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Abstract:

Before the maturation of the chromophore, a fluorescent protein, just like any
other three-dimensional protein structure, has to fold into the correct tertiary structure
to function. We proposed that the evolutionarily conserved hinge residues, believed to
be located on or near the lids of the fluorescent protein, are involved in the folding
mechanism and rotation of the -sheets and lids into the correct geometry. Acting like
door hinges, these residues are translationally immobilized but rotationally active.
Interference of the hinge sites may lead to allosteric effects and disruption of the
protein’s functional motions. In the study, significant sequential and spatial
conservation was found in conserved lid residues across 28 wild-type fluorescent
proteins. Furthermore, the high rotational freedom and dihedral mobility of the
conserved lid residues confirmed their behavior as hinge residues in the folding

process.
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Introduction:

I. General Background

Since Osamu Shimomura purified the first wild-type green fluorescent protein
(GFP) from the crystal jellyfish Aequorea victoria (avGFP, PDB:1GFL) in the 1960s,
an expanding family of fluorescent proteins (FPs) has been discovered. Fluorescent
proteins, the innovative biomarkers in scientific research, became prevalent within
decades. Scientists have sequenced over 150 distinct FPs and crystalized 28 wild type
structures, which derived from various marine species including anemones, corals and
jelly fish. (1) Despite the fact that the proteins can be traced back to 150 distinct
species, they share a great deal of amino acid similarity. By simply expressing FPs
next to targeted proteins, biological researchers have been maximizing FPs’ imaging
capability, which has already made revolutionary changes in biological research. For
example,
® With the help of the FPs, researchers are able to observe the pattern and
distribution of various proteins. For example, various pathological proteins,
such as amyloid B-protein that abnormally aggregate during the deterioration
of Alzheimer’s disease, can be easily monitored by the newly designed
fluorescence protein sensor. (2)

® Similarly, other proteins, such as matrix metalloproteinases (MMPs) that are
involved in stroke, can be visualized through an MMP-activatable probe,
which shows significantly higher levels of fluorescence in the stroke affected

areas. (3)
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® The energy transfer between the donor chromophore and an acceptor
chromophore nonradiative dipole-dipole coupling, fluorescence (or Forster)
resonance energy transfer (FRET) can be used to monitor protein-protein
interactions. (4)

® (ell cycle activity also can be lit up through fluorescence. Fucci, a fluorescent,
ubiquitination-based cell cycle indicator designed by Atsushi Miyawaki from
the RIKEN Basic Science Institute, is able to color the progression of the cell
cycle with different FPs therefore allowing researchers to visualize the cells
in different phases of the cell cycle. (35)

® In cancer treatment, the inability to efficiently follow and evaluate cancer
metastasis has limited the effectiveness of cancer therapies. By tagging cancer

cells with GFPs, researchers are able to trace the metathesis easily. (6)

11. Fluorescent Protein Structure

It is widely known that the shape of the avGFP resembles a can structure made up
of 11 B-sheets from 238 amino acids (Figure 1). Located at the core of the protein, the
SYG tripeptide chromophore can be seen as the “heart” of the GFP.

The immature chromophore undergoes a 3-step autocatalytic maturation reaction
(cyclization, oxidation and dehydration) of the SYG tripeptide, which means no
foreign enzyme is involved in this process. Two mechanisms were proposed by

Getzoff and Wachter (Figure 2).
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Figure 1. The Architecture of Aequorea Victoria Green Fluorescent Protein (7)
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Figure 2. Two chromophore maturation mechanism proposed by Getzoff (left)
and Wachter (right). (8, 9)
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I11. Conserved Residues Amongst the Fluorescent Proteins

Over 150 distinct GFP-like proteins are currently known. GFP-like
fluorescent proteins (FPs) have been found in marine organisms ranging from
chordates (e.g. amphioxus) to cnidarians (e.g. corals and sea pansies). Figure 3 shows
the most conserved residues in the structures of the naturally occurring GFP-like
proteins. We can divide the conserved residues into 3 groups; residues involved in
chromophore formation, residues on and around the “lids” of the B-barrel (underlined

on the figure), and centrally located residues with no known function.
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Figure 3: A weblogo representation of amino acid diversity among the most conserved
residues of the wild-type GFP-like structures. Underlined are the conserved lid residues.
Residues are numbered relative to avGFP. A high bit score (y-axis) on the logo plot reflects
invariant residues. See Figure 4 for location of some of these residues.
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Tyr66, Gly67, Arg96 and Glu222 are involved in chromophore formation and we
have recently examined their role in the post-translational green fluorescent protein
chromophore formation. (/0) Gly31, Gly33 and Gly35 are all located on the second
B-strand of the 11 B-strand barrel, see Figure 4. There is no obvious reason why these
residues are conserved. They are the only conserved residues located on B-strands that
are not involved in chromophore formation. The residues are not part of the pore
implicated in chromophore maturation (/7) that is located between sheets 7 and 8.
They are also highly conserved in all 266 GFP-like pdb structures and no analogous
GXGXG conserved stretch is found in the 16 sheet B-barrels of porins. A 50ns
molecular dynamics simulation of avGFP revealed that second B-sheet is not
significantly more flexible than the other B-sheets. (7)

In this thesis we will focus on the function of the conserved lid residues.

V. The Conserved Lid Residues

The “lid” residues are located at both ends of the GFP’s can structure, and they
are mainly made up of short turns, helices and ends of sheets. A previous study has
shown that the lid residues are notably conserved among all 266 FPs structures in the
PDB. (1) Furthermore the C and N termini end, which is deemed as the bottom lid in
this study, is relatively less conserved in comparison to the top lid. Three conserved
residues (89, 91 and 196) are located on the bottom lid and 12 residues (20, 23, 27, 53,
55, 101, 102, 104, 127, 130, 134 and 136) are spread across the top lid. We are

curious whether the conserved lids are related to the protein binding function or GFP
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folding. In this thesis we will focus on the possibility that the conserved residues are

hinge residues crucial to the fluorescent proteins’ folding.

Figure 4. Location of conserved amino acids on B-sheets (31, 33, 35)
and lids (23, 50, 53, 89, 91, 101, 102, 104, 130, 134, 136, 196)

V. Folding of Fluorescent Proteins

Before the maturation of the chromophore, the fluorescent protein, just like any
other three-dimensional protein structure, has to fold into the correct tertiary structure
to be able to function. Different approaches including chemical (urea or guanidinium
chloride), thermal and physical methods have been applied to denature the FPs and
explore the folding/unfolding.

Bertz et al (/2) applied a mechanical force to unfold GFP. To collect more
evidence about the intermediates, two GFP mutants with disulfide cross-links were
pulled apart by forces from opposite directions. Their work revealed the unfolding

pathways of GFP shown in Figure 5.
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Figure 5. Force-extension graph of two GFP mutants: Green, blue, and red circles indicate
partial GFP fracture, unfolding of the intermediate and complete fracture. (12)

Reddy et al.(/3) have combined the results from their coarse grained simulations
with reported experimental observations(/4, 15, 16, 17) to propose a model for GFP
folding. It includes multiple pathways, passing through kinetic and equilibrium
intermediates as well as misfolded structures. During folding and unfolding the
B-sheets move in distinct groups - an N-terminal (B1-3), central (f4-6), and
C-terminal (B7-11), group (Figure 6). Rewiring GFP and changing the order of

[-strands 1-6 appears to result in misfolding and failure to form a chromophore.
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Figure 6. Citrine, a yellow version of fluorescent protein’s structure is shown: blue strands are
the N terminus B-strands, red are the C terminus B-strands, grey are the other 3 B-strands and
the green helix is the central helix that includes the chromophore.

