm to determine the location of monopoles in grid-space.
Two methods are presented, specifically a convex hull method (determined to be flawed in Section 5.5),
and a triangulation method which resolves the drawbacks of the convex hull method.

2.4.2 Convex Hull Method

We begin with the flawed convex hull method. We claim that, for any set of eight adjacent points in
grid-space forming a cube, a monopole is contained within the cube if the corresponding convex hull in
field-space contains the origin.

Justification First, consider the map Bab : S2 → S2 as defined earlier in this section. This map is
continuous and, for any given point x ∈ R3, associates every point on a sphere around x with a point on
some 2-dimensional manifold in field-space. Note that only the values of P⃗ will determine the structure
of this manifold, as Q⃗ = 0 by construction of the map. The degree of this map is equivalent to the
winding number of the resulting manifold. Suppose the origin is not enclosed by the manifold in field-
space. Then, the winding number of the manifold is trivially 0, and there is no monopole located at x.
Instead, suppose the manifold does include the origin. Then, the winding number must be nonzero, and
there is a monopole located at x.

We simulate the behavior of this field on a discrete grid, and so it is necessary to approximate the
continuous behavior of the map in a discrete way. Let the point x be the center of each cubic grid cell
formed by eight adjacent grid points. Consider the sphere around x which passes through the corners of
the cube in which x is contained. Each of those eight points map to a particular value of P⃗ in field-space.
We form a convex hull from those field values to approximate the manifold, i.e. the simplest convex
polygon enclosing every field value. We can now determine whether the origin is contained within the
convex hull, and thus determine whether there is a monopole at the point x.
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Issue The convex hull method has two easily-identifiable problems. First, we can only say whether
the degree of the map is zero or nonzero, giving no way to distinguish between monopoles and anti-
monopoles, nor to investigate the possibility of higher degrees of monopole. In addition, the definition of
a convex hull does not account for the ordering of the vertices, which is to say that the implementation
of the convex hull algorithm in SciPy [23] (as a wrapper for QHull [24]), will generate the same convex
hull regardless of the relative positions of the vertices of the cube in grid-space. This loss of geometric
information counts non-monopole objects composed of points which happen to enclose the origin, but
which, when accounting for the ordering of the cube vertices, do not have a nonzero winding number.
Thus, the convex hull method overestimates the number of monopoles in practice. See Section 4.3.2 for
more information.

2.4.3 Triangulation Method

Motivated by the inherent issues present in the convex hull method, we instead consider a triangulation
method which accounts for the geometric information provided by the relative placement of cube vertices
in grid-space and directly calculates the degree of the map. We claim that the degree of the map can be
found by considering a triangulation of each cubic grid cell in grid-space and the map of that triangulation
into field-space, as motivated by Definition 1.1.3 in Lloyd’s Degree Theory [25]. Let D be a bounded,
open subset of Rn, p a point in Rn, C(D̄) the linear space of continuous functions from D̄ to Rn,
and C1(D̄) the subspace of C(D̄) such that f ∈ C1(D̄) if f ∈ C(D̄) has continuous first order partial
derivatives in D̄. Note that these definitions are slightly simplified relative to those used by Lloyd.

Definition 1.1.3 from Lloyd Suppose that ϕ ∈ C1(D̄), p ̸∈ ϕ(∂D), and p ̸∈ crease ϕ. The meaning
of crease ϕ here is the set of all points at which ϕ is not well approximated to be locally linear. Define
the degree of ϕ at p relative to D to be d(ϕ,D, p), where

d(ϕ,D, p) =
∑

x∈ϕ−1(p)

sign Jϕ(x). (2.4.1)

The sign of the Jacobian counts +1 or -1, depending on whether ϕ is orientation preserving or reversing
near x, respectively.

Method Consider the eight points forming each cubic grid cell in grid-space. Divide the surface of
each cube into oriented, right-handed triangles. Twelve triangles are required for this process. The
triangulation used in this work is displayed graphically in Figure 2.1, and is oriented with respect to the
exterior of the cube. Note that the strange ordering of vertices was chosen to simplify algorithms, and
is not necessarily the easiest visual representation. Choose one triangle, and consider its mapping onto
the surface of a sphere in field-space. Let p be the point at the center of this spherical triangle, so it is
sufficiently far from any boundaries. By the definition of the degree given previously, we have that

deg Bab =
∑

x∈B−1
ab (p)

sign JB(x), (2.4.2)

where the sign of the Jacobian at x should be taken to determine whether the map is orientation
preserving or reversing near x. It should be noted that in subdividing the cube into triangles, we have
also subdivided the sphere in field-space into spherical triangles. Therefore, it is logical to consider the
sign of the Jacobian to be an indicator of whether a given spherical triangle containing p is orientation
preserving or reversing.

In practice, it is relatively easy to simultaneously determine the sign of the Jacobian for a given
spherical triangle and whether that spherical triangle contains p. Consider a spherical triangle specified
by the points (v⃗1, v⃗2, v⃗3), traced in that order. A quick geometrical argument shows that the quantity

h(v⃗1, v⃗2, v⃗3) = sign[(v⃗1 × v⃗2) · v⃗3] = sign[det(v⃗1, v⃗2, v⃗3)] (2.4.3)
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Figure 2.1: The triangulation of a cube (flattened into a net) used in this work, with orientations labelled.
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is an indicator of orientation, yielding h(v⃗1, v⃗2, v⃗3) = 1 in the case of a right-handed orientation and
h(v⃗1, v⃗2, v⃗3) = −1 in the case of a left-handed orientation (see Figure 2.2 and note the directions of v⃗3
and v⃗1 × v⃗2). Since we originally defined each spherical triangle to be right-handed, a value of h = 1
represents no reversal, and h = −1 represents a reversal. Therefore, in some sense h and sign JB are
equivalent. Furthermore, if p is within the spherical triangle then the three spherical triangles specified
by (v⃗1, v⃗2, p⃗), (v⃗2, v⃗3, p⃗), and (v⃗3, v⃗1, p⃗) must subdivide the original, and thus have the same orientation
and value for h. If any of these three spherical triangles have the opposite orientation, then p must not
be in the original spherical triangle. Thus, if

h(v⃗1, v⃗2, v⃗3) = h(v⃗1, v⃗2, p⃗) = h(v⃗2, v⃗3, p⃗) = h(v⃗3, v⃗1, p⃗),

then the spherical triangle formed by (v⃗1, v⃗2, v⃗3) contributes a value of h(v⃗1, v⃗2, v⃗3) to the sum, and
otherwise contributes 0. The combination of these facts allows for the simple calculation of Equation
(2.4.2).

Figure 2.2: A left-handed and right-handed triangle demonstrating the relative directions of v⃗3 and
v⃗1 × v⃗2.

2.4.4 Preservation of Topological Order

Through a short argument, we will show that the total degree of all monopoles, i.e. the sum of the
degrees of all monopoles minus the degrees of all anti-monopoles, must be 0. We will refer to this
principle as the conservation of topological order. This principle is only useful if the degree of a given
monopole is known, so we will refer to the triangulation method described above in the argument. While
the argument presented relies on a specific detection algorithm, all monopole detection methods should
detect the same monopoles, so the principle should also be more general than the specific case considered.

Justification Consider a generic cube in grid-space formed by eight adjacent points. Since the sim-
ulation grid includes periodic boundary conditions, every cube has a neighbor adjacent to each of its
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faces. Consider the triangulation of each cube, which will have two triangles per face. These triangles
will align with the triangles on adjacent faces (note that the triangulation used in this work was chosen
in part to exhibit this property). Consider taking the degree of the map over all of grid-space. Then, all
triangles which are counted in Equation (2.4.2) will come in pairs of triangles aligned on adjacent faces.
Both triangles will be counted because their coordinates in field-space are identical, so if p⃗ can be said
to be within one, then it is within the other as well. Since the triangles are oriented with respect to the
exterior of their cube, each pair of triangles will have opposite orientations. Thus, the overall degree will
exactly cancel2.

2.5 Energy Damping

The current version of our simulation does not consider the expansion of the Universe as a simplifying
assumption. Therefore, energy can only be removed from the system through an ad hoc method. How-
ever, removing energy from the system is a necessary condition for the Kibble Mechanism [10] [11]. In
this section, we present an ad hoc method to remove energy from the system while preserving conserved
quantities.

Recall that the single-invariant system has a Hamiltonian which is equal to

HA =
1

2
Π2

Q + Π⃗Q · (∇⃗ × P⃗ ) +
1

2
(∇⃗ · Q⃗)2 (2.5.1)

after accounting for all weakly constrained quantities. Taking the time derivative of the energy directly,
we see that

dHA

dt
= Π⃗Q ·

dΠ⃗Q

dt
+ (∇⃗ × P⃗ ) · dΠ⃗Q

dt
+ ... =

dΠ⃗Q

dt
· (Π⃗Q + ∇⃗ × P⃗ ) + ..., (2.5.2)

where the remaining terms are importantly not dependent on
dΠ⃗Q

dt . By virtue of being a conserved
quantity, the time derivative of the system energy is defined to be 0 in its current form. To successfully
damp the system energy, it will be necessary to include an additional term such that the system energy

is negative-definite. To this end, consider modifying
dΠ⃗Q

dt by inserting an additional term of the form

−ϵ(Π⃗Q+ ∇⃗× P⃗ ), where ϵ is a positive damping coefficient. Then, the time derivative of the Hamiltonian
becomes

dHA

dt
=

(
dΠ⃗Q

dt
− ϵ(Π⃗Q + ∇⃗ × P⃗ )

)
· (Π⃗Q + ∇⃗ × P⃗ ) + ... = −ϵ(Π⃗Q + ∇⃗ × P⃗ )2, (2.5.3)

where all other terms have reduced to 0 by the conservation of system energy without damping. It is
now clear that our modified system energy has a negative-definite time derivative, as desired. Thus,
damping is achieved by redefining the time derivative of Π⃗Q to be

dΠ⃗Q

dt
= ∇⃗(∇⃗ · Q⃗)− 4λQ⃗− ϵ(Π⃗Q + ∇⃗ × P⃗ ). (2.5.4)

2.6 Spatial Cross-Correlations

In this section, we detail the calculation of the spatial cross correlation, a quantity ultimately used in
our analysis as an indicator of randomness in the field values of our simulation.

2We believe this could be proven more formally through the Generalized Stokes’ Theorem, but have yet to work out
the details of such a proof.
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Definition The correlation coefficient between two random variables X and Y is defined to be

ρXY ≡
σXY

σXσY
, (2.6.1)

where σXY is the covariance between X and Y and σX and σY the standard deviations in X and Y ,
respectively [26]. The correlation coefficient is preferred to the covariance because it is normalized to
lie between −1 and 1, with ±1 reflecting an exactly linear relationship between X and Y of positive
or negative slope, respectively, and 0 representing a purely random (or at least, purely non-linear)
relationship between X and Y .

Discrete Correlation Coefficient Within a discrete grid of field points with N total points, we can
define the mean value of the random variable X to be

X =
1

N

N∑
i=1

xi (2.6.2)

so that the standard deviation in X is

σX =

√√√√ 1

N

N∑
i=1

(xi −X)2 (2.6.3)

and the covariance between X and Y is

σXY =
1

N

N∑
i=1

(xi −X)(yi − Y ). (2.6.4)

These are common definitions for these quantities, c.f. [26]. Alternatively, the standard deviation in X
can be expressed as

σX = X2 −X
2
, (2.6.5)

i.e. the difference between the mean squared value and the square of the mean value [26]. Then, the
correlation coefficient is given by

ρXY =
σXY

σXσY
=

∑N
i=1(xi −X)(yi − Y )√∑N

i=1(xi −X)2
√∑N

i=1(yi − Y )2
=

1

N

∑N
i=1(xi −X)(yi − Y )

(X2 −X
2
)(Y 2 − Y

2
)
. (2.6.6)

In particular, we are interested in the spatial cross correlation, which is a measure of the dependence of
the field value at a given point to that of nearby points.

Definition Let i denote some value sampled from a scalar field across all of grid-space. It follows that
the average value of i will be the same as the average of the field as a whole, call it f . Let J be the set
of all field points at a Manhattan distance r of i. The points in J are also sampled from the whole of
field-space, so we take their average to be f as well. Then, we can calculate the spatial cross correlation
between i and all points within a given distance r of i via the sum

ρi(r) =
1(

f2 − f
2
)2 1

|J |
∑
j∈J

(fi − f)(fj − f). (2.6.7)

If we compute this value for all N points in the grid, we can find the average spatial cross correlation
for a given radius via

ρ(r) =
1

N

N∑
i=1

ρi(r). (2.6.8)

The spatial cross correlation will serve as an indicator of overall grid coupling, with values close to 0
indicating a relatively random field and values closer to 1 indicating interactions between field points at
some distance, for example creation and annihilation of monopole and anti-monopole pairs [26].
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Methods

3.1 Data Collection

This simulation was run on the Grace cluster at Yale (‘the cluster’), with resources provided to us by
the Yale Center for Research Computing. In total, approximately 40,000 CPU hours were used across
330 instances of the simulation. Instances 1 through 50, 151 through 180, and 241 through 270 were
allowed to equilibrate for 100 simulation iterations. After equilibration, instances 1 through 50 were
replicated twice to create the basis for instances 51 through 150. Likewise, instances 151 through 180
were replicated to create instances 181 through 240, and instances 241 through 270 were replicated
to create instances 271 through 330. Once the simulation states for all 330 iterations were prepared,
damping was activated for as long as possible, varying from 200 to 250 additional simulation iterations.
The reason for differing simulation durations is the increased computational overhead caused by larger
grid sizes. The grid sizes and damping rates for each set of instances are summarized in Table 3.1. Note
that we have sampled a range of grid sizes and damping rates to gain some understanding of how these
parameters impact the results of our simulation, if at all.

Run Indices Grid Size (x, y, z) Damping Constant (ϵ)
1-50 20×20×20 10−4

51-100 20×20×20 10−3

101-150 20×20×20 10−2

151-180 10×10×10 10−4

181-210 10×10×10 10−3

211-240 10×10×10 10−2

241-270 15×15×15 10−4

271-300 15×15×15 10−3

301-330 15×15×15 10−2

Table 3.1: Grid Sizes and Damping Constants for all 330 Simulation Instances

3.2 Simulation Overview

The results presented in this work, as well as much of the data used during development, were collected
by the simulation we developed to track the behavior of all ten fields in the single-invariant system as
governed by their time evolution equations (See Section 2.2). All code used to generate these results, as
well as all information regarding packages and their versions used, is provided in Appendix A.3, online
at the Connecticut College Digital Commons3, and via GitHub4.

The simulation was primarily composed of two Python program files, Simulation.py and TimeEvo-
lutionEquations.py, which are the primary focus of this section. Broadly speaking, Simulation.py was

3digitalcommons.conncoll.edu/
4github.com/WyattCarbonell/UndergradThesis
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responsible for handling initial simulation conditions and general setup procedures, whereas TimeEvolu-
tionEquations.py implemented the mathematics of the field evolution in the format of the py-pde library
[27] as a wrapper for the Scipy library [23].