As shown in Figure 7, several equilibrium intermediates in the folding process
were found by the simulations, which are similar to the results of chemical denaturant
GdmCl experiment. The equilibrium shows fairly slow unfolding kinetics and

therefore high energy barriers in protein unfolding.
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Figure 7. Left: Fraction of GFP in the Native Basin of Attraction (triangles), equilibrium
intermediates (diamonds) and UBA (circles). Left right: energy, E, and the heat capacity, Cv
as a function of T. Right: Free energy of GFP at temperature around melting point. One of the
intermediate is shown.
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Summing across all the results, one GFP folding landscape was proposed as in

Figure 8, which shows 4 folding pathways between different states.

Figure 8. GFP folding energy landscape and network of pathways between intermediates

Due to the fact that GFP tends to misfold with its B-barrel structure, especially
when tagged with other proteins, a great variety of mutants were made to enhance its
folding ability. Superfolder GFP, which is believed to be the one of the fastest folding
GFPs, carries eleven mutations: the cycle-3 mutations (F99S, M153T and V163A), 2
enhanced GFP mutations (F64L and S65 T) and 6 folding enhanced mutations (S30R,
Y39N, N105T, Y145F, 1171V and A206V). (18) Although the cycle 3 mutations do
not affect the folding kinetics of the protein, they are able to reduce the
hydrophobicity and protein aggregation. S30R and Y39N mutations are believed to
increase folding efficiency while Y145F and 1174V can reduce the misfolding. N105T
and A206V in some way can increase the B-forming propensity. These mutants of

Superfolder GFP show great capability in folding and give off bright fluorescence,
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even if fused with a poorly soluble protein, which causes problems binding with
current GFP variants.

Studies on Superfolder GFP have shown a rough energy landscape in the
unfolding and refolding process: the unfolding titration curves constantly change over
time but the corresponding refolding curves do not. (/9)

Additionally it has been found that a GFP mutant without the chromophore shows
smoother energy landscape and superimposable refolding and unfolding equilibrium
curves than the mature forms. The de novo folding indicates that chromophore is
somehow involved in the energetic frustration of the unfolding and refolding of the
GFP. This is the so-called folding hysteresis.

Circular permutated GFP, in which the C and N termini were joined with a spacer
and new C and N termini were formed at residues 144 and 145, has altered pKa
values. However, the protein was still able to retain fluorescence, which indicated the
occurrence of correct folding and chromophore maturation. GFP’s tolerance for
circular permutation presents that the folding process of GFP is amazingly robust.
(20)

In Aequorea victoria GFP (avGFP) the protein folds quickly and GFP refolding
from an acid-, base-, or guanidine HCl-denatured state (chromophore containing but
non-fluorescent) occurs with a half-life of between 24 seconds(2/) and 5 minutes(22)
and the recovered fluorescence is indistinguishable from that of native GFP.(23)
The folding of GFP exhibits hysteresis that is due to the decreased flexibility of the

chromophore vs. its immature analog(24, 25), and the compaction of the p-barrel
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upon chromophore formation.(26) All signs of hysteresis disappear in mutants that do
not form the chromophore.(25)
Our goal for this thesis is to explore the existence of hinge residues among the

conserved lid residues in FPs.
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Materials and Methods:

L

Bank are listed below. (27)

28 Wild-type Fluorescent Proteins

All the wild-type fluorescent proteins structures imported from the RCSB PDB

Table 1. The information and sources of 28 wild type GFP-like proteins

Protein PDB Organism Reference
Code

Green Fluorescent 1gfl Aequorea Yang, F., Moss, L.G. and Phillips Jr., G.N. The molecular structure of green fluorescent protein.

Protein victoria (1996) Nat.Biotechnol. 14: 1246-1251

A blue, nonfluorescent Imou | Montipora M., Ling, M., Beddoe, T., Oakley, A.J., Dove, S., Hoegh-Guldberg, O., Devenish, R.J. and

pocilloporin efflorescens Rossjohn, J. The 2.2 A crystal structure of a pocilloporin pigment reveals a nonplanar
chromophore conformation.Prescott. (2003) Structure 11: 275-284

A far-red fluorescent luis Entacmaca Petersen, J., Wilmann, P.G., Beddoe, T., Oakley, A.J., Devenish, R.J., Prescott, M. and

protein, eqFP611 quadricolor Rossjohn, J. The 2.0-A crystal structure of eqFP611, a far red fluorescent protein from the sea
anemone Entacmaea quadricolor. (2003) J.Biol.Chem. 278: 44626-44631

KikGR 1xss Favia favus Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N. and Miyawaki, A. Semi-rational engineering
of a coral fluorescent protein into an efficient highlighter. (2005) Embo Rep. 6: 233-238

A far-red Fluorescent lyzw Heteractis Wilmann, P.G., Petersen, J., Pettikiriarachchi, A., Buckle, A.M., Smith, S.C., Olsen, S.,

Protein, HcRed crispa Perugini, M.A., Devenish, R.J., Prescott, M. and Rossjohn, J. The 2.1A crystal structure of the
far-red fluorescent protein HcRed: inherent conformational flexibility of the chromophore. J.
(2005) J.Mol.Biol. 349: 223-237

Discosoma Red 1zgo Discosoma sp. | Tubbs, J.L., and Tainer, J.A., and Getzoff, E.D.Crystallographic structures of Discosoma red

Fluorescent Protein fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis

(DsRed) isomerization and acylimine formation in chromophore maturation. (2005) Biochemistry 44:
9833-9840

Green to red 1zux Lobophyllia Nienhaus, K., Nienhaus, G.U., Wiedenmann, J. and Nar, H. Structural basis for photo-induced

photoconvertible hemprichii protein cleavage and green-to-red conversion of fluorescent protein EosFP. (2005)

GFP-like protein, Proc.Natl.Acad.Sci.Usa 102: 9156-9159

EosFP

A cyan fluorescent 2a46 Anemonia Henderson, J.N. and Remington, S.J. Crystal structures and mutational analysis of amFP486, a

protein, amFP486 majano cyan fluorescent protein from Anemonia majano. (2005) Proc.Natl.Acad.Sci.Usa 102:
12712-12717

GFP asFP499 2¢9i Anemonia Nienhaus, K., Renzi, F., Vallone, B., Wiedenmann, J. and Nienhaus, G.U. Chromophore-protein

sulcata interactions in the anthozoan green fluorescent protein asFP499. (2006) Biophys.J. 91:

4210-4220
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GFP cmFP512 2¢9j Cerianthus Nienhaus, K., Renzi, F., Vallone, B., Wiedenmann, J. and Nienhaus, G.U. Exploring
membranaceus | chromophore--protein interactions in fluorescent protein cmFP512 from Cerianthus
membranaceus: X-ray structure analysis and optical spectroscopy. (2006) Biochemistry 45:
12492-12953
a GFP-like protein, 2dd7 Chiridius Suto, K., Masuda, H., Takenaka, Y., Tsuji, F.I. and Mizuno, H. Structural basis for red-shifted
CpYGFP poppei emission of a GFP-like protein from the marine copepod Chiridius poppei. (2009) Genes Cells
14: 727-737
CopGFP 2g30 Pontellina Wilmann, P.G., Battad, J., Petersen, J., Wilce, M.C.J., Dove, S., Devenish, R.J., Prescott, M.
plumata and Rossjohn, J. The 2.1A crystal structure of copGFP, a representative member of the copepod
clade within the green fluorescent protein superfamily. (2006) J.Mol.Biol. 359: 890-900
A GFP turns red with 2gw3 | Trachyphyllia | Hayashi, I., Mizuno, H., Tong, K.I., Furuta, T., Tanaka, F., Yoshimura, M. and Miyawaki, A.,
UV radiation, Kaede geoffroyi Ikura, M.Crystallographic evidence for water-assisted photo-induced peptide cleavage in the
stony coral fluorescent protein Kaede. (2007) J.Mol.Biol. 372: 918-926
A blue chromoprotein 2ib5 Epiactis Chan, M.C.Y., Karasawa, S., Mizuno, H., Bosanac, 1., Ho, D., Prive, G.G., Miyawaki, A. and
japonica Ikura, M. Structural characterization of a blue chromoprotein and its yellow mutant from the sea
anemone Cnidopus japonicus. (2006) J.Biol.Chem. 281: 37813-37819
A red fluorescent 2icr Zoanthus sp. Pletneva, N., Pletnev, V., Tikhonova, T., Pakhomov, A.A., Popov, V., Martynov, V.IL.,
protein zZRFP574 Wlodawer, A., Dauter, Z. and Pletnev, S. Refined crystal structures of red and green fluorescent
proteins from the button polyp Zoanthus. (2007) Acta Crystallogr.,Sect.D 63: 1082-1093
A photoswitchable 2ie2 Echinophyllia | Wilmann, P.G., Turcic, K., Battad, J.M., Wilce, M.C.J., Devenish, R.J., Prescott, M. and
GFP, Dronpa sp. SC22 Rossjohn, J. The 1.7 A crystal structure of Dronpa: a photoswitchable green fluorescent protein.
(2006) J.Mol.Biol. 364: 213-224
A yellow fluorescent 2ogr Zoanthus sp. Pletneva, N.V., Pletnev, S.V., Chudakov, D.M., Tikhonova, T.V., Popov, V.O., Martynov, V.1,
protein, zYFP538 Wlodawer, A., Dauter, Z. and Pletnev, V.Z. Three-dimensional structure of yellow fluorescent
protein zZYFP538 from Zoanthus sp. at the resolution 1.8 angstrom. Bioorg. Khim. 33: 421-430
GFP-like fluorescent 20jk Zoanthus sp. Pletneva, N., Pletnev, V., Tikhonova, T., Pakhomov, A.A., Popov, V., Martynov, V.IL.,
chromoprotein FP506 Wlodawer, A., Dauter, Z. and Pletnev, S. Refined crystal structures of red and green fluorescent
proteins from the button polyp Zoanthus. (2007) Acta Crystallogr.,Sect.D 63: 1082-1093
luciferase's accessory 2rh7 Renilla Loening, A.M., Fenn, T.D. and Gambhir, S.S. Crystal structures of the luciferase and green
GFP, RrGFP reniformis fluorescent protein from Renilla reniformis. (2007) J.Mol.Biol. 374: 1017-1028
Red fluorescent protein | 2wht | Montipora sp. | Violot, S., Carpentier, P., Blanchoin, L. and Bourgeois, D. Reverse pH-dependence of
mKeima 20 chromophore protonation explains the large Stokes shift of the red fluorescent protein mKeima.
(2009) J. Am.Chem.Soc. 131: 10356
Photoswitchable 276x Pectiniidae Mizuno, H., Mal, T.K., Walchli, M., Kikuchi, A., Fukano, T., Ando, R., Jeyakanthan, J., Taka,
GFP-like protein J., Shiro, Y., Ikura, M. and Miyawaki, A. Light-dependent regulation of structural flexibility in
Dronpa a photochromic fluorescent protein. (2008) Proc.Natl.Acad.Sci.Usa 105: 9227-9232
Orange-Emitting 2zmu | Verrillofungia | Kikuchi, A., Fukumura, E., Karasawa, S., Mizuno, H., Miyawaki, A. and Shiro, Y. Structural
GFP-like Protein concinna characterization of a thiazoline-containing chromophore in an orange fluorescent protein,
Monomeric Kusabira monomeric Kusabira Orange. (2008) Biochemistry 47: 11573-11580
Orange (mKO)
A Cyan Fluorescent 3cgl Discosoma Malo, G.D., Wang, M., Wu, D., Stelling, A.L., Tonge, P.J. and Wachter, R.M. Crystal structure
Protein, dsFP483 striata and Raman studies of dsFP483, a cyan fluorescent protein from Discosoma striata. (2008)

J.Mol.Biol. 378: 869-884
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A photosensitizer 3gb3 Anthomedusae | Pletnev, S., Gurskaya, N.G., Pletneva, N.V., Lukyanov, K.A., Chudakov, D.M., Martynov, V.1,

KillerRed sp. DC-2005 Popov, V.0O., Kovalchuk, M.V., Wlodawer, A., Dauter, Z. and Pletnev, V. Structural basis for
phototoxicity of the genetically encoded photosensitizer KillerRed. (2009) J.Biol.Chem. 284:
32028-32039

Fluorescent protein 3hlo Entacmaca Pletnev, S., Morozova, K.S., Verkhusha, V.V. and Dauter, Z. Rotational order-disorder structure

FP480 quadricolor of fluorescent protein FP480. (2009) Acta Crystallogr.,Sect.D 65: 906-912

Orange-Emitting 3mgf | Verrillofungia | Ebisawa, T., Yamamura, A., Ohtsuka, J., Kameda, Y., Hayakawa, K., Nagata, K. and Tanokura,

GFP-like Protein, concinna M. Crystal Structure of Monomeric Kusabira-Orange (MKO), Orange-Emitting GFP-like

Monomeric Protein, at pH 7.5. Journal: To be Published

Kusabira-Orange

(MKO)

Red fluorescent protein | 3pib Entacmaca Pletneva, N.V., Pletnev, V.Z., Shemiakina, I.I., Chudakov, D.M., Artemyev, 1., Wlodawer, A.,

eqFP578 quadricolor Dauter, Z. and Pletnev, S. Crystallographic study of red fluorescent protein eqFP578 and its
far-red variant Katushka reveals opposite pH-induced isomerization of chromophore. (2011)
Protein Sci. 20: 1265-1274

far-red fluorescent 3pj5 Entacmaca Pletneva, N.V., Pletnev, V.Z., Shemiakina, L.I., Chudakov, D.M., Artemyev, 1., Wlodawer, A.,

protein Katushka quadricolor Dauter, Z. and Pletnev, S. Crystallographic study of red fluorescent protein eqFP578 and its
far-red variant Katushka reveals opposite pH-induced isomerization of chromophore. (2011)
Protein Sci. 20: 1265-1274

1I. Protein Alignment and Sequence Analysis

Protein alignment and sequence analyses were accomplished with UCSF Chimera

software. Twenty-eight mature protein structures were obtained from the PDB.
Immature structures were prepared as stated in the next section. The proteins were
aligned with the MatchMaker subroutine. They were matched with the structure of
avGFP, the best alignment of the other 27 proteins with avGFP was made by using a
Needleman-Wunsch algorithm. After the superposition of the 28 proteins, a structural
sequence alignment was made through Match -> Align subroutine with a 5 angstroms
residue-residue distance cutoff. Three parameters (RMSD of a-carbon, conservation
of amino acids and charge variation) were collected by Chimera, exported and
summarized using Office Excel. In all calculations residues 21-26, 36-40, 47-60,

75-92, 100-105, 114-118, 128-145, 154-160, 170-176, 208-217, 186-199 and 227
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were considered “lid residues”. The position of these residues in bottom and top lids

of avGFP are mapped in Figure 9.