3.2.1 Simulation.py

Simulation.py primarily implemented the simulation method, which set up one instance of the field
simulation. The exact configuration of the simulation was determined by the supplied parameters, which
control the simulation duration, grid dimensions, and value of the constant ϵ used for damping energy.
An existing simulation could be continued from its last state by providing the location of a file containing
the relevant field parameters. Finally, a parameter called ‘run’ was used as a kind of ‘serial number’ to
distinguish between data files for each instance of the simulation.

These operators were all calculated through methods defined by the py-pde package, with the exception
of the curl of a vector field. We defined the curl of a vector field to be

(∇⃗ × P⃗ )x =
∂Pz

∂y
− ∂Py

∂z
(3.2.1)

(∇⃗ × P⃗ )y =
∂Px

∂z
− ∂Pz

∂x
(3.2.2)

(∇⃗ × P⃗ )z =
∂Py

∂x
− ∂Px

∂y
, (3.2.3)

where each partial derivative has been taken to be a component of the gradient calculated by py-pde,
c.f. [28].

If a file containing a field state to use as an initial state was provided, those values were loaded.
Otherwise, field values were generated as described in Section 2.3, with the exception of Π⃗Q. Because
we were unable to determine a suitable algorithm to generate randomized fields with nonzero curl, a
determined form for the components of Π⃗Q was used. In particular, we chose Π⃗Q to be

Π⃗Q = ⟨0, sin(2πx/25),− cos(2πx/25)⟩ . (3.2.4)

We note that the quantity 2πx/25 was originally chosen to force periodicity on a 25×25×25 grid, but we
do not expect this choice to impact our results for other grid sizes. To compensate for this determined
form, we included a period for equilibration, allowing the field to effectively randomize itself by evolving
away from the determined form.

The initial field values for all ten fields were packaged together into an initial state, which was passed
to py-pde alongside an instance of TimeEvolutionEquations (see Section 3.1.2) to handle the calculations
for the simulation. Several additional parameters were specified in py-pde. We chose to use an adaptive
step size to maintain stability in situations with large changes in field strength over a short period
of time. We also used a Runge-Kutta scheme as implemented by py-pde [27] to solve the differential
equations due to its observed stability (see Section 4.1). The alternative to a Runga-Kutta scheme would
have been a symplectic integrator, which is a numerical method developed specifically for Hamiltonian
systems from Hamilton’s equations. We would have preferred to use a symplectic integrator for this
reason, but SciPy does not offer integrated support for any symplectic methods as of the completion of
this work [23]. In particular, symplectic methods are considered ideal when some quantities need to be
conserved to within high precision. Since we could not use a symplectic method, we chose to instead
monitor the conservation of our constraints.

3.2.2 TimeEvolutionEquations.py

TimeEvolutionEquations.py implemented the mathematics of the field evolution in the form of a
TimeEvolutionEquations object. Most results and diagnostic data files were also produced by this file.
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The initialization parameters for a TimeEvolutionEquations object were passed by Simulation.py and
controlled the exact mechanics of the simulation. For readability, the methods implemented for an
instance of TimeEvolutionEquations are detailed separately.

Two systems of time-keeping were used simultaneously throughout this file, which served different
purposes. We use ‘counts’ to track the number of individual calculations of the field evolution which
have occurred. This measure is useful for checking that our conserved quantities are stable throughout the
calculation process. However, counts are a poor choice for long term monitoring of the simulation, since
the introduction of adaptive step sizes causes the actual time between calculations to be inconsistent. To
remedy this, we also monitor the current time, ‘t’, which is a measure of the total number of iterations
which py-pde has undergone. Iterations are defined internally by py-pde, but can be thought of as some
unit of actual time passed (though we have not determined whether the conversion between iterations
and seconds is definite). Typically, one count corresponds to 10−3 − 10−4 iterations, varying with the
adaptive step size. Counts are integer-valued, and iterations can assume decimal values.

evolution rate

This method handled the calculation of the field evolution equations derived in Section 2.2, and
exported diagnostic data and results. It took an array of all ten fields as input, each of which is best
thought of as a 3-dimensional array of field values for every point in grid-space. It returned the time
derivative of each field as determined by Equations 2.2.24-29.

This method also handled the exportation of diagnostic and results data, including spatial cross-
correlations and monopole counts, which are discussed in detail in Section 3.3.

calculate hamiltonian

This method calculated the total Hamiltonian for a given simulation state, i.e. the Hamiltonian
integrated over all of grid-space. Necessary quantities were calculated using divergence and gradient
operators as defined by py-pde, and curl was calculated according to Equations 3.2.1-3.

find and export monopoles hull

This method counted the number of monopoles in the grid according to the convex hull method
outlined in Section 2.4.1. We note that this method only exists for the sake of comparison, and should
not be used as a reliable count of the monopoles in the grid, as explained further in Section 2.4.1.

Starting at the point (0, 0, 0) in grid-space, we iterated through every possible choice of cubic region
defined by 8 points, each uniquely specified by the first corner. For example, the first cube was composed
of the points (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), and (1, 1, 1). For each cube, the

series of 8 corresponding vectors P⃗ in field-space were passed to the convex hull algorithm as implemented
by SciPy, alongside the origin in field-space. After the hull had been generated, we checked if any edges
were visible from the origin using the built-in SciPy object ‘hull.good’. We found a monopole if no edges
were visible from the origin, indicating that the origin was strictly interior to the hull. This method is
counter-intuitive, but relies on the fact that SciPy only considers an edge visible from outside the hull,
so the existence of a visible edge implies the origin is outside the hull. The total number of monopoles
was counted, and stored so it could be exported to a file later. For more information about the exported
data, see Section 3.3.

find and export monopoles triangulation

This method counted the number of monopoles in the grid according to the triangulation method
outlined in Section 2.4.3.
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Once again starting at the point (0, 0, 0) in grid-space, we iterated through every possible choice
of cubic region defined by eight points, each uniquely specified by the first corner. For each cube, the
12 oriented triangles representing the cube in field-space were each tested for orientation reversal and
whether they contained p⃗ (see check triangle below). We take p⃗ to be the center of the first triangle,
whichever that happens to be. The values of the function h for each triangle were summed, and the
degree of the map was thus determined. The total number of monopoles and anti-monopoles of degree
up to 7 were counted and stored so their values could be exported to a file later. For more information
about the exported data, see Section 3.3.

check triangle

This method simply implements the orientation checking algorithm described in Section 2.4.3 for a
given oriented triangle.

corr in grid

This method calculated the average spatial cross correlation over the entire grid for a given vector
field, according to Equation 2.6.8. The x, y, and z spatial cross-correlations of the vector field were
calculated separately. The spatial cross-correlation for multiple radii were calculated at the same time
by passing each radius separately to correlation at p.

correlation at p

This method implemented the spatial cross correlation of a given point i within a Manhattan distance
r as described by Equation 2.6.7.

3.3 Data Files

In this section, we outline the contents and formatting of each type of data file exported by the
simulation. In all cases, files are labelled according to their run number.

Diagnostic Data

This file contains a variety of diagnostic data used to ensure that the simulation is behaving as
expected, in comma separated values format. We track the integrated magnitudes of the P⃗ , Q⃗, and λ
fields, the Hamiltonian (representing system energy), and the invariants Ψ and the three components

of Ψ⃗. Variances in P⃗ and Q⃗ are also included. Measurements of these quantities are taken every 10
simulation steps, and the iteration time of each measurement is included alongside the step number.

Field Data

This file contains all simulation state information necessary to restart the simulation from the last
known point, including the last known step number, iteration time, and the values of all ten fields at all
grid points. The file is stored in the numpy-zip file format to save on memory space [29], and is updated
every 5000 simulation steps. The uncompressed file contains twelve arrays, corresponding in order to
the values of all ten field quantities at every grid point (the three components of Π⃗Q, P⃗ , and Q⃗, and λ),
the current count number, and the current iteration time.

Monopoles

The following two files both contain data related to the total number of monopoles found within the
simulation grid. Both files are comma separated values.
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Triangulated Monopoles This file contains the count numbers for monopoles and anti-monopoles of
degrees one through six, separately, and the total number of monopoles and anti-monopoles of degree at
least 7, as determined by the triangulated monopole method described in Section 2.4.2. Measurements are
taken approximately every 0.25 iterations, and the exact time and count number for each measurement
are included in the file.

Hull Monopoles This file is deprecated. If enabled, the file includes the number of monopoles de-
termined by the convex hull monopole method described in Section 2.4.2. Measurements are taken at
the same time as in the previous monopole method, and those iteration times and count numbers are
included in this file as well.

Correlations

This file contains the spatial cross-correlations for either the components of P⃗ , Q⃗, or Π⃗Q, as appro-
priately labelled, for radii of 1, 2, 4, 6, and 8 grid cells. Measurements are taken approximately every 5
iterations, and the exact time and count number for each measurement are included in the file. The file
format is comma separated values.

Monopole P Vecs

This file is deprecated. If enabled, the file contains sets of eight different P⃗ which were determined to
form a monopole by the convex hull method. The file format is numpy-zip [29], and when decompressed
contains an array of sets of eight vectors.
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Results

In this section, we present data collected from 330 simulation instances. For brevity, relevant examples
have been highlighted in each of the following sections. All remaining data has been relegated to
Appendix A.4 to serve as an additional reference, and is generally in agreement with the results presented
here.

4.1 Preservation of Conserved Quantities

As discussed in Section 2, the definition of our system implies that some quantities are conserved. In
particular, we investigate the conservation of energy, primary and secondary constraints, and topological
order.

Figure 4.1: Preservation of Conserved Quantities in Instances 1-50

Figures 4.1-3 display the results of instances 1-50, 181-210, and 301-330, respectively. These instances
have been highlighted in this section because they represent a variety of grid sizes and damping rates
after equilibration; respectively, they correspond to grid sizes of 20x20x20, 10x10x10, and 15x15x15, and
damping rates of 10−4, 10−3, and 10−2. In all cases, one instance has been highlighted as an example
of typical behavior.
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Figure 4.2: Preservation of Conserved Quantities in Instances 181-210

Figure 4.3: Preservation of Conserved Quantities in Instances 301-330
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Note that the energy is stable up until 100 iteration seconds have passed in all cases – this instability
is easily explained by energetic damping, which was activated at this point and necessarily violates the
conservation of energy. Other notable features in these plots at the 100 iteration seconds point should
be considered with this fact in mind. Also note that the system energy often appears to increase in
the damping process. This effect is a direct result of the use of energy magnitudes (necessary for the
logarithmic scale), and is in fact caused by the system settling into large negative energies. Furthermore,
the conservation of the invariant X was not directly tracked, since the conservation of Ψ necessitates
the conservation of X, by virtue of b being a constant (c.f. Equation 2.1.14).

4.2 Long-Term Field Behavior

From the perspectives of computational viability and physical realism for this model, one would hope
that the field values are not divergent. In this section, we present the average magnitudes of all ten
simulation fields.

Figure 4.4: Convergence of Field Values in Instances 1-50

Figures 4.4-6 display the results of instances 1-50, 181-210, and 301-330, respectively. These instances
have been highlighted in this section because they represent a variety of grid sizes and damping rates
after equilibration; respectively, they correspond to grid sizes of 20x20x20, 10x10x10, and 15x15x15, and
damping rates of 10−4, 10−3, and 10−2. In all cases, one instance has been highlighted as an example
of typical behavior.

Note that the behavior of each field, but in particular Π⃗Q, may deviate after 100 iteration seconds
have passed – this instability is easily explained by energetic damping, which was activated at this point.
Also note that damping is generally intended to decrease Π⃗Q by introducing a negative term to the time

derivative for each component of Π⃗Q (c.f. Equation 2.5.4); however, Π⃗Q often appears to increase during
damping. This effect is a direct result of the use of magnitudes (for the logarithmic scale), and is in fact

caused by negative values of Π⃗Q.
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Figure 4.5: Convergence of Field Values in Instances 181-210

Figure 4.6: Convergence of Field Values in Instances 301-330
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4.3 Monopole Behavior

4.3.1 Incidence Rate in Simulation

Figure 4.7: Monopole proportions in instances 1-50 for grid size 20x20x20 and damping 10−4.

Using the triangulation method (see Section 2.4.3), we counted the number of monopoles and anti-
monopoles of all possible degrees for various simulation parameters. Figures 4.7-15 display the proportion
of grid cells containing monopoles and anti-monopoles of degrees 1 and 2.

Notice that the proportion of each type of monopole tends to approximately converge to some value,
which may depend on the grid size but is seemingly independent of the damping parameter and whether
monopoles or anti-monopoles are considered. Motivated by this observation, Figures 4.16-18 display the
number of instances of each monopole count after equilibration (100 iteration seconds) for each grid size
and degrees from 1 to 4. Notice that degree 4 monopoles are extremely unlikely, but are possible (as is
hard to see in this plot). A total of 981 degree 4 monopoles were detected across all 330 instances of the
simulation. The maximum degree of any monopole or anti-monopole measured was 4.

Using this data, we produced best estimates for the average number density of monopoles in our
simulation grid after equilibration. We found that degree 1 monopoles account for 16.434±0.001% of grid
cells, degree 2 monopoles account for 0.5506±0.0003%, degree 3 monopoles account for 0.00500±3·10−5%,
and degree 4 monopoles account for 7.3 · 10−5 ± 3 · 10−6%. In total, monopoles of degrees 1 through 4
accounted for 16.990± 0.001% of all grid cells.
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Figure 4.8: Monopole proportions in instances 51-100 for grid size 20x20x20 and damping 10−3.

Figure 4.9: Monopole proportions in instances 101-150 for grid size 20x20x20 and damping 10−2.
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Figure 4.10: Monopole proportions in instances 151-180 for grid size 10x10x10 and damping 10−4.

Figure 4.11: Monopole proportions in instances 181-210 for grid size 10x10x10 and damping 10−3.
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Figure 4.12: Monopole proportions in instances 211-240 for grid size 10x10x10 and damping 10−2.

Figure 4.13: Monopole proportions in instances 241-270 for grid size 15x15x15 and damping 10−4.
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Figure 4.14: Monopole proportions in instances 271-300 for grid size 15x15x15 and damping 10−3.

Figure 4.15: Monopole proportions in instances 301-330 for grid size 15x15x15 and damping 10−2.
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Figure 4.16: Monopole counts post-equilibration for instances 1-150 and grid size 20x20x20.

Figure 4.17: Monopole counts post-equilibration for instances 151-240 and grid size 10x10x10.
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Figure 4.18: Monopole counts post-equilibration for instances 241-330 and grid size 15x15x15.

4.3.2 Differentiating Hull and Triangulation Monopole Detection Methods

In a private communication5, Michael Seifert identified that there are objects which are found to be
monopoles by the convex hull method, but which are, in fact, not monopoles. One such ‘false monopole’
is depicted in Figure 4.19. Note that the origin (red dot) is distinctly exterior to the manifold, but would
be considered interior to a shape which does not account for the ordering of vertices.

4.3.3 Incidence Rate in Random Data

The faculty advisor for this work, Michael Seifert, identified an issue with the convex hull method for
detecting monopoles, as briefly discussed in the previous section. In the process of identifying this issue,
a large amount of randomized data was generated as test cases for monopoles which may have been
misidentified. As an unintended consequence, we simultaneously arrived at an approximate incidence
rate for monopoles in random data5.