I1I1. Immature Form of Fluorescent Proteins

Immature FPs structures were obtained from mutating the mature structures by
graphically changing the chromophores to form the original precyclized tripeptide
sequence. The conformational searches were conducted by combining the Monte
Carlo torsional variation and low mode methods. (28, 29) By randomly rotating the
dihedral angles of all the sides-chains of residues 64-68 (avGFP numbering) between
0° and 180° and translating all solvent molecules in an 8.00 A sphere by between 0 A
and 1.00A in each Monte Carlo (MC) step (30), we obtained the lowest energy

structures.

IV. Positional and Dihedral Variation of Conserved Residues by Molecular

Dynamics (MD)

MD simulations were carried out in the NPT ensemble at 300K and 1 bar with
1.5fs steps using Desmond. (3/) All molecular dynamics calculations used the
OPLS 2005 force field and SHAKE constrained hydrogens. Ten thousand four
hundred and eighteen structures were sampled in each 50ns MD simulation. Each
structure was in an orthorhombic simulation box of 0.15M NaCl and SPC waters,
with a 10A solvent buffer between the protein surface and the boundary.

Minimizations and pre-equilibrium simulations were done using the default
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Desmond/multisim relaxation protocol. (26, 37) With the scripts from Matthew
Zimmer, the dihedral angles ¢ and v of the conserved residues throughout the 10480

frames were measured from VMD 1.9.1.
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Results and Discussion:

L Conserved Residues and Protein Folding

According to the funneled energy landscape theory, there are many folding
pathways for an unfolded protein to adopt, although a small number of them dominate
the folding process.(32, 33) In order to form a correctly folded protein these energy
funnels have to be fairly robust under a large variety of conditions.

It has long been known that active site residues are commonly conserved,
however recent studies have shown that evolutionary conservation and structural
dynamics are also strongly linked. (34, 35) Although the protein folding pathways are
minimally affected by most mutations,(36) folding nuclei that are critically important
in helping proteins adopt their three dimensional conformations are highly
conserved.(37)

Hinge residues are residues that control the movement of the protein like door
hinges. The significance of the hinge is the maintenance of protein geometry
formation used for protein binding and other functions. Interference of the hinge sites
may lead to allosteric effects and disruption of the protein’s functional motions.
Therefore hinges are spatially and sequentially conserved with less translational
mobility, but because of the importance in directing the proteins to adopt the tertiary

conformation in protein folding, they have rotational flexibility and dihedral freedom.
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1I. Hinge Residues and Protein Folding

In the GFP, hinge residues are the immobilized amino acids that control the
folding mechanism, and the flexibility and rotation of the B-sheets and lids. Among all
the most conserved 18 residues in avGFP, 12 residues are located within the lids’ area
(Figure 4). Could these residues be hinge residues that are critically involved in

B-barrel folding and chromophore formation?

I11. Structural Analysis of Wild-Type Fluorescent Proteins

By 2013, a total of 28 wild-type GFP-like proteins’ crystal structures have been
published on RCSB Protein Data Bank (rcsb.org). Despite the origins from different
species, all the proteins had similar sequences and structures. They all have similar
eleven stranded B-barrels with a centrally located chromophore. If one assumes that
the protein backbone will adopt a low energy conformation in most crystal structures,
then the conformational space spanned by the crystal conformations can be equated
and compared (qualitatively not quantitatively) with the potential energy surface of
the backbone itself. (38) With the default settings in Chimera, the superimposition of
28 FPs was done by aligning all sequenced alpha-carbons to avGFP’s crystal structure.
The rigidity of B-sheets, lids structure and conserved residues across the species was
obtained from this superimposition.

Figure 10 shows the superimposition of the 28 mature wild-type structures listed
in Table 1. In the figure, the values of the charge, conservation and RMSD were

mapped with 3 sets of colors. If we take a look at the highly conserved sequence, or
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red part on Figure 10, the lid structure seems to be relatively more conserved than the
B-sheets. This is confirmed by our previous study that showed most of the conserved
residues are located at the lids (Figure 4). The conservation of residues across species
is related to the basic cellular function, stability and reproduction. Although evolution
may lead to mutations, if the mutations happen to important amino acids that
influence the viability of the protein and the host, the mutants will not survive and the

genes will be in a highly conserved region.

Figure 9. Amino Acids marked in wire representation constitute the bottom and top lids of
avGFP (residues 21-26, 36-40, 47-60, 75-92, 100-105, 114-118, 128-145, 154-160, 170-176,
208-217, 186-199 and 227)
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Charge Conservation RMSD

Figure 10. Three views (top, bottom and side) of the superimposed 28 different wild-type FPs
structures with 3 properties from the left column to the right: charge variation (white as zero
charge variance, blue as one charge variance and red as two charges variance), conservation
(cyan as least conserved and maroon as most conserved) and RMSD (rainbow color with red

as smallest RMSD and purple as biggest RMSD).
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According to Figure 10 and Figure 11 although lids have higher sequence
conservation, B-sheets show higher rigidity due to the hydrogen bond between the
B-strands. Similarly in Table 2, p-sheets have a RMSD value of 0.66A, which is
almost half of the RMSD value of lid structure (1.213A). The average RMSD of the
entire protein is 0.989 A, which is, not surprisingly, between the RMSD of the lids
and the B-sheets. Across all the 28 FPs, the bottom lid (the end with N and C termini)
and top lid show distinctive traits. The top lid shows noticeably higher rigidity than
the bottom lid according to the color representation in Figure 9. Since the bottom lid
contains the two termini that are flexible and increase the RMSD, the terminal
residues were excluded from the RMSD calculation (residues 1-10, 228-230). The
RMSD results in Table 2 shows that the top lid has more rigidity (1.044A) than the
bottom lid (1.382A) even when the two termini are removed from the bottom lid.

The conserved lid residues show more spatial conservation than the lid residues,
but more flexibility than B-sheet. Most of the conserved residues are located at the top

lid, and it has more spatially and sequentially conservation than bottom lid.
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Table 2. The RMSD of residues that make up different structures in mature and immature FPs
in the neutral form from the superimposition of 28 wild-type FPs

Residues Mature Immature

RMSD (A) | RMSD (A)
Top Lid 21-26,47-60, 100-105, 128-145, 170-176, 208-217 1.044 1.755
Bottom Lid* 36-40, 75-92, 114-118, 154-160, 186-199, 227 1.382 1.586
Both Lids Top + Bottom Lids 1.213 1.671
B-Sheets 11-20, 27-35, 41-46, 61-74, 93-99, 106-113, 119-127, 0.660 0.897

146-153, 161-169, 177-185, 200-207, 218-226
Conserved 20, 23, 27, 31, 33, 35 50, 53, 89, 91, 101, 102, 104, 127, 0.889 1.283
Residues 130, 134, 136, 196

Conserved Lids 23,50, 53, 89,91, 101, 102, 104, 130, 134, 136, 196 0.989 1.472
All Residues 1-238 0.989 1.404

*  For better accuracy, the bottom lid RMSD excludes both N and C termini.

We believe that the conserved lid residues are either hinges crucial to folding and
chromophore formation, or the conservation of the lid is indicative of some as of yet
unknown protein-protein binding function. Since the top lid has similar structural and
electronic properties in all the naturally occurring FPs, naturally a protein may dock
on the lid. Figure 10 shows positively, negatively and neutrally charged amino acids
scattered over the entire top lid and it does not show any obvious conserved charged
area that can act as a binding site. We therefore focus the remainder of this thesis on

the possibility that the conserved residues are acting as hinges.