Figure 4.20 displays a histogram of the degrees of maps from 100,000 randomized sets of values of P⃗ ,
as determined by the triangulation method (see Section 2.4.3). From this data, one can determine that
approximately 34.2± 0.2% of randomized field values produce a monopole or anti-monopole (degree not
equal to 0).

4.4 Spatial Cross-Correlations

We calculated the average spatial cross correlation across the entire grid for radii of 1 (nearest-
neighbor), 2, 4, 6, and 8 grid cells for all 150 simulation instances of grid size 20x20x20 across all

components of P⃗ , Q⃗, and Π⃗Q. In all cases, one instance has been highlighted as an example of typical
behavior. We focus on instances 1-50 in this section, with instances 51-150 being similar in character
and relegated to Appendix A.4.

5Private communication from Michael Seifert on Feb. 13, 2024.
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Figure 4.19: An example of a false monopole.

Figure 4.20: Degrees of 100,000 sets of 8 randomized P⃗ values.
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4.4.1 Spatial Cross Correlation Variability in Time

Figures 4.21-29 show spatial cross-correlations across all studied radii and fields for instances 1-50 over
time.

Figure 4.21: Spatial cross-correlations for [Π⃗Q]x over time in instances 1-50.
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Figure 4.22: Spatial cross-correlations for [Π⃗Q]y over time in instances 1-50.

Figure 4.23: Spatial cross-correlations for [Π⃗Q]z over time in instances 1-50.
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Figure 4.24: Spatial cross-correlations for [P⃗ ]x over time in instances 1-50.

Figure 4.25: Spatial cross-correlations for [P⃗ ]y over time in instances 1-50.
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Figure 4.26: Spatial cross-correlations for [P⃗ ]z over time in instances 1-50.

Figure 4.27: Spatial cross-correlations for [Q⃗]x over time in instances 1-50.
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Figure 4.28: Spatial cross-correlations for [Q⃗]y over time in instances 1-50.

Figure 4.29: Spatial cross-correlations for [Q⃗]z over time in instances 1-50.
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Discussion

5.1 Preservation of Conserved Quantities

As will be outlined in the following sections, the quantities which are meant to be conserved by our
simulation are in fact being conserved to a satisfactory degree. This success suggests that our simulation
has accurately reflected the mathematical constraints of the model, and that our simulation accurately
reflects the behavior of the model.

5.1.1 System Energy

As is clear from Figures 4.1-3, average energy is conserved through the full equilibration time, and is
damped after 100 iteration seconds, as intended. The conservation of the average energy directly implies
the conservation of the total energy. Notably, the average energy decreases most rapidly shortly after
damping is activated, and quickly settles into a negative minimum. It is unclear at this moment what
the cause of this minimum value is, since in theory the damping term should always be negative definite,
and the energy strictly decreasing. It is possible, however, that the damping term has evolved to become
extraordinarily small, which could only be the case if Π⃗Q ≈ −∇⃗ × P⃗ . It is also unclear at this moment
why this minimum is so ‘unstable’, in the sense that the energy rapidly oscillates. We believe that this
is not a physical oscillation, but rather a numerical instability. Without an alternative solving algorithm
(ideally a symplectic integrator), we are unable to verify whether or not this is the case.

5.1.2 Primary and Secondary Constraints

In all 330 instances of the simulation, neither the average values of Ψ nor any component of Ψ⃗ exceeded
a value of 10−5 (c.f. Figures 4.1-3). It would be preferable if these quantities remained precisely at 0,
as they are defined in the system. However, a maximum deviation on the order of 10−5, with a more
typical deviation on the order of 10−7, is reasonable.

5.1.3 Topological Order

Topological order is perfectly preserved through the full simulation duration in all cases (c.f. Figures
4.1-3), which supports the idea that our monopole detection algorithm is successful. While it is not
represented in any of the provided figures, the convex hull method as implemented typically violates the
conservation of topological order, and indeed was observed to deviate on the order of 103 at times. This
fact was the primary motivation to develop the triangulation method as an alternative.

5.2 Long-Term Field Behavior

In this section, we find that the field values for our simulation appear to be bounded, though only under
large enough damping. Bounded values confirm that our simulation is viable over long time scales, since
it would be impossible to compute with numbers that grow endlessly. In addition, the limited precision
of a computer could lead to cumulative rounding errors, eventually violating our conservation laws.
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5.2.1 P⃗ and Q⃗

Figures 4.4-6 show that P⃗ and Q⃗ exhibit exactly parallel trends in their average magnitude, as one
might have expected from the definition of the invariant X. It is also apparent from these figures,
in combination with supplemental data from Section A.3, that the damping rate impacts the average
magnitudes of P⃗ and Q⃗. To some extent this is desirable, since it is evident that these fields consistently
increase approximately linearly for small damping coefficients, which may be problematic for the viability
of simulating the field and for physical realism. Notably, these fields also appear to grow linearly in time
when no damping is applied. A large enough value for the damping rate (a value of 10−2 seems sufficient)
appears to alleviate this problem, with eventual bounds on the average magnitude.

5.2.2 Π⃗Q

In all cases, the average magnitude of Π⃗Q appears to be decreasing. Without damping, this value
appears to converge to some small, positive quantity. Once damping is activated, the average magnitude
of this field appears to remain relatively bounded. Small damping rates seemingly impart little to no
change in the magnitude of Π⃗Q, while larger damping rates are seemingly bounded below by some
negative value.

5.2.3 λ

In all cases, we observe that the average magnitude of λ quickly tends towards some small value. Our
equations were derived under the assumption that λ ̸= 0, so we would expect that λ does not tend to
exactly 0. Indeed, further investigation shows that the magnitude of λ seems to become stable at a value
on the order of 10−5, which is distinctly nonzero. Our assumption that λ ̸= 0 appears to hold, possibly
by construction.

5.3 Monopole Behavior

The conservation of topological order also guarantees a somewhat desirable property, which we will
refer to as the principle that monopoles and anti-monopoles are created and annihilated in pairs. To be
more specific, if ever a degree 1 monopole forms in the grid, or the degree of a monopole increases by
1, then one of the following must have happened: the degree of a monopole decreased by 1, the degree
of an anti-monopole increased by 1, or a degree 1 anti-monopole formed. The equivalent case for anti-
monopoles must also hold. The symmetry of this argument suggests that monopoles and anti-monopoles
should occur in approximately equal proportions. Figures 4.7-15 show that degree 1 and 2 monopoles and
anti-monopoles are in fact approximately equally likely. Degree 3 monopoles are relatively unlikely, as
evidenced by Figures 16-18, but we have confirmed that degree 3 anti-monopoles are also approximately
equally likely as degree 3 monopoles.

Since we have established that monopoles and anti-monopoles are equally likely, it is reasonable to
assume that the topological defects in the grid are half monopoles and half anti-monopoles, with some
small error. This implies that of the 34.2 ± 0.2% of randomized grid cells which contain a topological
defect (see Figure 4.20), about 17.1 ± 0.1% of them are monopoles of some kind. The symmetry of
Figure 4.20 further supports this idea. We found that 16.990 ± 0.001% of grid cells in our simulation
were monopoles, which is in near agreement with the result for randomized data, but not exact agreement.
This measurement suggests that the field values in our simulation appear relatively – but not completely
– random on large scales.

We also note that degree 1 and 2 monopoles and anti-monopoles converge to approximately the same
number densities, regardless of damping rate or grid size. Our results are limited to some extent, since
our finite grid size prevents us from making statements about monopole densities below some finite scale;
however, it is reasonable to conclude from the available results that monopoles would not be sparse in
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the Universe, and in fact would be created readily. This fact casts some doubt on the viability of the
model, since we are not aware of any detection of such a monopole or any other unexplained phenomenon
in great enough abundance and with the observational properties (c.f. [12]) necessary to account for
such an abundance.

5.4 Spatial Cross-Correlations

5.4.1 Spatial Cross Correlation Variability in Time

Figures 4.21-29 show the spatial cross-correlations of instances 1-50 over time for all 9 vector field
components. In both the P⃗ and Π⃗Q fields, the correlations remain fairly constant after about 10 and 100

iteration seconds, respectively. After damping is activated, the Q⃗ field begins to become less correlated
at each radius, for reasons which are not immediately obvious.

5.4.2 Spatial Cross-Correlations Over Radii

Motivated by the study of correlation lengths in Monte Carlo simulations and statistical mechanics,
we attempted to determine the correlation lengths of each of the 9 vector field components. Let C̄(r)
be the average correlation of a point to other points within a radius r. Many systems obey some variant
of the relationship

C̄(r) = Ae−r/ξ(r/ξ)−(d−2+η), (5.4.1)

where A is a constant of proportionality, ξ is the correlation length, d is the number of dimensions for
the system, and η is a critical exponent [30]. In this context, we will not be treating η as a true critical
exponent, since we are not working with a system near a critical point; however, this form is a useful
ansatz for characterizing the behavior of our system.

Figure 5.1: Spatial cross-correlations over distances for all 9 components of vectors fields at time 100 in
instances 1-50.
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Figure 5.2: Spatial cross-correlations over distances for all 9 components of vectors fields at time 200 in
instances 1-50.

Figures 5.1-6 show spatial cross-correlations as a function of radius in instances 1-50 and for specified
times. The points presented are averages across all 50 instances, with error bars determined by the
standard error and typically smaller than the points themselves. Due to the limitations of using an
adaptive step size, the time for any individual instance may deviate slightly from the intended value, i.e.
a given instance used in the calculation of the average may have been measured at time 99.98 instead of
time 100.

A best fit to Equation 5.4.1 (shown in orange) was found for each field at 100 iteration seconds and
200 simulation seconds. Each plot also displays the best fit values for the parameters A, η, and ξ.
The inconsistent determination of η for Q⃗ and Π⃗Q may be an indication that the assumption that this
function models this system is incorrect, since it should have a similar value throughout. However,
η is determined with some regularity for P⃗ , which is also conveniently the field which determines the
behavior of monopoles in our model. If the fit results are to be believed, the correlation length for P⃗ in
this system is around 3 grid cells in a 20x20x20 grid. We see similar results for grids of size 10x10x10
and 15x15x15, as depicted in Figures 5.1-6. The correlation length is the typical distance over which
field values are related to each other, and can be thought of as the typical radius for regions of organized
behavior. For a sense of scale, approximately 300 such regions would fit into a 20x20x20 grid. This
result is consistent with some short scale correlation, but a lack of organized behavior over large scales.
We might have been able to guess this result from the result of Section 5.3.
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Figure 5.3: Spatial cross-correlations over distances for all 9 components of vectors fields at time 100 in
instances 151-180.

Figure 5.4: Spatial cross-correlations over distances for all 9 components of vectors fields at time 200 in
instances 151-180.
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Figure 5.5: Spatial cross-correlations over distances for all 9 components of vectors fields at time 100 in
instances 301-330.

Figure 5.6: Spatial cross-correlations over distances for all 9 components of vectors fields at time 200 in
instances 301-330.
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5.5 Differentiating Hull and Triangulation Monopole Detection
Methods

As was mentioned in Section 5.1.3, the triangulation method evidently conserves topological order,
while the convex hull method was observed to violate this conservation regularly, at least as far as we
could tell. It is possible that our inability to determine the degree of a monopole was the cause of the
discrepancy, but as is evident from Figures 4.16-18, degree 1 monopoles are by far the most common, so
this discrepancy should be relatively small – smaller than what we observed. We believe the following
explanation to be more likely. Figure 4.19 gives an example of a false monopole which we believe to be
the cause of this flaw. These false monopoles, which would contain the origin if the order of the vertices
did not matter, are counted by the convex hull method. The triangulation method disregards false
monopoles by accounting for the ordering of the vertices, and therefore only counts ‘true’ monopoles.
Regardless of which explanation is the dominant effect, the triangulation method simultaneously resolves
both potential issues by accounting for varying degrees of monopole and by disregarding false monopoles.
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Conclusion

6.1 Overview

In this work, we presented the derivation of time evolution equations for a rank-2, anti-symmetric
tensor field capable of violating Lorentz symmetry by assuming a nonzero vacuum expectation value.
These equations were used to develop a numerical simulation capable of tracking the properties of
the field, including the incidence rate of monopole topological defects also defined herein. Through
330 test instances of this simulation, we determined that the dynamics of our system were accurately
represented, and considered our simulation to be successful. We also analyzed the correlation between
field values at adjacent points and the incidence rates of monopoles, concluding that field values are
primarily correlated over short scales and monopole defects would be readily produced by this field and
be relatively abundant. The combination of these factors suggests that this field is not physically viable,
though more detailed studies are necessary to draw a definitive conclusion. In addition, we found that
the field values may be divergent when the energy of the system is not damped above an as of yet
undetermined level, which may also limit the physical viability of this model.

6.2 Future Work

Our simulation is limited in a few key respects which should be addressed in a future study. For
one, it would ideal for a future study to replicate our results using a symplectic integrator for numerical
differential equation solving, once one is available in SciPy. In addition, our method of removing energy
from the system is entirely ad hoc, and should be replaced with a physically justified damping method.
The obvious solution would be to include the expansion of the Universe, which one would expect to damp
the system energy in the same way that electromagnetic radiation is redshifted to longer wavelengths.
The expansion of the Universe should be included in our simulation regardless of its impact on the
system energy. We also have yet to consider the time evolution equations generated by the inclusion of
the second invariant as presented in Appendix A.2. The inclusion of the second invariant represents a
further constraint on the system, which would in turn change the structure of field-space in a way which
could impact monopole counts. Finally, we did not consider the impact of changing the value of the
constant b. By taking b = −1 throughout this work, we considered only a ‘timelike’ version of the model.
The impact of choosing a positive (‘spacelike’) b and varying the magnitude of b should be investigated.
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Appendices

A.1 Derivatives With Respect To Vectors and Identities

For the purposes of this work, we will define the derivative of a function f of a vector field A⃗ with
respect to A⃗ to be approximately linear under integration, i.e.∫

f(A⃗+ δA⃗) d4x ≈
∫

f(A⃗) +
∂f(A⃗)

∂A⃗
δA⃗ d4x (A.1.1)

for ‘small’ values of the variation δA⃗. We will omit the integration for the sake of clarity, as is typical
when dealing with Hamiltonian systems. This definition is equivalent to a more familiar limit definition
of the derivative,

∂f(A⃗)

∂A⃗
≡ lim

δA⃗→0

f(A⃗+ δA⃗)− f(A⃗)

δA⃗
(A.1.2)

By simple rearrangement and the application of a limit to handle division by the ‘small’ quantity δA⃗. It
is trivial to see that the standard properties of the derivative all follow from this definition.

The following four identities, Equations (A.1.3-6), prove to be useful in deriving the time evolution

equations of the Hamiltonian for the studied system. Let A⃗ and B⃗ be vector fields, and f a scalar field.
Then,

∂

∂A⃗

[
B⃗ · (∇⃗ × A⃗)

]
= ∇⃗ × B⃗ (A.1.3)

∂

∂A⃗

[
(∇⃗ · A⃗)2

]
= −2∇⃗(∇⃗ · A⃗) (A.1.4)

∂

∂A⃗

[
B⃗ ·
(
∇⃗ × (fA⃗)

)]
= f(∇⃗ × B⃗)− (∇⃗f × B⃗) (A.1.5)

∂

∂f

[
∇⃗ × (fA⃗)

]
= ∇⃗ × A⃗. (A.1.6)

The proofs of these identities require a handful of additional vector identities, which can be found in [31]

and have been replicated below. Let A⃗, B⃗, and C⃗ be vectors and f a scalar. Then,

A⃗ · (B⃗ × C⃗) = B⃗ · (C⃗ × A⃗) = C⃗ · (A⃗× B⃗) (A.1.7)

∇⃗ · (fA⃗) = f(∇⃗ · A⃗) + A⃗ · (∇⃗f) (A.1.8)

∇⃗ · (A⃗× B⃗) = B⃗ · (∇⃗ × A⃗)− A⃗ · (∇⃗ × B⃗) (A.1.9)

∇⃗ × (fA⃗) = f(∇⃗ × A⃗)− A⃗× (∇⃗f). (A.1.10)

In addition, for the purposes of this work we must think of the Hamiltonian as being integrated over
the entirety of space, so terms which contain only the divergence of some vector field will automatically
vanish through integration by parts and the application of Stokes’ Theorem around the boundary [28].
This detail will prove to be necessary to prove the identities in their presented form.
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The proofs of Equations (A.1.3-6) are as follows, and are all similar in character. We will find the
notation of a variation in a vector field, δ, preferable to standard derivative notation for many of the
intermediate steps.

Proof. Let A⃗ and B⃗ be independent vector fields, and consider the expression

∂

∂A⃗

[
B⃗ · (∇⃗ × A⃗)

]
In the language of variations, we can instead write

∂

∂A⃗

[
B⃗ · (∇⃗ × A⃗)

]
= B⃗ · (∇⃗ × δA⃗)

This equality follows from Clairaut’s theorem [28], which allows for the free exchange of differential
operators, including divergence and curl. By making use of Equation (A.1.7),

B⃗ · (∇⃗ × δA⃗) = ∇⃗ · (B⃗ × δA⃗) + (∇⃗ × B⃗) · δA⃗ = (∇⃗ × B⃗) · δA⃗

where the final step is the result of a divergence vanishing from the boundary conditions. Thus,

∂

∂A⃗

[
B⃗ · (∇⃗ × A⃗)

]
= ∇⃗ × B⃗

Proof. Let A⃗ be a vector field, and consider the expression

∂

∂A⃗

[
(∇⃗ · A⃗)2

]
In the language of variations, we can instead write

∂

∂A⃗

[
(∇⃗ · A⃗)2

]
= 2(∇⃗ · A⃗)(∇⃗ · δA⃗)

This equality follows from Clairaut’s theorem [28], which allows for the free exchange of differential

operators, including divergence and curl. By making use of Equation (A.1.8), noting that δA⃗ is a vector

and ∇⃗ · A⃗ is a scalar,

2(∇⃗ · A⃗)(∇⃗ · δA⃗) = −2δA⃗ · ∇⃗(∇⃗ · A⃗) + 2∇⃗ · ((∇⃗ · A⃗)δA⃗) = −2δA⃗ · ∇⃗(∇⃗ · A⃗)

where the final step is the result of a divergence vanishing from the boundary conditions. Thus,

∂

∂A⃗

[
(∇⃗ · A⃗)2

]
= −2∇⃗(∇⃗ · A⃗)

Proof. Let A⃗ and B⃗ be independent vector fields and λ a scalar field. Consider the expression

∂

∂A⃗

[
B⃗ · (∇⃗ × (λA⃗))

]
In the language of variations, we can instead write

∂

∂A⃗

[
B⃗ · (∇⃗ × (λA⃗))

]
= B⃗ · (∇⃗ × (λδA⃗))

This equality follows from Clairaut’s theorem [28], which allows for the free exchange of differential
operators, including divergence and curl. Note that the scalar λ acts as a constant. By making use of
Equation (A.1.10),

B⃗ · (∇⃗ × (λδA⃗)) = B⃗ ·
[
λ(∇⃗ × δA⃗)− δA⃗× (∇⃗λ)

]
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By distributing the dot product between the two interior terms, we can see that the first term is of the
form of an intermediate step in the proof of Equation (A.1.3), and the second term can be simplified
through the use of Equation (A.1.7). Thus,

B⃗ ·
[
λ(∇⃗ × δA⃗)− δA⃗× (∇⃗λ)

]
=
[
λ(∇⃗ × B⃗)− ∇⃗λ× B⃗

]
· δA⃗

∂

∂A⃗

[
B⃗ · (∇⃗ × (λA⃗))

]
= λ(∇⃗ × B⃗)− ∇⃗λ× B⃗

Proof. Let A⃗ and B⃗ be independent vector fields and λ a scalar field. Consider the expression

∂

∂λ

[
B⃗ · (∇⃗ × (λA⃗))

]
By making use of Equation (A.1.10) and Equation (A.1.7),

∂

∂λ

[
B⃗ · (∇⃗ × (λA⃗))

]
=

∂

∂λ

[
B⃗ · (λ(∇⃗ × A⃗)− A⃗× (∇⃗λ))

]
=

∂

∂λ

[
λB⃗ · (∇⃗ × A⃗)− (∇⃗λ) · (B⃗ × A⃗)

]
= B⃗ · (∇⃗ × A⃗)

noting that

∂(∇⃗λ)
∂λ

= ∇⃗(∂λ
∂λ

) = ∇⃗(1) = 0

since the gradient is a differential operator and can be exchanged with the partial derivative by Clairaut’s
theorem [28]. Thus,

∂

∂λ

[
B⃗ · (∇⃗ × (λA⃗))

]
= B⃗ · ∇⃗ × A⃗

∂

∂λ

[
∇⃗ × (λA⃗)

]
= ∇⃗ × A⃗

A.2 Extension to a Second Invariant

The model considered in this section will not be simulated in this work. However, this model is
arguably more complete than the single-invariant version considered in the rest of this work, and so is
derived in full to benefit any future studies on this topic.

A.2.1 System Action and Hamiltonian

As noted by Seifert in [19], a second invariant can be written for this system, which we will call

Y =
1

2
ϵabcdBabBcd = −4P⃗ · Q⃗. (A.2.1)

In analogy to our treatment of the invariant X, we will force Y = a for some constant a ̸= 0. This
modifies the system action to

S =

∫
− 1

12
F abcFabc − λ(X − b)− µ(Y − a)dx4, (A.2.2)

where Y − a = 0 has been enforced by a new Lagrange multiplier, µ. By once again following Dirac-
Bergmann analysis [20], one can fairly easily find that the augmented Hamiltonian for this new system
is

HA =
1

2
Π⃗2

Q + Π⃗Q · (∇⃗ × P⃗ ) +
1

2
(∇⃗ · Q⃗)2 (A.2.3)
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+ λ(X − b) + µ(Y − a) + u⃗ · Π⃗P + uλϖ + uµφ,

where φ is the conjugate momentum to µ and uµ is a new Lagrange multiplier in analogy to uλ. We must
also have a handful of secondary constraints related to the time derivatives of the weakly constrained
quantities ϖ = 0, Π⃗P = 0, and φ = 0, which in turn are determined by the Poisson brackets of the
constrained quantities with the augmented Hamiltonian. In particular,

Ψ ≡ ∂ϖ

∂t
= {ϖ,HA} = −

∂HA

∂λ
= −(X − b) (A.2.4)

Ψ⃗ ≡ ∂Π⃗P

∂t
= {Π⃗P ,HA} = −

∂HA

∂P⃗
= 4λP⃗ + 4µQ⃗− ∇⃗ × Π⃗Q (A.2.5)

Φ ≡ ∂φ

∂t
= {φ,HA} = −

∂HA

∂µ
= 4P⃗ · Q⃗+ a. (A.2.6)

Each secondary constraint has a time derivative given by

∂Ψ

∂t
= {Ψ,HA} = 4

[
u⃗ · P⃗ − Q⃗ · (Π⃗Q + ∇⃗ × P⃗ )

]
(A.2.7)

∂Ψ⃗

∂t
= {Ψ⃗,HA} = 4

[
λu⃗+ µ(Π⃗Q + ∇⃗ × P⃗ ) + uλP⃗ + uµQ⃗+ ∇⃗ × (λQ⃗)− ∇⃗ × (µP⃗ )

]
(A.2.8)

∂Φ

∂t
= {Φ,HA} = 4

[
u⃗ · Q⃗+ P⃗ · (Π⃗P + ∇⃗ × P⃗ )

]
(A.2.9)

It is worth noting that the time derivative of Ψ is the same as that found by Seifert for the single-
invariant case, though the equation given that work includes an erroneous factor of 4 [19]. Since each
secondary constraint is weakly constrained to 0, we must have each of their time derivatives equal to 0
as well. Using this fact, one can show that

u⃗ =
1

λ

[
C⃗ − uλP⃗ − uµQ⃗

]
(A.2.10)

uµ =
1

Q2P 2 − (Q⃗ · P⃗ )2

[
P 2Q⃗ · C⃗ − P 2λA− (P⃗ · C⃗)(P⃗ · Q⃗) + λB(P⃗ · Q⃗)

]
(A.2.11)

uλ =
1

P 2

[
P⃗ · C⃗ − λB

]
− Q⃗ · P⃗

Q2P 2 − (Q⃗ · P⃗ )2

[
Q⃗ · C⃗ − λA− 1

P 2

[
(P⃗ · C⃗)(P⃗ · Q⃗) + λB(P⃗ · Q⃗)

]]
(A.2.12)

where we have defined

A ≡ −P⃗ · (Π⃗Q + ∇⃗ × P⃗ ) (A.2.13)

B ≡ Q⃗ · (Π⃗Q + ∇⃗ × P⃗ ) (A.2.14)

C⃗ ≡ ∇⃗ × (µP⃗ )− ∇⃗ × (λQ⃗)− µ(Π⃗Q + ∇⃗ × P⃗ ) (A.2.15)

and we have imposed the additional conditions

λ ̸= 0 (A.2.16)

Q2P 2 − (Q⃗ · P⃗ )2 ̸= 0. (A.2.17)

This final condition is equivalent to Q⃗ and P⃗ neither sharing a direction nor having a magnitude of 0.

A.2.2 Time Evolution Equations

As in the single-invariant model, the time evolution equation of each field quantity is found through
the use of a Poisson bracket. For the two-invariant model, this process gives

˙⃗
Q =

dQ⃗

dt
=

∂HA

∂Π⃗Q

(A.2.18)

49



˙⃗
ΠQ =

dΠ⃗Q

dt
= −∂HA

∂Q⃗
(A.2.19)

˙⃗
P =

dP⃗

dt
=

∂HA

∂Π⃗P

= u⃗ (A.2.20)

˙⃗
ΠP =

dΠ⃗P

dt
= −∂HA

∂P⃗
(A.2.21)

λ̇ =
dλ

dt
=

∂HA

∂ϖ
= uλ (A.2.22)

ϖ̇ =
dϖ

dt
= −∂HA

∂λ
(A.2.23)

µ̇ =
dµ

dt
=

∂HA

∂φ
= uµ (A.2.24)

φ̇ =
dφ

dt
= −∂HA

∂µ
. (A.2.25)

Again, some of these derivatives are straightforward and have been listed explicitly. We take the direct
product between two vector quantities (without an explicit dot product) to represent a dyad so as to
imply the appropriate index contractions without explicit Einstein summation notation. The remaining
derivatives are given by

∂HA

∂Π⃗Q

= Π⃗Q + ∇⃗ × P⃗ +
∂u⃗

∂Π⃗Q

· Π⃗P +
∂uλ

∂Π⃗Q

ϖ +
∂uµ

∂Π⃗Q

φ (A.2.26)

∂HA

∂Q⃗
= −∇⃗(∇⃗ · Q⃗) + 4λQ⃗− 4µP⃗ +

∂

∂Q⃗
(u⃗ · Π⃗P ) +

∂uλ

∂Q⃗
ϖ +

∂uµ

∂Q⃗
φ (A.2.27)

∂HA

∂P⃗
= ∇⃗ × Π⃗Q − 4λP⃗ − 4µQ⃗+

∂

∂P⃗
(u⃗ · Π⃗P ) +

∂uλ

∂P⃗
ϖ +

∂uµ

∂P⃗
φ (A.2.28)

∂HA

∂λ
= 2Q2 − 2P 2 − b+

∂u⃗

∂λ
· Π⃗P +

∂uλ

∂λ
ϖ +

∂uµ

∂λ
φ (A.2.29)

∂HA

∂µ
= −4P⃗ · Q⃗− a+

∂u⃗

∂µ
· Π⃗P +

∂uλ

∂µ
ϖ +

∂uµ

∂µ
φ, (A.2.30)

where the derivatives of u⃗ are

∂u⃗

∂Π⃗Q

=
1

λ

[
µ
←→
I − ∂uλ

∂Π⃗Q

P⃗ − ∂uµ

∂Π⃗Q

Q⃗

]
(A.2.31)

∂

∂Q⃗
(u⃗ · Π⃗P ) =

1

λ

[
∇⃗λ× Π⃗P − λ∇⃗ × Π⃗P −

∂uλ

∂Q⃗
(P⃗ · Π⃗P )−

∂uµ

∂Q⃗
(Q⃗ · Π⃗P )

]
(A.2.32)

∂

∂P⃗
(u⃗ · Π⃗P ) =

1

λ

[
µ∇⃗ × Π⃗P − ∇⃗µ× Π⃗P − uλ −

∂uλ

∂P⃗
(P⃗ · Π⃗P )−

∂uµ

∂P⃗
(Q⃗ · Π⃗P )

]
(A.2.33)

∂u⃗

∂λ
=

1

λ2

[
uλP⃗ + uµQ⃗− C⃗ − λ∇⃗ × Q⃗− ∂uλ

∂λ
λP⃗ − ∂uµ

∂λ
λQ⃗

]
(A.2.34)

∂u⃗

∂µ
= − 1

λ

[
Π⃗Q +

∂uλ

∂µ
P⃗ +

∂uµ

∂µ
Q⃗

]
, (A.2.35)

where
←→
I is the unit dyadic, the derivatives of uµ are

∂uµ

∂Π⃗Q

=
1

Q2P 2 − (Q⃗ · P⃗ )2

[
P 2(µQ⃗+ λP⃗ ) + (P⃗ · Q⃗)(λQ⃗− µP⃗ )

]
(A.2.36)

∂uµ

∂Q⃗
=

1

Q2P 2 − (Q⃗ · P⃗ )2

[
P 2(C⃗ + ∇⃗λ× Q⃗− λ∇⃗ × Q⃗) + (P⃗ · Q⃗)(λΠ⃗Q + 2λ∇⃗ × P⃗ − ∇⃗λ× P⃗ ) (A.2.37)
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+ λBP⃗ − (P⃗ · C⃗)P⃗
]
+ 2

(Q⃗ · P⃗ )P⃗ − P 2Q⃗(
Q2P 2 − (Q⃗ · P⃗ )2

)2 [P 2(Q⃗ · C⃗)− λAP 2 − (P⃗ · C⃗ + λB)(P⃗ · Q⃗)
]

∂uµ

∂P⃗
=

1

Q2P 2 − (Q⃗ · P⃗ )2

[
P 2(λΠ⃗Q + 2λ∇⃗ × P⃗ + µ∇⃗ × Q⃗− ∇⃗µ× Q⃗) + 2(Q⃗ · C⃗ − λA)P⃗ (A.2.38)