IV. Structural Analysis of Immature Fluorescent Proteins

Before the maturation of the chromophore, GFP, just like any other
three-dimensional protein structure, has to fold into the correct tertiary structure to be
able to function. Different from the cyclized chromophore in mature GFP, the

tripeptide sequence chromophore in the immature structure is in a precyclized form
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(Figure 12 C). These are the so-called immature structures. There are many folding
pathways for an unfolded protein according to the funneled energy landscape theory,
but only a small amount will dominate the folding process. (32, 33) Only under some
suitable conditions can the energy funnels be fairly robust and form the correctly
folded protein. It has long been known that the active sites’ residues involving in
folding are commonly conserved and recent studies showed strong connection
between evolutionary conservation and structural dynamics. (34, 35) Although the
protein folding pathways are minimally affected by most mutations, folding nuclei
that are critically important in helping proteins adopt three-dimensional
conformations are highly conserved. (37) Local perturbations, or interference of hinge
sites can give rise to allosteric effects or even disrupt the entire cooperativity of the
functional motions of a protein, and therefore it is not surprising that these sites are
conserved. (39)

Although GFP is a decent folder, it has a different folding landscape that
produces an active chromophore surrounded by 11 B-sheets. (26) The fluorescence of
fluorescent proteins is only observed after the formation of chromophore by
autocatalytic internal cyclization of the tripeptide 65SYG67 and subsequent oxidation
of the intrinsically formed structure, which normally takes 90 minutes to 4 hours after

protein synthesis. (40, 41)
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Figure 12. Three forms of Chromophore in avGFP: A. Mature ionized form.
B. Mature neutral form. C. Immature or uncyclized or precyclized form.

Since the chromophore is involved in an energetic frustration in the folding and
unfolding of GFP, we wonder how is the structure that folded with a precyclized
chromophore different from the structure folded with a cyclized chromophore. Also to
observe the hinge residues’ effect on the folding of immature FPs, we
computationally created the immature structure from the mature crystal structures of
the wild-type FPs. The mature FPs crystal structures were graphically modified by
converting the original cyclized chromophore into a precyclized tripeptide sequence
in Maestro, and a brief conformational search was conducted to simulate the structure
before chromophore formation takes place. Comparing the 28 FPs structures with a
mature chromophore to the same 28 FPs structures with an immature chromophore,
we see the residues in immature structures are generally more flexible and have
higher RMSD value (1.404A vs. 0.989A), see Table 2. This is supported by our
previous molecular dynamics study which showed that the mature GFP contains a
tighter B-barrel than the relaxed precyclized form. (26) The B-barrel in FPs may have
evolved to be porous during chromophore formation so that it permits the entrance of
catalytically important molecules for the chromophore maturation. The tensing of

B-barrel upon formation of chromophore may cause the hysteresis observed in FPs’
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folding behavior. (26, 42, 43) The higher RMSD of the immature structures relative to
their mature counterparts is observed at top lid, bottom lid and B-sheets from Figure
13. The trend can also be seen in Figure 14, where the line representing the RMSD of
immature structure stays above the lines representing both the mature forms
throughout the entire amino acid sequence. However, unlike the mature structures, the
immature FPs are more rigid on the bottom lid than the top lid (1.586 A to 1.755 A).
The conserved residues in immature structures have the RMSD value of 1.283A,
which is less rigid than those in mature structures with RMSD value of 0.889A. Like
other residues in immature GFP, the conserved residues gain flexibility from the
folding of structure with a precyclized chromophore while the cyclized chromophore
leads to a tighter folding of mature protein structure. It shows some flexibility of the
conserved residues relative to the B-sheet, which implies the hinges (if they are hinges)
may move slightly and still control the movement of the lids. Despite of the changes
in the flexibility between lids, the conserved lid residues in both mature and immature
structures are less positionally variant than the remainder of the lid residues, which
further reinforces the idea that the conserved residues within the lids are hinge

residues.

V. Molecular Dynamics Simulations

In addition to the superimposition of static structures that provides a view into the
movement of residues over different species, we have done molecular dynamics (MD)

simulations to observe the movement of the conserved residues over time. MD is a
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simulation of atoms’ physical movements and interactions within a molecule over a
period of time. The simulation creates trajectories of atoms and molecules based on

Newton’s laws of motion.

VI Molecular Dynamics and Translational Flexibility of Conserved Residues

Fifty nanosecond MD simulations of avGFP in its neutral, anionic mature forms
and its immature form were run and analyzed. The residues in avGFP show varied
RMSD movement in neutral, ionized and uncyclized forms although the fluctuations
of all 3 forms follow similar trends throughout the whole amino acid sequence (Figure
12 and Figure 15). Like the crystallographic comparisons, major RMSD peaks take
place in the residues that make up either lid, showing that lids have more movement
than the more structured hydrogen-bonded B-sheets. It can be observed from the graph
that the uncyclized structure has the highest RMSD value and neutral form has the
lowest RMSD value. The immature proteins show less compact structures from the
folding with the precyclized chromophore comparing to the more compact mature
structures, which indicates the mature chromophore’s involvement in folding
hysteresis. The ionized form usually falls in the middle. From amino acid 57-69, the
uncyclized structure has a major peak compared to very low value on neutral and
ionized forms. This is due to the fact that residues 65-67 make up the tripeptide
sequence that forms the chromophore. In the immature form the peptide backbone is
much more flexible than the rigid chromophore found in the mature forms. In another

part of the amino acid sequence, residues 73-87 that make up the bottom lid, the order
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from the highest RMSD value to the lowest is also from the uncyclized structure to
the ionized structure and finally the neutral structure. As discussed before, the
increased flexibility in the immature form indicate that structural changes occur upon
the maturation of chromophore that tightens up the protein and decreases the residue’s
spatial flexibility. (26) However in another piece of amino acid sequence, residues
153-161 that make up the bottom lid, the ionized structure has the highest RMSD.
Surprisingly the uncyclized structure has the lowest RMSD value in this area. This
finding is supported by the previous result (obtained by overlapping mature and
immature structures, Table 2 and Figure 15) that the bottom lid in immature structure
is more spatially conserved than the top lid, which is opposite to the situation in
mature structure. The flexibility difference of top and bottom lids between the mature
and immature forms of avGFP indicates a structural change occurs in bottom lid after
the chromophore maturation. The hysteresis, resulting from the chromophore
formation involves a series of structural changes in both lids. Due to its high spatial
conservation in immature form, the bottom lid has also the chance to play a

significant role in the protein folding of mature avGFP.