+ (P⃗ · Q⃗)(C⃗ + λ∇⃗ × Q⃗+ µ∇⃗ × P⃗ − ∇⃗µ× P⃗ )− (P⃗ · C⃗ + λB)Q⃗
]

+ 2
(Q⃗ · P⃗ )Q⃗−Q2P⃗(
Q2P 2 − (Q⃗ · P⃗ )2

)2 [P 2(Q⃗ · C⃗ − λA) + (P⃗ · Q⃗)(λB − P⃗ · C⃗)
]

∂uµ

∂λ
=

1

Q2P 2 − (Q⃗ · P⃗ )2

[
(P⃗ · Q⃗)(B + P⃗ · ∇⃗ × Q⃗)− P 2(A+ Q⃗ · ∇⃗ × Q⃗)

]
(A.2.39)

∂uµ

∂µ
=

1

Q2P 2 − (Q⃗ · P⃗ )2

[
(P⃗ · Q⃗)(P⃗ · Π⃗Q)− P 2Q⃗ · Π⃗Q

]
, (A.2.40)

and the derivatives of uλ are

∂uλ

∂Π⃗Q

=
1

P 2

(
µP⃗ − λQ⃗

)
− Q⃗ · P⃗

Q2P 2 − (Q⃗ · P⃗ )2

[
µQ⃗+ λP⃗ +

Q⃗ · P⃗
P 2

(
λQ⃗− µP⃗

)]
(A.2.41)

∂uλ

∂Q⃗
=

1

P 2

(
∇⃗λ× P⃗ − λ∇⃗ × P⃗ − λ(Π⃗Q + ∇⃗ × P⃗ )

)
(A.2.42)

− Q2P 2P⃗ − 3(Q⃗ · P⃗ )2P⃗ − 2P 2(Q⃗ · P⃗ )Q⃗(
(Q2P 2)− (Q⃗ · P⃗ )2

)2
[
Q⃗ · C⃗ − λA+

P⃗ · Q⃗
P 2

(
λB − P⃗ · C⃗

)]

− Q⃗ · P⃗
Q2P 2 − (Q⃗ · P⃗ )2

[
C⃗ + ∇⃗λ× Q⃗− λ∇⃗ × Q⃗

+
1

P 2

(
(λB − P⃗ · C⃗)P⃗ + (P⃗ · Q⃗)(λΠ⃗Q + 2λ∇⃗ × P⃗ − ∇⃗λ× P⃗ )

)]
∂uλ

∂P⃗
=

1

P 4

[
P 2(µ∇⃗ × P⃗ − ∇⃗µ× P⃗ + C⃗ − λ∇⃗ × Q⃗) + 2λBP⃗ − 2(P⃗ · C⃗)P⃗

]
(A.2.43)

− Q2P 2Q⃗− 3(Q⃗ · P⃗ )2Q⃗− 2Q2(Q⃗ · P⃗ )P⃗(
(Q2P 2)− (Q⃗ · P⃗ )2

)2
[
Q⃗ · C⃗ − λA− P⃗ · Q⃗

P 2

(
λB − P⃗ · C⃗

)]

Q⃗ · P⃗
Q2P 2 − (Q⃗ · P⃗ )2

[
µ∇⃗ × Q⃗− ∇⃗µ× Q⃗+ λΠ⃗Q + 2λ∇⃗ × P⃗

+
1

P 4

(
P 2
(
λBQ⃗+ λ(P⃗ · Q⃗)∇⃗ × Q⃗− (P⃗ · C⃗)Q⃗

− (P⃗ · Q⃗)(C⃗ + µ∇⃗ × P⃗ − ∇⃗µ× P⃗ )
)
− 2λB(P⃗ · Q⃗)P⃗

)]
∂uλ

∂λ
=

Q⃗ · P⃗
Q2P 2 − (Q⃗ · P⃗ )2

[
A+ Q⃗ · ∇⃗ × Q⃗+

Q⃗ · P⃗
P 2

(
B + P⃗ · ∇⃗ × Q⃗

)]
− B

P 2
(A.2.44)

∂uλ

∂µ
=

Q⃗ · P⃗
Q2P 2 − (Q⃗ · P⃗ )2

[
Q⃗ · Π⃗Q −

P⃗ · Q⃗
P 2

(P⃗ · Π⃗Q)

]
− 1

P 2

(
P⃗ · Π⃗Q

)
. (A.2.45)

At this point, terms which are weakly constrained to 0 may be disregarded throughout.
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A.3 Simulation Code Files

A.3.1 Dependencies

This simulation has been developed in Python, and requires a number of dependencies to function. The
following dependency list includes all necessary packages and the exact versions used during development
and data collection, in the format of the environment manager Anaconda.

1 channels:

2 - defaults

3 dependencies:

4 - alabaster=0.7.12=pyhd3eb1b0_0

5 - anyio=3.5.0=py38haa95532_0

6 - appdirs=1.4.4=pyhd3eb1b0_0

7 - argh=0.26.2=py38_0

8 - argon2-cffi=21.3.0=pyhd3eb1b0_0

9 - argon2-cffi-bindings=21.2.0=py38h2bbff1b_0

10 - astroid=2.14.2=py38haa95532_0

11 - asttokens=2.0.5=pyhd3eb1b0_0

12 - atomicwrites=1.4.0=py_0

13 - attrs=22.1.0=py38haa95532_0

14 - autopep8=1.5.6=pyhd3eb1b0_0

15 - babel=2.11.0=py38haa95532_0

16 - backcall=0.2.0=pyhd3eb1b0_0

17 - bcrypt=3.2.0=py38h2bbff1b_1

18 - beautifulsoup4=4.12.2=py38haa95532_0

19 - black=23.3.0=py38haa95532_0

20 - blas=1.0=mkl

21 - bleach=4.1.0=pyhd3eb1b0_0

22 - bottleneck=1.3.5=py38h080aedc_0

23 - brotli=1.0.9=h2bbff1b_7

24 - brotli-bin=1.0.9=h2bbff1b_7

25 - brotlipy=0.7.0=py38h2bbff1b_1003

26 - ca-certificates=2023.08.22=haa95532_0

27 - certifi=2023.7.22=py38haa95532_0

28 - cffi=1.15.1=py38h2bbff1b_3

29 - chardet=4.0.0=py38haa95532_1003

30 - charset-normalizer=2.0.4=pyhd3eb1b0_0

31 - click=8.0.4=py38haa95532_0

32 - cloudpickle=2.2.1=py38haa95532_0

33 - colorama=0.4.6=py38haa95532_0

34 - comm=0.1.2=py38haa95532_0

35 - console_shortcut=0.1.1=4

36 - contourpy=1.0.5=py38h59b6b97_0

37 - cryptography=41.0.2=py38h31511bf_0

38 - cycler=0.11.0=pyhd3eb1b0_0

39 - debugpy=1.6.7=py38hd77b12b_0

40 - decorator=5.1.1=pyhd3eb1b0_0

41 - defusedxml=0.7.1=pyhd3eb1b0_0

42 - diff-match-patch=20200713=pyhd3eb1b0_0

43 - dill=0.3.7=py38haa95532_0

44 - docutils=0.18.1=py38haa95532_3

45 - entrypoints=0.4=py38haa95532_0

46 - executing=0.8.3=pyhd3eb1b0_0

47 - ffmpeg=4.2.2=he774522_0

48 - flake8=3.9.0=pyhd3eb1b0_0

49 - fonttools=4.25.0=pyhd3eb1b0_0

50 - freetype=2.12.1=ha860e81_0
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51 - future=0.18.3=py38haa95532_0

52 - giflib=5.2.1=h8cc25b3_3

53 - glib=2.69.1=h5dc1a3c_2

54 - icc_rt=2022.1.0=h6049295_2

55 - icu=58.2=ha925a31_3

56 - idna=3.4=py38haa95532_0

57 - imagesize=1.4.1=py38haa95532_0

58 - importlib_metadata=6.0.0=hd3eb1b0_0

59 - importlib_resources=5.2.0=pyhd3eb1b0_1

60 - intel-openmp=2023.1.0=h59b6b97_46319

61 - intervaltree=3.1.0=pyhd3eb1b0_0

62 - ipykernel=6.25.0=py38h9909e9c_0

63 - ipython=8.12.2=py38haa95532_0

64 - ipython_genutils=0.2.0=pyhd3eb1b0_1

65 - isort=5.9.3=pyhd3eb1b0_0

66 - jaraco.classes=3.2.1=pyhd3eb1b0_0

67 - jedi=0.17.2=py38haa95532_1

68 - jinja2=3.1.2=py38haa95532_0

69 - jpeg=9e=h2bbff1b_1

70 - json5=0.9.6=pyhd3eb1b0_0

71 - jsonschema=4.17.3=py38haa95532_0

72 - jupyter_client=8.1.0=py38haa95532_0

73 - jupyter_core=5.3.0=py38haa95532_0

74 - jupyter_server=1.23.4=py38haa95532_0

75 - jupyterlab=3.3.2=pyhd3eb1b0_0

76 - jupyterlab_pygments=0.1.2=py_0

77 - jupyterlab_server=2.22.0=py38haa95532_0

78 - keyring=23.13.1=py38haa95532_0

79 - kiwisolver=1.4.4=py38hd77b12b_0

80 - lazy-object-proxy=1.6.0=py38h2bbff1b_0

81 - lerc=3.0=hd77b12b_0

82 - libbrotlicommon=1.0.9=h2bbff1b_7

83 - libbrotlidec=1.0.9=h2bbff1b_7

84 - libbrotlienc=1.0.9=h2bbff1b_7

85 - libclang=14.0.6=default_hb5a9fac_1

86 - libclang13=14.0.6=default_h8e68704_1

87 - libdeflate=1.17=h2bbff1b_0

88 - libffi=3.4.4=hd77b12b_0

89 - libiconv=1.16=h2bbff1b_2

90 - libpng=1.6.39=h8cc25b3_0

91 - libsodium=1.0.18=h62dcd97_0

92 - libspatialindex=1.9.3=h6c2663c_0

93 - libtiff=4.5.1=hd77b12b_0

94 - libwebp=1.2.4=hbc33d0d_1

95 - libwebp-base=1.2.4=h2bbff1b_1

96 - libxml2=2.10.4=h0ad7f3c_1

97 - libxslt=1.1.37=h2bbff1b_1

98 - lxml=4.9.2=py38h2bbff1b_0

99 - lz4-c=1.9.4=h2bbff1b_0

100 - markupsafe=2.1.1=py38h2bbff1b_0

101 - matplotlib=3.7.2=py38haa95532_0

102 - matplotlib-base=3.7.2=py38h4ed8f06_0

103 - matplotlib-inline=0.1.6=py38haa95532_0

104 - mccabe=0.6.1=py38haa95532_2

105 - mistune=0.8.4=py38he774522_1000

106 - mkl=2023.1.0=h6b88ed4_46357

107 - mkl-service=2.4.0=py38h2bbff1b_1

108 - mkl_fft=1.3.6=py38hf11a4ad_1
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109 - mkl_random=1.2.2=py38hf11a4ad_1

110 - more-itertools=8.12.0=pyhd3eb1b0_0

111 - munkres=1.1.4=py_0

112 - mypy_extensions=0.4.3=py38haa95532_1

113 - nbclassic=0.5.5=py38haa95532_0

114 - nbclient=0.5.13=py38haa95532_0

115 - nbconvert=6.5.4=py38haa95532_0

116 - nbformat=5.7.0=py38haa95532_0

117 - nest-asyncio=1.5.6=py38haa95532_0

118 - notebook-shim=0.2.2=py38haa95532_0

119 - numexpr=2.8.4=py38h7b80656_1

120 - numpy=1.24.3=py38h79a8e48_1

121 - numpy-base=1.24.3=py38h8a87ada_1

122 - numpydoc=1.5.0=py38haa95532_0

123 - openssl=1.1.1w=h2bbff1b_0

124 - packaging=23.1=py38haa95532_0

125 - pandas=1.5.3=py38hf11a4ad_0

126 - pandocfilters=1.5.0=pyhd3eb1b0_0

127 - paramiko=2.8.1=pyhd3eb1b0_0

128 - parso=0.7.0=py_0

129 - pathspec=0.10.3=py38haa95532_0

130 - pcre=8.45=hd77b12b_0

131 - pexpect=4.8.0=pyhd3eb1b0_3

132 - pickleshare=0.7.5=pyhd3eb1b0_1003

133 - pillow=9.4.0=py38hd77b12b_0

134 - pip=23.2.1=py38haa95532_0

135 - pkgutil-resolve-name=1.3.10=py38haa95532_0

136 - platformdirs=3.10.0=py38haa95532_0

137 - pluggy=1.0.0=py38haa95532_1

138 - ply=3.11=py38_0

139 - pooch=1.4.0=pyhd3eb1b0_0

140 - prometheus_client=0.14.1=py38haa95532_0

141 - prompt-toolkit=3.0.36=py38haa95532_0

142 - psutil=5.9.0=py38h2bbff1b_0

143 - ptyprocess=0.7.0=pyhd3eb1b0_2

144 - pure_eval=0.2.2=pyhd3eb1b0_0

145 - pycodestyle=2.6.0=pyhd3eb1b0_0

146 - pycparser=2.21=pyhd3eb1b0_0

147 - pydocstyle=6.3.0=py38haa95532_0

148 - pyflakes=2.2.0=pyhd3eb1b0_0

149 - pygments=2.15.1=py38haa95532_1

150 - pylint=2.16.2=py38haa95532_0

151 - pyls-black=0.4.6=hd3eb1b0_0

152 - pyls-spyder=0.3.2=pyhd3eb1b0_0

153 - pynacl=1.5.0=py38h8cc25b3_0

154 - pyopenssl=23.2.0=py38haa95532_0

155 - pyparsing=3.0.9=py38haa95532_0

156 - pyqt=5.9.2=py38hd77b12b_6

157 - pyqt5-sip=12.11.0=py38hd77b12b_0

158 - pyrsistent=0.18.0=py38h196d8e1_0

159 - pysocks=1.7.1=py38haa95532_0

160 - python=3.8.17=h6244533_0

161 - python-dateutil=2.8.2=pyhd3eb1b0_0

162 - python-fastjsonschema=2.16.2=py38haa95532_0

163 - python-jsonrpc-server=0.4.0=py_0

164 - python-language-server=0.36.2=pyhd3eb1b0_0

165 - python-tzdata=2023.3=pyhd3eb1b0_0

166 - pytoolconfig=1.2.5=py38haa95532_1
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167 - pytz=2022.7=py38haa95532_0

168 - pywin32=305=py38h2bbff1b_0

169 - pywin32-ctypes=0.2.0=py38_1000

170 - pywinpty=2.0.10=py38h5da7b33_0

171 - pyyaml=6.0=py38h2bbff1b_1

172 - pyzmq=25.1.0=py38hd77b12b_0

173 - qdarkstyle=2.8.1=py_0

174 - qt=5.9.7=vc14h73c81de_0

175 - qtawesome=1.2.2=py38haa95532_0

176 - qtconsole=5.4.2=py38haa95532_0

177 - qtpy=2.2.0=py38haa95532_0

178 - requests=2.31.0=py38haa95532_0

179 - rope=1.7.0=py38haa95532_0

180 - rtree=1.0.1=py38h2eaa2aa_0

181 - scipy=1.10.1=py38hdcfc7df_1

182 - send2trash=1.8.0=pyhd3eb1b0_1

183 - setuptools=68.0.0=py38haa95532_0

184 - sip=4.19.13=py38hd77b12b_0

185 - six=1.16.0=pyhd3eb1b0_1

186 - sniffio=1.2.0=py38haa95532_1

187 - snowballstemmer=2.2.0=pyhd3eb1b0_0

188 - sortedcontainers=2.4.0=pyhd3eb1b0_0

189 - soupsieve=2.4=py38haa95532_0

190 - sphinx=5.0.2=py38haa95532_0

191 - sphinxcontrib-applehelp=1.0.2=pyhd3eb1b0_0

192 - sphinxcontrib-devhelp=1.0.2=pyhd3eb1b0_0

193 - sphinxcontrib-htmlhelp=2.0.0=pyhd3eb1b0_0

194 - sphinxcontrib-jsmath=1.0.1=pyhd3eb1b0_0

195 - sphinxcontrib-qthelp=1.0.3=pyhd3eb1b0_0

196 - sphinxcontrib-serializinghtml=1.1.5=pyhd3eb1b0_0

197 - spyder=4.2.5=py38haa95532_0

198 - spyder-kernels=1.10.2=py38haa95532_0

199 - sqlite=3.41.2=h2bbff1b_0

200 - stack_data=0.2.0=pyhd3eb1b0_0

201 - tbb=2021.8.0=h59b6b97_0

202 - terminado=0.17.1=py38haa95532_0

203 - textdistance=4.2.1=pyhd3eb1b0_0

204 - three-merge=0.1.1=pyhd3eb1b0_0

205 - tinycss2=1.2.1=py38haa95532_0

206 - tk=8.6.12=h2bbff1b_0

207 - toml=0.10.2=pyhd3eb1b0_0

208 - tomli=2.0.1=py38haa95532_0

209 - tomlkit=0.11.1=py38haa95532_0

210 - tornado=6.3.2=py38h2bbff1b_0

211 - traitlets=5.7.1=py38haa95532_0

212 - typing-extensions=4.7.1=py38haa95532_0

213 - typing_extensions=4.7.1=py38haa95532_0

214 - ujson=5.4.0=py38hd77b12b_0

215 - urllib3=1.26.16=py38haa95532_0

216 - vc=14.2=h21ff451_1

217 - vs2015_runtime=14.27.29016=h5e58377_2

218 - watchdog=1.0.2=py38haa95532_1

219 - wcwidth=0.2.5=pyhd3eb1b0_0

220 - webencodings=0.5.1=py38_1

221 - websocket-client=0.58.0=py38haa95532_4

222 - wheel=0.38.4=py38haa95532_0

223 - win_inet_pton=1.1.0=py38haa95532_0

224 - winpty=0.4.3=4
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225 - wrapt=1.14.1=py38h2bbff1b_0

226 - xz=5.4.2=h8cc25b3_0

227 - yaml=0.2.5=he774522_0

228 - yapf=0.31.0=pyhd3eb1b0_0

229 - zeromq=4.3.4=hd77b12b_0

230 - zipp=3.11.0=py38haa95532_0

231 - zlib=1.2.13=h8cc25b3_0

232 - zstd=1.5.5=hd43e919_0

233 - pip:

234 - importlib-metadata==6.8.0

235 - llvmlite==0.40.1

236 - mpmath==1.3.0

237 - numba==0.57.1

238 - py-pde==0.32.2

239 - sympy==1.12

240 - tqdm==4.66.1

A.3.2 Simulation.py

1 import pde

2 import numpy as np

3 from TimeEvolutionEqns import TimeEvolutionEquations

4

5

6 def simulation(total_time = 10, gridx = 25, gridy = 25, gridz = 25, eps = 0, run = 0, file

= ''):↪→

7

8 #Define the constant b and the simulation grid

9 b = -1

10 grid = pde.CartesianGrid([[0, gridx-1], [0, gridy-1], [0, gridz-1]], [gridx, gridy,

gridz], periodic = [True,True,True]) # generate grid↪→

11

12 #If no file supplied, generate new field data

13 if file=='':

14

15 #Define the gradient on this grid

16 apply_gradient = grid.make_operator("gradient", bc = ["periodic", "periodic",

"periodic"])↪→

17

18 #Generate Pi_Q

19 PQ1 = pde.fields.ScalarField.from_expression(grid, "0")

20 PQ2 = pde.fields.ScalarField.from_expression(grid, "sin(2*pi*x/25)")

21 PQ3 = pde.fields.ScalarField.from_expression(grid, "-cos(2*pi*x/25)")

22

23 #Generate Q

24 Q1 = pde.fields.ScalarField.random_uniform(grid)

25 Q2 = pde.fields.ScalarField.random_uniform(grid)

26 Q3 = pde.fields.ScalarField.random_uniform(grid)

27

28

29 #Curl of Pi_Q

30 grad_PQ1 = apply_gradient(PQ1.data)

31 grad_PQ2 = apply_gradient(PQ2.data)

32 grad_PQ3 = apply_gradient(PQ3.data)

33 assert grad_PQ1.shape == (3, gridx, gridy, gridz)

34 assert grad_PQ2.shape == (3, gridx, gridy, gridz)

35 assert grad_PQ3.shape == (3, gridx, gridy, gridz)
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36

37 curl_PQ = [grad_PQ3[1] - grad_PQ2[2], grad_PQ1[2] - grad_PQ3[0], grad_PQ2[0] -

grad_PQ1[1]]↪→

38

39 #Find direction of P from direction of the curl of Pi_Q

40 curl_PQ1 = np.reshape(curl_PQ[0].data, (-1, 1))

41 curl_PQ2 = np.reshape(curl_PQ[1].data, (-1, 1))

42 curl_PQ3 = np.reshape(curl_PQ[2].data, (-1, 1))

43 curl_PQ_vecs = np.concatenate((curl_PQ1, curl_PQ2, curl_PQ3),axis = 1)

44 curl_PQ_vecs = curl_PQ_vecs.reshape([gridx, gridy, gridz, 3])

45 mag_curl_PQ = (np.sqrt((curl_PQ_vecs ** 2).sum(-1))[...,

np.newaxis]).reshape([gridx, gridy, gridz, 1])↪→

46 dir_P = curl_PQ_vecs/mag_curl_PQ

47

48 #Find magnitudes of P from Q

49 Q_vecs1 = np.reshape(Q1.data, (-1, 1))

50 Q_vecs2 = np.reshape(Q2.data, (-1, 1))

51 Q_vecs3 = np.reshape(Q3.data, (-1, 1))

52 Q_vecs = np.concatenate((Q_vecs1, Q_vecs2, Q_vecs3),axis = 1)

53 Q_vecs = Q_vecs.reshape([gridx, gridy, gridz, 3])

54 mag_P = np.sqrt(((Q_vecs ** 2)).sum(-1)[..., np.newaxis] - b/2)

55

56 #Recreate P and split it into scalar fields

57 P = mag_P*dir_P

58 P = np.split(P, 3, axis=3)

59 P1_data, P2_data, P3_data = P

60 P1 = pde.ScalarField(grid, data=np.array(P1_data).reshape([gridx, gridy, gridz]))

61 P2 = pde.ScalarField(grid, data=np.array(P2_data).reshape([gridx, gridy, gridz]))

62 P3 = pde.ScalarField(grid, data=np.array(P3_data).reshape([gridx, gridy, gridz]))

63

64 #Define lambda

65 L = (1/(4*(P1*P1 + P2*P2 + P3*P3)))*(P1*curl_PQ[0] + P2*curl_PQ[1] +

P3*curl_PQ[2])↪→

66

67 #Set the time to initial parameters

68 count = 0

69 time = 0

70

71 #If a file is supplied, load in field data

72 else:

73 npzfile = np.load(file)

74

75 Q1_data = npzfile['arr_0']

76 Q2_data = npzfile['arr_1']

77 Q3_data = npzfile['arr_2']

78

79 Pi_Q1_data = npzfile['arr_3']

80 Pi_Q2_data = npzfile['arr_4']

81 Pi_Q3_data = npzfile['arr_5']

82

83 P1_data = npzfile['arr_6']

84 P2_data = npzfile['arr_7']

85 P3_data = npzfile['arr_8']

86

87 L_data = npzfile['arr_9']

88

89 count_arr = npzfile['arr_10']

90 time_arr = npzfile['arr_11']
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91

92 #Convert loaded data to fields and scalars, as appropriate

93 Q1 = pde.ScalarField(grid, data=np.array(Q1_data).reshape([gridx, gridy, gridz]))

94 Q2 = pde.ScalarField(grid, data=np.array(Q2_data).reshape([gridx, gridy, gridz]))

95 Q3 = pde.ScalarField(grid, data=np.array(Q3_data).reshape([gridx, gridy, gridz]))

96

97 PQ1 = pde.ScalarField(grid, data=np.array(Pi_Q1_data).reshape([gridx, gridy,

gridz]))↪→

98 PQ2 = pde.ScalarField(grid, data=np.array(Pi_Q2_data).reshape([gridx, gridy,

gridz]))↪→

99 PQ3 = pde.ScalarField(grid, data=np.array(Pi_Q3_data).reshape([gridx, gridy,

gridz]))↪→

100

101 P1 = pde.ScalarField(grid, data=np.array(P1_data).reshape([gridx, gridy, gridz]))

102 P2 = pde.ScalarField(grid, data=np.array(P2_data).reshape([gridx, gridy, gridz]))

103 P3 = pde.ScalarField(grid, data=np.array(P3_data).reshape([gridx, gridy, gridz]))

104

105 L = pde.ScalarField(grid, data=np.array(L_data).reshape([gridx, gridy, gridz]))

106

107 count = count_arr[0]

108 time = time_arr[0]

109

110

111

112 #Define the problem, and solve it

113 eq = TimeEvolutionEquations(gridx, gridy, gridz, grid, run, eps, count, time) #

define the PDE↪→

114

115 field = pde.FieldCollection([Q1, Q2, Q3, PQ1, PQ2, PQ3, P1, P2, P3, L])

116

117 solver = pde.ExplicitSolver(eq, scheme = 'runge-kutta', adaptive=True)

118 controller = pde.Controller(solver, t_range=total_time)

119 solution = controller.run(field, dt=0.001)

120

121 solution.plot()

122

123 def main():

124 simulation(total_time = 1, run=1, eps=0)

125

126 if(__name__=='__main__'):

127 main()

128

A.3.3 TimeEvolutionEquations.py

1 from pde import PDEBase, FieldCollection, CartesianGrid, VectorField, ScalarField

2 import numpy as np

3 import pandas as pd

4 from scipy.spatial import ConvexHull

5

6 class TimeEvolutionEquations(PDEBase):

7 """ Time Evoltuon Equations for Rank-2, Anti-Symmetric Tensor field """

8

9 def __init__(self, gridx, gridy, gridz, grid, run, eps, count = 0, time = 0):

10

11 #initialize the PDEBase

12 super().__init__()
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13

14 #store the boundary conditions

15 self.bc = ["periodic", "periodic", "periodic"]

16

17 #store the grid

18 self.grid = grid

19 self.gridx = gridx

20 self.gridy = gridy

21 self.gridz = gridz

22 self.run = run

23

24 self.count = count

25 self.time = time

26

27 self.monopole_P_vecs = []

28

29 self.epsilon = eps

30 self.b = -1

31

32 #For tracking when to next take a measurement

33 self.last_monopole_t = self.time

34 self.last_corr_t = self.time

35

36 self.corr_active = True

37

38 def evolution_rate(self, state, t=0):

39 """

40 Define the actual equations of motion for the field

41

42 Parameters

43 ----------

44 state : packaging of fields

45 Contains the fields being solved. Order convention is Q1, Q2, Q3, Pi_Q1,

Pi_Q2, Pi_Q3, P1, P2, P3, L (lambda)↪→

46 t : float, optional

47 User should not set, and this convention is consistent with SciPy and PyPDE.

Time step of the system. The default is 0.↪→

48

49 Returns

50 -------

51 None.

52

53 """

54

55

56 #Define the gradient and divergence on this grid

57 apply_gradient = self.grid.make_operator("gradient", bc = self.bc)

58

59 #Load in the current state

60 Q1, Q2, Q3, Pi_Q1, Pi_Q2, Pi_Q3, P1, P2, P3, L = state

61

62

63 #Find magnitudes of P from Q to satisfy X = 0 (To handle procedurally built up

simulation errors)↪→

64 Q_vecs1 = np.reshape(Q1.data, (-1, 1))

65 Q_vecs2 = np.reshape(Q2.data, (-1, 1))

66 Q_vecs3 = np.reshape(Q3.data, (-1, 1))

67 Q_vecs = np.concatenate((Q_vecs1, Q_vecs2, Q_vecs3),axis = 1)
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68 Q_vecs = Q_vecs.reshape([self.gridx, self.gridy, self.gridz, 3])

69 mag_P = np.sqrt(((Q_vecs ** 2)).sum(-1)[..., np.newaxis] -

self.b/2).reshape([self.gridx,self.gridy,self.gridz, 1])↪→

70

71 #Extract the current magnitudes of P

72 P_vecs1 = np.reshape(P1.data, (-1, 1))

73 P_vecs2 = np.reshape(P2.data, (-1, 1))

74 P_vecs3 = np.reshape(P3.data, (-1, 1))

75 P_vecs = np.concatenate((P_vecs1, P_vecs2, P_vecs3),axis = 1)

76 P_vecs = P_vecs.reshape([self.gridx, self.gridy, self.gridz, 3])

77 current_mag_P = np.sqrt(((P_vecs ** 2)).sum(-1)[...,

np.newaxis]).reshape([self.gridx,self.gridy,self.gridz, 1])↪→

78

79 #Get the current direction of P

80 dir_P = P_vecs/current_mag_P

81

82 #For the new P vectors by multiplying new the magnitude by the direction

83 P = dir_P*mag_P

84

85 #Split P into P1, P2, and P3

86 P = np.split(P, 3, axis=3)

87 P1_data, P2_data, P3_data = P

88

89 #Reset the scalar field objects with the adjusted P magntidues

90 P1 = ScalarField(self.grid, data=np.array(P1_data).reshape([self.gridx,

self.gridy, self.gridz]))↪→

91 P2 = ScalarField(self.grid, data=np.array(P2_data).reshape([self.gridx,

self.gridy, self.gridz]))↪→

92 P3 = ScalarField(self.grid, data=np.array(P3_data).reshape([self.gridx,

self.gridy, self.gridz]))↪→

93

94

95

96 #Define difficult vector quantities, like curls

97

98 #Curl of P

99 grad_P1 = apply_gradient(P1.data)

100 grad_P2 = apply_gradient(P2.data)

101 grad_P3 = apply_gradient(P3.data)

102 assert grad_P1.shape == (3, self.gridx, self.gridy, self.gridz)

103 assert grad_P2.shape == (3, self.gridx, self.gridy, self.gridz)

104 assert grad_P3.shape == (3, self.gridx, self.gridy, self.gridz)