VII. Molecular Dynamics and Dihedral Flexibility of Selected Conserved Residues

In our belief, the conserved lid residues, or the hinge residues, ought to have
relatively higher rotational flexibility than the other lid residues, in addition to the
inert translational mobility. Therefore the dihedral freedom becomes one of the key

elements to determine the existence of hinge residues among the conserved lid
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residues. In the 50ns MD simulations of mature and immature avGFP, the dihedral
angles (¢ vs. y) of 3 conserved lid residues (31, 33 and 104) and 3 less conserved lid
residues (24,116 and 174) were compared in Figure 16. All six residues are glycines,
they were chosen because glycines are the most flexible amino acids and because all
six are in similar environments i.e. located in short lid loops that connect B-sheets.
Because each dot represents the dihedral angel of a residue in 10 frames out of the
entire 10480 frames, the distribution of the 1048 dots of a residue indicates the
dihedral angel freedom throughout the 50ns of MD simulation. In Figure 16, the dots
representing the dihedral angles of each of the less conserved lid residues are confined
within a single region, considering that the 180° equals to -180° mathematically,
which indicates the dihedral freedom of less conserved residues is limited to that
single region. However, conserved residues have noticeably larger distributions.
Conserved lid residue 33, marked in red crosses, spans from one major region to
another one in both mature and immature structures. It shows the active dihedral
mobility that is typical for a hinge residue. Although conserved lid residue 31 only
takes one region in mature structure, it has a very wide distribution in immature
structure, so it has a greater rotational mobility in the immature protein. The correct
folding is crucial for the later cyclization of chromophore, therefore the hinge residues
are more important in the immature structures. Conserved lid residue 104 behaves
completely different to residue 31: it covers merely one region in the immature
structure but spreads into 3 regions in the mature structure, which shows great

dihedral freedom in mature structure but minimal dihedral movement in the immature
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structure. All the conserved lid residues’ dihedral angles in 50ns MD simulation were
listed in Table 3 although the average and standard deviation calculations are
insufficient in explanation of dihedral freedom. The high rotational movement,
combined with minimal spatial mobility of the conserved lid residues has pointed to
their structural function as hinges in the lids, which are able to rotate the -sheets into

correct orientation during protein folding.
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Conclusions:

From the observation, the conserved lid residues are the least translationally
mobile residues while also being the most active in the dihedral movements among all
the lid residues. Due to their spatial and sequential conservation, and rotational
freedom, the conserved lid residues fit into our expectation of hinge residues that play
a critical role in the correct protein folding of B-sheets and subsequent chromophore
formation. Two of my colleagues are looking at the same topic from different aspects:
Paola Peshkepija aligned all the crystal structures of wild-type FPs and obtained the
dihedral angles of the conserved lid residues from pdb (27); Ramza Shahid used the
Anisotropic Network Model (44) to study the dihedral freedom with a coarse-grained
perspective that allows for longer simulations. She observed the least RMSD
fluctuations in the conserved lid residues. The recognition of hinge residues in
proteins originated from various species has brought us further in understanding the
folding of GFP, which not only provides the ideas for GFP engineering, but will also
potentially support the structural study of other similar B-barrel molecules. Also more
studies can be made to further explore the behavior of every single hinge residue
during GFP folding: for instance, mutations can be made on the hinge residues to

provide more substantial evidence for their structural functions.
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Figure 16. The dihedral angles of 3 conserved residues (31, 33 and 104 marked as X) and 3
less conserved residues (24,116 and 174 marked as -) in mature and immature GFP
throughout the 50ns of MD simulations of (x-axis: Phi (¢) angle, y-axis: Psi (y))



Exploration of Hinge Residues among GFP-like Proteins

35

Table 3. The dihedral angles of conserved lid residues in mature avGFP from 50ns MD

simulation
Phi (¢) Psi (y)
Amino Acid Standard Standard
Average L Average ..