105

106 curl_P = [grad_P3[1] - grad_P2[2], grad_P1[2] - grad_P3[0], grad_P2[0] -

grad_P1[1]]↪→

107

108 #gradient of divergence of Q

109 vf = VectorField.from_scalars([Q1, Q2, Q3])

110 div_Q = vf.divergence(self.bc)

111 grad_div_Q = apply_gradient(div_Q.data)

112 assert grad_div_Q.shape == (3, self.gridx, self.gridy, self.gridz)

113

114 #gradient of lambda

115 grad_L = apply_gradient(L.data)

116 assert grad_L.shape == (3, self.gridx, self.gridy, self.gridz)

117

118 #Lambda * Q

119 LQ = [L*Q1, L*Q2, L*Q3]
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120

121 #curl of LQ

122 grad_LQ1 = apply_gradient(L.data*Q1.data)

123 grad_LQ2 = apply_gradient(L.data*Q2.data)

124 grad_LQ3 = apply_gradient(L.data*Q3.data)

125 assert grad_LQ1.shape == (3, self.gridx, self.gridy, self.gridz)

126 assert grad_LQ2.shape == (3, self.gridx, self.gridy, self.gridz)

127 assert grad_LQ3.shape == (3, self.gridx, self.gridy, self.gridz)

128

129 curl_LQ = [grad_LQ3[1] - grad_LQ2[2], grad_LQ1[2] - grad_LQ3[0], grad_LQ2[0] -

grad_LQ1[1]]↪→

130

131 #grad_L cross P

132 GLCP = [grad_L[1]*P3 - grad_L[2]*P2, grad_L[2]*P1 - grad_L[0]*P3, grad_L[0]*P2 -

grad_L[1]*P1]↪→

133

134 #u_L

135 u_L = -(1/(P1*P1 + P2*P2 + P3*P3)) * ((P1*curl_LQ[0] + P2*curl_LQ[1] +

P3*curl_LQ[2]) + ((LQ[0]*(Pi_Q1 + curl_P[0])) + (LQ[1]*(Pi_Q2 + curl_P[1])) +

(LQ[2]*(Pi_Q3 + curl_P[2]))))

↪→

↪→

136

137 #vec_u

138 vec_u = [(-1/L)*(u_L*P1 + curl_LQ[0]), (-1/L)*(u_L*P2 + curl_LQ[1]),

(-1/L)*(u_L*P3 + curl_LQ[2])]↪→

139

140 #Complicated scalar A

141 A = (P1*Pi_Q1 + P2*Pi_Q2 + P3*Pi_Q3)/(L*(P1*P1 + P2*P2 + P3*P3))

142

143 #Calculate time derivatives

144 Q1_t = Pi_Q1 + curl_P[0]

145 Q2_t = Pi_Q2 + curl_P[1]

146 Q3_t = Pi_Q3 + curl_P[2]

147 Pi_Q1_t = grad_div_Q[0] - 4*L*Q1 - self.epsilon*(Pi_Q1 + curl_P[0])

148 Pi_Q2_t = grad_div_Q[1] - 4*L*Q2 - self.epsilon*(Pi_Q2 + curl_P[1])

149 Pi_Q3_t = grad_div_Q[2] - 4*L*Q3 - self.epsilon*(Pi_Q3 + curl_P[2])

150 P1_t = vec_u[0]

151 P2_t = vec_u[1]

152 P3_t = vec_u[2]

153 L_t = u_L

154

155

156 #Curl of Pi_Q for the calculation of Psi vec

157 grad_PQ1 = apply_gradient(Pi_Q1.data)

158 grad_PQ2 = apply_gradient(Pi_Q2.data)

159 grad_PQ3 = apply_gradient(Pi_Q3.data)

160 assert grad_PQ1.shape == (3, self.gridx, self.gridy, self.gridz)

161 assert grad_PQ2.shape == (3, self.gridx, self.gridy, self.gridz)

162 assert grad_PQ3.shape == (3, self.gridx, self.gridy, self.gridz)

163

164 curl_PQ = [grad_PQ3[1] - grad_PQ2[2], grad_PQ1[2] - grad_PQ3[0], grad_PQ2[0] -

grad_PQ1[1]]↪→

165

166 #Export diagnostic data to file

167 if self.count % 1000 == 0:

168 diagDict = {

169 "Index": self.count,

170 "Time": t + self.time,

171 "Hamiltonian": self.calculate_hamiltonian(state),
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172 "magQ": np.sum(np.sqrt((Q1*Q1 + Q2*Q2 + Q3*Q3).data)),

173 "magP": np.sum(np.sqrt((P1*P1 + P2*P2 + P3*P3).data)),

174 "magPiQ": np.sum(np.sqrt((Pi_Q1*Pi_Q1 + Pi_Q2*Pi_Q2 +

Pi_Q3*Pi_Q3).data)),↪→

175 "magP_var": 1/(self.gridx*self.gridy*self.gridz)*np.sum((P1*P1 + P2*P2 +

P3*P3).data) -

np.power(1/(self.gridx*self.gridy*self.gridz)*np.sum(np.sqrt((P1*P1 +

P2*P2 + P3*P3).data)), 2),

↪→

↪→

↪→

176 "magQ_var": 1/(self.gridx*self.gridy*self.gridz)*np.sum((Q1*Q1 + Q2*Q2 +

Q3*Q3).data) -

np.power(1/(self.gridx*self.gridy*self.gridz)*np.sum(np.sqrt((Q1*Q1 +

Q2*Q2 + Q3*Q3).data)), 2),

↪→

↪→

↪→

177 "magPiQ_var": 1/(self.gridx*self.gridy*self.gridz) * np.sum((Pi_Q1*Pi_Q1 +

Pi_Q2*Pi_Q2 + Pi_Q3*Pi_Q3).data) -

np.power(1/(self.gridx*self.gridy*self.gridz) *

np.sum(np.sqrt((Pi_Q1*Pi_Q1 + Pi_Q2*Pi_Q2 + Pi_Q3*Pi_Q3).data)), 2),

↪→

↪→

↪→

178 "Psi": np.sum(2*(Q1*Q1 + Q2*Q2 + Q3*Q3 - P1*P1 - P2*P2 - P3*P3).data -

self.b),↪→

179 "L": np.sum(L.data),

180 "Psivec1":np.sum(4*L.data*P1.data - curl_PQ[0]),

181 "Psivec2":np.sum(4*L.data*P2.data - curl_PQ[1]),

182 "Psivec3":np.sum(4*L.data*P3.data - curl_PQ[2])

183 }

184

185 dataframe = pd.DataFrame([diagDict])

186 if (self.time + t) == 0:

187 dataframe.to_csv("DiagnosticData_run" + str(self.run) + ".csv", header =

True, index = False)↪→

188 else:

189 dataframe.to_csv("DiagnosticData_run" + str(self.run) + ".csv", header =

False, index = False, mode = 'a')↪→

190

191 #Export monopole counts every 0.25 iterations or so

192 if (self.time + t) - self.last_monopole_t >= 0.25 or t==0:

193

194 self.last_monopole_t = self.time + t

195

196 #reshape the 3 P fields into an array of 3-dimensional points in grid-space

197 field_points = np.array([P1.data.flatten(), P2.data.flatten(),

P3.data.flatten()])↪→

198 pointsArray = np.array(list(zip(field_points[0], field_points[1],

field_points[2]))).reshape(self.gridx, self.gridy, self.gridz, 3)↪→

199 pointsArray = pointsArray.copy() / np.sqrt((pointsArray.copy() **

2).sum(-1))[..., np.newaxis]↪→

200

201 #self.find_and_export_monopoles_hull(pointsArray, t)

202 self.find_and_export_monopoles_triangulation(pointsArray, t)

203

204 #Export simulation state every 5000 steps

205 if self.count % 5000 == 0:

206

207 #Save current simulation state to file so it can be accessed again later

208 count_arr = np.array([self.count])

209 time_arr = np.array([t + self.time])

210 np.savez('FieldData_run' + str(self.run), Q1.data, Q2.data, Q3.data,

Pi_Q1.data, Pi_Q2.data, Pi_Q3.data, P1.data, P2.data, P3.data, L.data,

count_arr, time_arr)

↪→

↪→

211 np.savez('Monopole_P_vecs_run' + str(self.run), self.monopole_P_vecs)

62



212

213 #Export correlations to file every 5 iterations

214 if ((self.time + t) - self.last_corr_t >= 5 or t==0) and self.corr_active:

215

216 self.last_corr_t = self.time + t

217

218 correlations = self.corr_in_grid([1, 2, 4, 6, 8], P1.data, P2.data, P3.data)

219

220 #export correlations to file

221 corrDict = {

222 "Index": self.count,

223 "Time": t + self.time,

224 "Corr1x": correlations[0][0],

225 "Corr1y": correlations[1][0],

226 "Corr1z": correlations[2][0],

227 "Corr2x": correlations[0][1],

228 "Corr2y": correlations[1][1],

229 "Corr2z": correlations[2][1],

230 "Corr4x": correlations[0][2],

231 "Corr4y": correlations[1][2],

232 "Corr4z": correlations[2][2],

233 "Corr6x": correlations[0][3],

234 "Corr6y": correlations[1][3],

235 "Corr6z": correlations[2][3],

236 "Corr8x": correlations[0][4],

237 "Corr8y": correlations[1][4],

238 "Corr8z": correlations[2][4]

239 }

240

241 dataframe = pd.DataFrame([corrDict])

242 if (self.time + t) ==0:

243 dataframe.to_csv("CorrelationsOutP_run" + str(self.run) + ".csv", header =

True, index = False)↪→

244 else:

245 dataframe.to_csv("CorrelationsOutP_run" + str(self.run) + ".csv", header =

False, index = False, mode = 'a')↪→

246

247 correlations = self.corr_in_grid([1, 2, 4, 6, 8], Q1.data, Q2.data, Q3.data)

248

249 #export correlations to file

250 corrDict = {

251 "Index": self.count,

252 "Time": t + self.time,

253 "Corr1x": correlations[0][0],

254 "Corr1y": correlations[1][0],

255 "Corr1z": correlations[2][0],

256 "Corr2x": correlations[0][1],

257 "Corr2y": correlations[1][1],

258 "Corr2z": correlations[2][1],

259 "Corr4x": correlations[0][2],

260 "Corr4y": correlations[1][2],

261 "Corr4z": correlations[2][2],

262 "Corr6x": correlations[0][3],

263 "Corr6y": correlations[1][3],

264 "Corr6z": correlations[2][3],

265 "Corr8x": correlations[0][4],

266 "Corr8y": correlations[1][4],

267 "Corr8z": correlations[2][4]
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268 }

269

270 dataframe = pd.DataFrame([corrDict])

271 if (self.time + t)==0:

272 dataframe.to_csv("CorrelationsOutQ_run" + str(self.run) + ".csv", header =

True, index = False)↪→

273 else:

274 dataframe.to_csv("CorrelationsOutQ_run" + str(self.run) + ".csv", header =

False, index = False, mode = 'a')↪→

275

276 correlations = self.corr_in_grid([1, 2, 4, 6, 8], Pi_Q1.data, Pi_Q2.data,

Pi_Q3.data)↪→

277

278 #export correlations to file

279 corrDict = {

280 "Index": self.count,

281 "Time": t + self.time,

282 "Corr1x": correlations[0][0],

283 "Corr1y": correlations[1][0],

284 "Corr1z": correlations[2][0],

285 "Corr2x": correlations[0][1],

286 "Corr2y": correlations[1][1],

287 "Corr2z": correlations[2][1],

288 "Corr4x": correlations[0][2],

289 "Corr4y": correlations[1][2],

290 "Corr4z": correlations[2][2],

291 "Corr6x": correlations[0][3],

292 "Corr6y": correlations[1][3],

293 "Corr6z": correlations[2][3],

294 "Corr8x": correlations[0][4],

295 "Corr8y": correlations[1][4],

296 "Corr8z": correlations[2][4]

297 }

298

299 dataframe = pd.DataFrame([corrDict])

300 if (self.time + t) ==0:

301 dataframe.to_csv("CorrelationsOutPiQ_run" + str(self.run) + ".csv", header

= True, index = False)↪→

302 else:

303 dataframe.to_csv("CorrelationsOutPiQ_run" + str(self.run) + ".csv", header

= False, index = False, mode = 'a')↪→

304

305 self.count = self.count + 1

306

307 #Return time derivatiives

308 return FieldCollection([Q1_t, Q2_t, Q3_t, Pi_Q1_t, Pi_Q2_t, Pi_Q3_t, P1_t, P2_t,

P3_t, L_t])↪→

309

310 def calculate_hamiltonian(self, state):

311

312 #Define the gradient and divergence on this grid

313 apply_gradient = self.grid.make_operator("gradient", bc = self.bc)

314

315 #Load in the current state

316 Q1, Q2, Q3, Pi_Q1, Pi_Q2, Pi_Q3, P1, P2, P3, L = state

317

318 #Curl of P

319 grad_P1 = apply_gradient(P1.data)
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320 grad_P2 = apply_gradient(P2.data)

321 grad_P3 = apply_gradient(P3.data)

322 assert grad_P1.shape == (3, self.gridx, self.gridy, self.gridz)

323 assert grad_P2.shape == (3, self.gridx, self.gridy, self.gridz)

324 assert grad_P3.shape == (3, self.gridx, self.gridy, self.gridz)

325

326 curl_P = [grad_P3[1] - grad_P2[2], grad_P1[2] - grad_P3[0], grad_P2[0] -

grad_P1[1]]↪→

327

328 #divergence of Q

329 vf = VectorField.from_scalars([Q1, Q2, Q3])

330 div_Q = vf.divergence(self.bc)

331

332 #Calculate H_A

333 H = (1/2)*(Pi_Q1*Pi_Q1 + Pi_Q2*Pi_Q2 + Pi_Q3*Pi_Q3) + (Pi_Q1*curl_P[0] +

Pi_Q2*curl_P[1] + Pi_Q3*curl_P[2]) + (1/2)*(div_Q*div_Q)↪→

334

335 return np.sum(H.data)

336

337 def find_and_export_monopoles_hull(self, pointsArray, t):

338 #reset counter tracking number of detected monopoles

339 monopole_counter = 0

340

341 #for each cube of 8 adjacent points, check for a monopole

342 for point in np.vstack(np.meshgrid(np.array(range(0,

self.gridx)),np.array(range(0, self.gridy)),np.array(range(0,

self.gridz)))).reshape(3, -1).T:

↪→

↪→

343

344 #extract the coordinates of the point

345 i,j,k = point

346

347 #reset boolean tracking whether a monopole has been found

348 monopole_exists = True

349

350 #generate convex hull from 8 points, last point is the origin and is used to

determine if the origin is inside the hull↪→

351 hullPoints = [pointsArray[i, j, k], pointsArray[(i + 1)%(self.gridx), j, k],

pointsArray[i, (j + 1)%(self.gridy), k], pointsArray[i, j, (k +

1)%(self.gridz)], pointsArray[(i + 1)%(self.gridx), (j + 1)%(self.gridy),

k], pointsArray[(i + 1)%(self.gridx), j, (k + 1)%(self.gridz)],

pointsArray[i, (j + 1)%(self.gridy), (k + 1)%(self.gridz)], pointsArray[(i

+ 1)%(self.gridx), (j + 1)%(self.gridy), (k + 1)%(self.gridz)],

np.array([0,0,0])]

↪→

↪→

↪→

↪→

↪→

↪→

352 hull = ConvexHull(hullPoints, qhull_options = 'QG-8')

353

354 #if every edge can be seen from the origin, the origin is inside the hull

355 for edge in hull.good:

356 if not edge:

357 monopole_exists = False

358 break

359

360 #if applicable, increment the monopole counter

361 if monopole_exists:

362 monopole_counter = monopole_counter+1

363 self.monopole_P_vecs.append(hullPoints)

364

365 #export monopole counting to file

366 monopoleDictH = {
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367 "Index": self.count,

368 "Time": t + self.time,

369 "Monopoles": monopole_counter

370 }

371

372 dataframeH = pd.DataFrame([monopoleDictH])

373 if (self.time + t)==0:

374 dataframeH.to_csv("TestHullMonopoleOut_run" + str(self.run) + ".csv", header =

True, index = False)↪→

375 else:

376 dataframeH.to_csv("TestHullMonopoleOut_run" + str(self.run) + ".csv", header =

False, index = False, mode = 'a')↪→

377

378 def find_and_export_monopoles_triangulation(self, pointsArray, t):

379

380 #reset counter tracking number of detected monopoles

381 monopole_counter = [0,0,0,0,0,0]

382 antimonopole_counter = [0,0,0,0,0,0]

383 deg7 = 0

384 deg0 = 0

385

386 #for each cube of 8 adjacent points, check for a monopole

387 for point in np.vstack(np.meshgrid(np.array(range(0,

self.gridx)),np.array(range(0, self.gridy)),np.array(range(0,

self.gridz)))).reshape(3, -1).T:

↪→

↪→

388

389 #extract the coordinates of the point

390 i,j,k = point

391

392 #Get all 8 corners of the cube, with wrapping around the edges

393 cubePoints = [pointsArray[i, j, k], pointsArray[(i + 1)%(self.gridx), j, k],

pointsArray[i, (j + 1)%(self.gridy), k], pointsArray[i, j, (k +

1)%(self.gridz)], pointsArray[(i + 1)%(self.gridx), (j + 1)%(self.gridy),

k], pointsArray[(i + 1)%(self.gridx), j, (k + 1)%(self.gridz)],

pointsArray[i, (j + 1)%(self.gridy), (k + 1)%(self.gridz)], pointsArray[(i

+ 1)%(self.gridx), (j + 1)%(self.gridy), (k + 1)%(self.gridz)]]

↪→

↪→

↪→

↪→

↪→

394

395 #Arrange into oriented triangles (all counter-clockwise relative to the

exterior of the cube)↪→

396 test_triangles = [[cubePoints[3], cubePoints[7], cubePoints[5]],

[cubePoints[3], cubePoints[6], cubePoints[7]], [cubePoints[6],

cubePoints[2], cubePoints[4]], [cubePoints[7], cubePoints[6],

cubePoints[4]], [cubePoints[2], cubePoints[0], cubePoints[4]],

[cubePoints[4], cubePoints[0], cubePoints[1]], [cubePoints[0],

cubePoints[2], cubePoints[6]], [cubePoints[3], cubePoints[0],

cubePoints[6]], [cubePoints[1], cubePoints[7], cubePoints[4]],

[cubePoints[5], cubePoints[7], cubePoints[1]], [cubePoints[3],

cubePoints[5], cubePoints[1]], [cubePoints[3], cubePoints[1],

cubePoints[0]]]

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

397

398 #Choose a point within the first triangle, normalized to be on the unit

sphere↪→

399 triangle = test_triangles[0]

400 p = np.array([triangle[0][0] + triangle[1][0] + triangle[2][0], triangle[0][1]

+ triangle[1][1] + triangle[2][1], triangle[0][2] + triangle[1][2] +

triangle[2][2]])

↪→

↪→

401 p = p.copy() / np.sqrt((p.copy() ** 2).sum(-1))[..., np.newaxis]

402
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403 #reset the degree counter for this particular cube

404 degree_counter = 0

405

406 for triangle in test_triangles:

407 degree_counter = degree_counter + self.check_triangle(triangle, p)

408

409 if degree_counter <=6 and degree_counter >0:

410 monopole_counter[degree_counter - 1] = monopole_counter[degree_counter -

1] + 1↪→

411 elif degree_counter >=-6 and degree_counter <0:

412 antimonopole_counter[-1*degree_counter - 1] =

antimonopole_counter[-1*degree_counter - 1] + 1↪→

413 elif degree_counter>=7 or degree_counter<=-7:

414 deg7 = deg7+1

415 else:

416 deg0 = deg0 + 1

417

418 #export monopole counting to file

419 monopoleDictT = {

420 "Index": self.count,

421 "Time": t + self.time,

422 "Deg1Monopole": monopole_counter[0],

423 "Deg1Antimonopole": antimonopole_counter[0],

424 "Deg2Monopole": monopole_counter[1],

425 "Deg2Antimonopole": antimonopole_counter[1],

426 "Deg3Monopole": monopole_counter[2],

427 "Deg3Antimonopole": antimonopole_counter[2],

428 "Deg4Monopole": monopole_counter[3],

429 "Deg4Antimonopole": antimonopole_counter[3],

430 "Deg5Monopole": monopole_counter[4],

431 "Deg5Antimonopole": antimonopole_counter[4],

432 "Deg6Monopole": monopole_counter[5],

433 "Deg6Antimonopole": antimonopole_counter[5],

434 "Deg7Plus": deg7

435 }

436

437 dataframeT = pd.DataFrame([monopoleDictT])

438 if (self.time + t)==0:

439 dataframeT.to_csv("TriangleMonopoleOut_run" + str(self.run) + ".csv", header =

True, index = False)↪→

440 else:

441 dataframeT.to_csv("TriangleMonopoleOut_run" + str(self.run) + ".csv", header =

False, index = False, mode = 'a')↪→

442

443

444

445

446 def check_triangle(self, triangle, p):

447 """Checks a triangle for orientation preservation or reversal and inclusion of p

(c.f. the function h in Section 2)"""↪→

448 v1, v2, v3 = triangle

449 trior = np.sign(np.linalg.det(np.array([v1, v2, v3])))

450 v12or = np.sign(np.linalg.det(np.array([v1, v2, p])))

451 v23or = np.sign(np.linalg.det(np.array([v2, v3, p])))

452 v31or = np.sign(np.linalg.det(np.array([v3, v1, p])))

453

454 if((trior == v12or) and (v12or == v23or) and (v23or == v31or)):

455 return int(trior)
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456 else:

457 return 0

458

459 def correlation_at_p(self, center_point, radius, F):

460 """The correlation at a given point p for all supplied radii (see Section 2.6)"""

461

462 corr_tot = 0

463 corr_num = 0

464

465 F_av = np.sum(F)/F.size

466

467 F_var = np.sum(np.power(F - F_av, 2))/F.size

468

469 center_vec = np.array([F[center_point[0], center_point[1], center_point[2]]])

470

471 vec1 = center_vec - F_av

472

473 #sum over all points within a certain Manhattan distance

474 for i in range(-1*radius, radius + 1, 1):

475 for j in range(-1*radius + abs(i), radius - abs(i) + 1, 1):

476 for k in range(-1*radius + abs(i) + abs(j), radius - abs(i) - abs(j) + 1,

1):↪→

477 corr_num = corr_num + 1

478

479 vec2 = np.array([F[(center_point[0] + i)%self.gridx, (center_point[1]

+ j)%self.gridy, (center_point[2] + k)%self.gridz]]) - F_av↪→

480

481 corr_tot = corr_tot + np.dot(vec1, vec2)

482

483 corr_tot = corr_tot / F_var

484

485 return corr_tot / corr_num

486

487 def corr_in_grid(self, radii, F1, F2, F3):

488 """Sub-method of the above (see Section 2.6)"""

489

490 xcorr_list = []

491 ycorr_list = []

492 zcorr_list = []

493

494 for radius in radii:

495

496 xcorrs = 0

497 ycorrs = 0

498 zcorrs = 0

499 corr_num = 0

500

501 for point in np.vstack(np.meshgrid(np.array(range(0,

self.gridx)),np.array(range(0, self.gridy)),np.array(range(0,

self.gridz)))).reshape(3, -1).T:

↪→

↪→

502 xcorrs = xcorrs + self.correlation_at_p(point, radius, F1)

503 ycorrs = ycorrs + self.correlation_at_p(point, radius, F2)

504 zcorrs = zcorrs + self.correlation_at_p(point, radius, F3)

505 corr_num = corr_num + 1

506

507 avcorrx = xcorrs / corr_num

508 avcorry = ycorrs / corr_num

509 avcorrz = zcorrs / corr_num
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510

511 xcorr_list.append(avcorrx)

512 ycorr_list.append(avcorry)

513 zcorr_list.append(avcorrz)

514

515 corr_list = [xcorr_list, ycorr_list, zcorr_list]

516

517 return corr_list

A.3.4 RunOneSimulation.py

1 import numpy as np

2 import pandas as pd

3 import argparse

4 from Simulation import simulation

5

6 #set up parser to interact with the cluster

7 parser = argparse.ArgumentParser(description='Run one simulation')

8 parser.add_argument("f")

9 parser.add_argument("total_time",

10 help='the number of additional iterations this simulation should

complete', type = int)↪→

11 parser.add_argument("gridx",

12 help='the size of the x dimension of the simulation grid', type = int)

13 parser.add_argument("gridy",

14 help='the size of the y dimension of the simulation grid', type = int)

15 parser.add_argument("gridz",

16 help='the size of the z dimension of the simulation grid', type = int)

17 parser.add_argument("eps",

18 help='value of the constant eps (should typically be 0)', type =

float)↪→

19 parser.add_argument("run",

20 help='which run number this is (for file output naming)', type = int)

21 args = parser.parse_args()

22 f, total_time, gridx, gridy, gridz, eps, run = [args.f, args.total_time, args.gridx,

args.gridy, args.gridz, args.eps, args.run]↪→

23

24 def runOne():

25 f = args.f

26 total_time = args.total_time

27 if (f == 'none'):

28 f = ''

29 if (f == 'restart'):

30 f = 'FieldData_run' + str(run) + '.npz'

31 npzfile = np.load(f)

32 curr_time = npzfile['arr_11'][0]

33 total_time = total_time - curr_time

34 #Pass everything to the simulation

35 simulation(total_time, gridx, gridy, gridz, eps, run, f)

36

37 def main():

38 runOne()

39

40 if(__name__ == "__main__"):

41 main()
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A.4 Additional Data for Reference

In this appendix, we supply the data collected from simulations which were not chosen to appear in
Section 4. These should be viewed as a reference, and further evidence that the trends identified in
Section 5 are justified by sufficient data to draw conclusions from.

A.4.1 Preservation of Conserved Quantities

Figure A.1: Preservation of Conserved Quantities in Instances 51-100
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Figure A.2: Preservation of Conserved Quantities in Instances 101-150

Figure A.3: Preservation of Conserved Quantities in Instances 151-180
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Figure A.4: Preservation of Conserved Quantities in Instances 211-240

Figure A.5: Preservation of Conserved Quantities in Instances 241-270
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Figure A.6: Preservation of Conserved Quantities in Instances 271-300

A.4.2 Convergence of Field Values

Figure A.7: Convergence of Field Values in Instances 51-100
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Figure A.8: Convergence of Field Values in Instances 101-150

Figure A.9: Convergence of Field Values in Instances 151-180
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Figure A.10: Convergence of Field Values in Instances 211-240

Figure A.11: Convergence of Field Values in Instances 241-270
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Figure A.12: Convergence of Field Values in Instances 271-300

A.4.3 Spatial Cross-Correlations

Figure A.13: Spatial cross-correlations for [Π⃗Q]x over time in instances 51-100.
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Figure A.14: Spatial cross-correlations for [Π⃗Q]y over time in instances 51-100.

Figure A.15: Spatial cross-correlations for [Π⃗Q]z over time in instances 51-100.
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Figure A.16: Spatial cross-correlations for [P⃗ ]x over time in instances 51-100.

Figure A.17: Spatial cross-correlations for [P⃗ ]y over time in instances 51-100.
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Figure A.18: Spatial cross-correlations for [P⃗ ]z over time in instances 51-100.

Figure A.19: Spatial cross-correlations for [Q⃗]x over time in instances 51-100.
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Figure A.20: Spatial cross-correlations for [Q⃗]y over time in instances 51-100.

Figure A.21: Spatial cross-correlations for [Q⃗]z over time in instances 51-100.
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Figure A.22: Spatial cross-correlations for [Π⃗Q]x over time in instances 101-150.

Figure A.23: Spatial cross-correlations for [Π⃗Q]y over time in instances 101-150.
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Figure A.24: Spatial cross-correlations for [Π⃗Q]z over time in instances 101-150.

Figure A.25: Spatial cross-correlations for [P⃗ ]x over time in instances 101-150.
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Figure A.26: Spatial cross-correlations for [P⃗ ]y over time in instances 101-150.

Figure A.27: Spatial cross-correlations for [P⃗ ]z over time in instances 101-150.
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Figure A.28: Spatial cross-correlations for [Q⃗]x over time in instances 101-150.

Figure A.29: Spatial cross-correlations for [Q⃗]y over time in instances 101-150.
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Figure A.30: Spatial cross-correlations for [Q⃗]z over time in instances 101-150.

85


	Simulation Studies of Topological Defect Behavior in Rank-2 Anti-Symmetric Tensor Fields
	Abstract
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Background
	Overview

	Theory
	System Action and Hamiltonian For a Single Invariant
	Time Evolution Equations For a Single Invariant
	Initial Conditions
	Monopole Definition and Detection
	Monopole Definition
	Convex Hull Method
	Triangulation Method
	Preservation of Topological Order

	Energy Damping
	Spatial Cross-Correlations

	Methods
	Data Collection
	Simulation Overview
	Simulation.py
	TimeEvolutionEquations.py

	Data Files

	Results
	Preservation of Conserved Quantities
	Long-Term Field Behavior
	Monopole Behavior
	Incidence Rate in Simulation
	Differentiating Hull and Triangulation Monopole Detection Methods
	Incidence Rate in Random Data

	Spatial Cross-Correlations
	Spatial Cross Correlation Variability in Time


	Discussion
	Preservation of Conserved Quantities
	System Energy
	Primary and Secondary Constraints
	Topological Order

	Long-Term Field Behavior
	 and 
	Q
	

	Monopole Behavior
	Spatial Cross-Correlations
	Spatial Cross Correlation Variability in Time
	Spatial Cross-Correlations Over Radii

	Differentiating Hull and Triangulation Monopole Detection Methods

	Conclusion
	Overview
	Future Work

	References
	Appendices
	Derivatives With Respect To Vectors and Identities
	Extension to a Second Invariant
	System Action and Hamiltonian
	Time Evolution Equations

	Simulation Code Files
	Dependencies
	Simulation.py
	TimeEvolutionEquations.py
	RunOneSimulation.py

	Additional Data for Reference
	Preservation of Conserved Quantities
	Convergence of Field Values
	Spatial Cross-Correlations