number Deviation Deviation
20 161.6018 37.113515 188.99966 17.67146
23 246.9829 39.807777 199.67764 88.679997
27 207.38575 9.0095174 166.21508 9.0106651
31 231.66346 9.3510448 142.37391 13.267286
33 196.81653 29.317618 186.85006 12.997569
35 226.54498 9.6319052 158.91449 11.042868
50 264.80651 17.714279 184.22892 163.3138
53 105.81611 9.1779148 127.15928 7.6447434
89 100.90218 9.4657071 168.17046 102.21596
91 116.57928 8.0527498 189.26594 9.8633345
101 114.82968 13.136535 119.42535 14.072537
102 260.26296 9.9894623 152.15048 133.15336
104 142.62449 61.489049 175.66322 34.116236
127 242.36605 9.5323377 130.88257 14.283819
130 102.00069 15.054824 144.53519 14.207164
134 244.84843 16.5833 206.18548 20.627015
136 90.119651 15.052858 123.8662 10.447013
196 99.873774 7.3759648 167.42944 13.700271
All Conserved 175.334735 18.15868661 162.888521 38.35083878
All 241.901023 51.16638114 172.279948 92.08953841
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Figure 11. A. the sequence conservation of all residues in 28 mature FPs. B. the sequence conservation of all residues in 28 immature FPs
(Red: top lid, green: bottom lid, blue: B-Sheets. Data generated from the superimposition by Chimera)
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Figure 13 A. RMSD of all residues in 28 Mature FPs according to avGFP numbering. B. the RMSD of all residues in 28 Immature FPs
(Red: top lid, green: bottom lid, blue: B-Sheets. Data generated from the superimposition by Chimera)
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RMSD of avGFP with Chromophore in 3 forms throughout 50ns of Molecular Dynamics
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Figure 15. Average RMSD of 228 residues from avGFP structure in neutral (blue), ionized (red) and uncyclized (green) forms in 10418 frames of MD structure.*from
Matthew Zimmer’s Work
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Table 4. Amino acid sequence of 28 FPs
1 11 21 31 41 51 61 71 81 91 101 111 121
1gfl | ASKGEELFTG | VVPILVELDG | DVNGHKFSVS | GEGEGDATYG | KLTLKFICTT | GKLPVPWPTL | VTTFSYGVQC | FSRYPDHMKR | HDFFKSAMPE | GYVQERTIFF | KDDGNYKTRA | EVKFEGDTLV | NRIELKGIDF
Imou TAT | QMTYKVYMSG | TVNGHYFEVE | GDGKGRPYEG | EQTVKLTVTK | GPLPFAWDIL | SPQC  SIP | FTKYPE DI PDYVKQSFPE | GETWERIMNF | EDGAVCTVSN | DSSI QNCFT | YHVKFSGLNF
luis IKE | NMRMMVVMEG | SVNGYQFKCT | GEGDGNPYMG | TQTMRIKVVE | GPLPFAFDIL | ATSF  SKT | FIKHTK GI PDFFKQSFPE | GETWERVTRY | EDGGVFTVMQ | DTSL EGCLV | YHAKVTGVNF
1xss ITS | EMKMELRMEG | AVNGHKFVIT | GKGSGQPFEG | IQNMDLTVIE | GPLPFAFDIL | TTVF  NRV | FVKYPE EI VDYFKQSFPE | GYSWERSMSY | EDGGICLATN | NITM KNCFV | YEIRFDGVNF
lyzw LKE | SMRIKMYMEG | TVNGHYFKCE | GEGDGNPFAG | TQSMRIHVTE | APLPFAFDIL | APCC ~ SRT | FVHHTA EI PDFFKQSFPE | GETWERTTTY | EDGGILTAHQ | DTSL ENCLI | YKVKVHGTNF
lzgo IKE | FMRFKVRMEG | TVNGHEFEIE | GEGEGRPYEG | HNTVKLKVTK | GPLPFAWDIL | SPQF  SKV | YVKHPA DI PDYKKLSFPE | GFKWERVMNF | EDGGVVTVTQ | DSSL QGCFI | YKVKFIGVNF
lzux IKP | DMKINLRMEG | NVNGHHFVID | GDGTGKPFEG | KQSMDLEVKE | GPLPFAFDIL | TTAF  NRV | FAEYPD HI QDYFKQSFPK | GYSWERSLTF | EDGGICIARN | DITM EDTFY | NKVRFHGVNF
2a46 IGD | DMKMTYHMDG | CVNGHYFTVK | GEGNGKPYEG | TQTSTFKV T | GPLAFSEFDIL | STVF  NRC | FTAYPT SM PDYFKQAFPD | GMSYERTFTY | EDGGVATASW | EISL KNCFE | HKSTFHGVNF
2c9i IKE | TMRVQLSMEG | SVNYHAFKCT | GKGEGKPYEG | TQSLNITITE | GPLPFAFDIL | SHAF IKV | FAKYPK EI PDFFKQSLPG | GFSWERVSTY | EDGGVLSATQ | ETSL QDCII | CKVKVLGTNF
2c9j NLSVSVYMKG | NVNNHEFEYD | GIGGGDPNSG | QFSLKTKLRG | KPLPFSYDII | TMGF  FRA | FTKYPE GI ADYFKGSFPE | AFQWNRRIEF | EDGGVINMSS | DITY KKVLH | GDVWALGVNF
2dd7 IKT | TFKIESRIHG | NLNGEKFELV | GGGVGE EG | RLEIEMKTKD | KPLAFSPFLL | SHCM  FYH | FASFPK GT KNIYLHAATG | GYTNTRKEIY | EDGGILEVNF | RYTY ENKII | GDVECIGHGF
2g30 AMKIECRITG | TLNGVEFELV | GGGEGTPEQG | RMTNKMKSTK | GALTFSPYLL | SHVM  FYH | FGTYPS GY ENPFLHAING | GYTNTRIEKY | EDGGVLHVSF | SYRY EGRVI | GDFKVVGTGF
2gw3 IKP | EMKIKLLMEG | NVNGHQFVIE | GDGKGHPFEG | KQSMDLVVKE | APLPFAYDIL | TTAF  NRV | FAKYPD HI PDYFKQSFPK | GFSWERSLMF | EDGGVCIATN | DITL KDTFF | NKVRFDGVNF
2ib5 ISD | NVRIKLYMEG | TVNNHHFMCE | AEGEGKPYEG | TQMENIKVEK | GPLPFSEDIL | TPNC  SVA | ITKYTS GI PDYFKQSFPE | GETWERTTIY | EDGAYLTTQQ | ETKL DNCLV | YNIKILGCNF
2icr LTD | DMTMHFRMEG | CVDGHKFVIE | GNGNGNPFKG | KQFINLCVIE | GPLPFSEDIL | SAAF  NRL | FTEYPE GI VDYFKNSCPA | GYTWHRSFRF | EDGAVCICSA | DITV NNCIY | HESTFYGVNF
2ie2 IKP | DMKIKLRMEG | AVNGHPFAIE | GVGLGKPFEG | KQSMDLKVKE | GPLPFAYDIL | TTVF  NRV | FAKYPE NI VDYFKQSFPE | GYSWERSMNY | EDGGICNATN | DITL DDCYI | YEIRFDGVNF
2ogr LKE | EMTMKYHMEG | CVNGHKFVIT | GEGIGYPFKG | KQTINLCVIE | GPLPFSEDIL | SAGF DRI | FTEYPQ DI VDYFKNSCPA | GYTWGRSFLF | EDGAVCICNV | DITV SNCIY | HKSIFNGMNF
20jk LTK | EMTMKYRMEG | CVDGHKFVIT | GEGIGYPFKG | KQAINLCVVE | GPLPFAEDIL | SAAF  NRV | FTEYPQ DI VDYFKNSCPA | GYTWDRSFLF | EDGAVCICNA | DITV SNCMY | HESKFYGVNF
2rh7 LGL | KEVMPTKINL | EGLVGDHAFS | MEGVGEGNIL | EGTQEVKISV | KGAPLPFAFD | IVSV ~ NRA | YTGYPE EI SDYFLQSFPE | GFTYERNIRY | QDGGTAIVKS | DISL DGKFI | VNVDFKAKDL
2wht IKE | QMTYKVYMSG | TVNGHYFEVE | GDGKGKPYEG | EQTVKLTVTK | GPLPFAWDIL | SPQL  SIP | FTKYPE DI PDYFKQSFPE | GYTWERSMNF | EDGAVCTVSN | DSSI QNCFI | YNVKISGENF
276x IKP | DMKIKLRMEG | AVNGHPFAIE | GVGLGKPFEG | KQSMDLKVKE | GPLPFAYDIL | TTVF  NRV | FAKYPE NI VDYFKQSFPE | GYSWERSMNY | EDGGICIATN | DITL DDCFI | YEIRFDGVNF
2zmu IKP | EMKMRYYMDG | SVNGHEFTIE | GEGTGRPYEG | HQEMTLRV T | GPMPFAFDLV | SHV HRP | FTKYPE EI PDYFKQAFPE | GLSWERSLEF | EDGGSASVSA | HISL RNTFY | HKSKFTGVNF
3cgl IKE | EMLIDLHLDG | TFENGHYFEIK | GKGKGQPNEG | TNTVTLEVTK | GPLPFGWHIL | CPQF  NKA | FVHHPD NI HDYLKLSFPE | GYTWERSMHF | EDGGLCCITN | DISL TNCFY | YDIKFTGLNF
3gb3 FQS | DMTFKIFIDG | EVNGQKFTIV | ADGSSKFPHG | DFNVHAVCET | GKLPMSWKPI | CHLI EPF | FARYPD GI SHFAQECFPE | GLSIDRTVRF | ENDGTMTSHH | TYEL DTCVV | SRITVNCDGF
3hlo ITE | NMHMKLYMEG | TVNNHHFKCT | SEGEGKPYEG | TQTQRIRVVE | GPLPFAFDIL | ATSF  SHT | FINHTQ GI PDFWKQSFPE | GETWERVTTY | EDGGVLTATQ | DTSL QGCLI | YNVKIRGVNF
3mgf IKP | EMKMRYYMDG | SVNGHEFTIE | GEGTGRPYEG | HQEMTLRV T | GPMPFAFDLV | SHV HRP | FTKYPE EI PDYFKQAFPE | GLSWERSLEF | EDGGSASVSA | HISL RNTFY | HKSKFTGVNF
3pib IKE | NMHMKLYMEG | TVNNHHFKCT | SEGEGKPYEG | TQTMKIKVVE | GPLPFAFDIL | ATSF  SKT | FINHTQ GI PDFFKQSFPE | GETWERITTY | EDGGVLTATQ | DTSL QGCII | YNVKINGVNF
3pjb ISE | NMHMKLYMEG | TVNDHHFKCT | SEGEGKPYEG | TQTMKIKVVE | GPLPFAFDIL | ATSF  SKT | FINHTQ GI PDFFKQSFPE | GFTWERITTY | EDGGVLTATQ | DTSL QGCLI | YNVKINGVNF
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131 141 151 161 171 181 191 201 211 221

1gfl | KEDGNILGHK LEYNYNSHNV YIMADKQKNG TKVNFKIRHN TEDGSVQLAD HYQQNTPIGD GPVLLPDNHY LSTQSALSKD PNEKRDHMVL LEFVTAAGIT
Imou | PPNGPVMQKK TQ GWEPHSE RLFARG GM LIGNNFMALK LEGGGHYLCE FKTTYKAKK P VKMPGYHY VDRKLDVTN NK TSVEQ CEISTARKPA
luis | PSNGAVMQKK TK GWEPNTE MLYPAG G LRGYSQMALN VDGGGYLSCS FETTYRSKK TNFKMPGFHF VDHRLERLE S MFVVQ HEHAVAKFC
Ixss | PANGPVMQRK TV KWEPSTE KMYVRG  V LKGDVNMALL LQGGGHYRCD FRTTYKAKK V VQLPDYHF VDHRIEITS DK NKVKL YEHAKAHSG
lyzw | PADGPVMKNK SG GWEPSTE VVYPEN GV LCGRNVMALK VG DRHLICH HYTSYRSKK AALTMPGFHF TDIRLQMLR K EYFEL YEASVARYS
1zgo | PSDGPVMQKK ™ GWEASTE RLYPRG V LKGETHKALK LKDGGHYLVE FKSTYMAKK P VQLPGYYY VDSKLDITS NE TIVEQ YERTEGRHHL
lzux | PANGPVMQKK TL KWEPSTE KMYVRG  V LTGDITMALL LEGNAHYRCD FRTTYKAKE K EKLPGYHF VDHCIEILS DK NKVKL YEHAVAHSGD
2a46 | PADGPVMAKK TT GWDPSFE KMTVCG I LKGDVTAFLM LQGGGNYRCQ FHTSYKTKK P VTMPPNHV VEHRIART L DK NSVQL TEHAVAHIT
2¢9i1 | PANGPVMQKK TC GWEPSTE TVIPRD GG LLLRDTPALM LADGGHLSCF METTYKSKK E VKLPELHF HHLRMEKLN SD KTVEQ HESVVASYSN
2¢9j | PPNGPVMKNE IV MEEPAEE TLTAKG V LVGFCPKAYL LKDGSYYYGH MTTFYRSKK S QPLPGFHF TKHRLVKTK EP KMVEQ AEYATAHVC
2dd7 | PSQSPIFKDT IV KSCPTVD LMLPMS GNI TASSYARAFQ LKDGSFYTAE VKNNIDFK N PEFSKPMF THRRVEET ENLAM VEYQQVENS
2g30 | PEDSVIFTDK IT RSNATVE HLHPMG DNV LVGSFARTES LRDGGYYSFV VDSHMHFK S APSILPMF AFRRVEEL TELGI VEYQHAFKT
2gw3 | PPNGPVMQKK TL KWEASTE KMYLRG  V LTGDITMALL LKGDVHYRCD FRTTYKSRQ EGVKLPGYHF VDHCISILR DK NEVKL YEHAVAHSG
2ib5 | PPNGPVMQKK TQ GWEPCCE MRYTRG V LCGQTLMALK CADGNHLTCH LRTTYRSKK AALQMPPFHF SDHRPEIVK SE TLFEQ HESSVARYCN
2icr | PADGPVMKKM TT NWEPSCE KITPINSQKI LKGDVSMYLL LKDGGRYRCQ FDTIYKAKT E PEMPDWHF IQHKLNRE D SDNQKWQL TEHATASRS
2ie2 | PANGPVMQKR TV KWEPSTE KLYVRG V LKGDVNMALS LEGGGHYRCD FKTTYKAKK V VQLPDYHF VDHHIEIKS DK SNVNL HEHAEAHS
2o0gr | PADGPVMKKM TT NWEASCE KIMPVPKQGI LKGDVSMYLL LKDGGRYRCQ FDTVYKAKS V' PKMPEWHF IQHKLLRE R SDNQKWQL TEHATAFPS
20jk | PADGPVMKKM TD NWEPSCE KITPVPKQGI LKGDVSMYLL LKDGGRLRCQ FDTVYKAKS V' PKMPDWHF IQHKLTRE R SDNQKWHL TEHATASGS
2rh7 | RRMGPVMQQD IV GMQPSYE SMYTNV TS VIGECITAFK LQTGKHFTYH MRTVYKSKK P VIMPLYHF TQHRLVKTN YVVQ HETATAAHS
2wht | PPNGPVMQKK TQ GWEPSTE RLFARD GM LIGNDYMALK LEGGGHYLCE FKSTYKAKK P VRMPGRHE IDRKLDVTS NR TSVEQ CETATARHSL
276x | PANGPVMQKR TV KWEPSTE KLYVRG V LKGDVNMALL LEGGGHYRCD FKTTYKAKK V VQLPDYHF VDHRIEIKS DK NNVNL HEHAEAHSG
2zmu | PADGPIMQNQ SV DWEPSTE KITASD GV LKGDVTMYLK LEGGGNHKCQ FKTTYKAKK K IKMPGSHY ISHRLVRKT E NITEL VEDAVAHS
3cgl | PPNGPVVQKK TT GWEPSTE RLYPRD GV LIGDIHHALT VEGGGHYACD TKTVYRAKK A AKMPGYHY VDTKLVIWN DK MKVEE HETAVARHHY
3gb3 | QPDGPIMRDQ LV DILPNET HMFPHG PNA VRQLAFIGFT TADGGLMMGH FDSKMTENGS R IEIPGPHF VTIITKQM D TSDKRDHVCQ REVAYAHSVP
3hlo | PSNGPVMQKK TL GWEAHTE MLYPAG G LEGRADLALK LVGGGHLICN FKTTYRSKK PNLKMPGVYY VDYRLERIK A TYVEQ HEVAVARYC
3mgf | PADGPIMQNQ SV DWEPSTE KITASD GV LKGDVTMYLK LEGGGNHKCQ FKTTYKAKK K IKMPGSHY ISHRLVRK E NITEL VEDAVAHS
3pib | PSNGSVMQKK TL GWEANTE MLYPAG G LRGHSQMALK LVGGGYLHCS FKTTYRSKK PNLKMPGFHF VDHRLERIK A TYVEQ HEMAVAKYC
3pj5 | PSNGPVMQKK TL GWEASTE MLYPAS G LRGHSQMALK LVGGGYLHCS LKTTYRSKK PNLKMPGFYF VDRKLERIK A TYVEQ HEMAVARYC




Exploration of Hinge Residues among GFP-like Proteins 42

References:

1

10

11

12

Ong, WJ., Alvarez, S., Leroux, I. E., Shahid, R.S, Sama, A. A., Peshkepija, P., Morgan, A.L., Mulcahy,
S. and Zimmer, M. Function and structure of GFP-like proteins in the protein data bank. Mol. Biosyst.7,
984-992 (2011)

Thirunavukkuarasu S., Jares-Erijman, E.A. & Jovin, T.M. Multiparametric Fluorescence Detection of
Early Stages in the Amyloid Protein Aggregation of Pyrene-labeled a-Synuclein, Journal of Molecular
Biology. 378, 1064-1073 (2008).

Leblond, F., Davis, S.C., Valdés, P.A. & Pogue, B.W. Pre-clinical whole-body fluorescence imaging:
Review of instruments, methods and applications. Journal of Photochemistry and Photobiology B:
Biology. 98, 77-94 (2010).

Helms, Volkhard. Fluorescence Resonance Energy Transfer. Principles of Computational Cell Biology.
Weinheim: Wiley-VCH. p. 202. ISBN 978-3-527-31555-0 (2008).

Sakaue-Sawano, A., Kurokawa, H., Morimura,T., Hanyu, A., Hama H., Osawa, H., Saori Kashiwagi, et
al. Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression. Cell 132 (3), 487-498
(2008).

Condeelis, J. S., Wyckoff, J. and Segall, J. E. Imaging of Cancer Invasion and Metastasis using Green
Fluorescent Protein. European Journal of Cancer 36 (13), 1671-1680 (2000).

Aequorea  victoria  Fluorescent  Proteins. Carl Zeiss Microscopy Online  Campus.

http://zeiss-campus.magnet.fsu.edu/print/probes/jellyfishfps-print.html

Rosenow, M.A ., Huffman, H.A., Phail, M.E. & Wachter, R.M. The crystal structure of the Y66L variant
of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore
maturation. Biochemistry 43, 4464—4472 (2004).

Barondeau, D.P., Kassmann, C.J., Tainer, J.A. and Getzoff, E.D. Understanding GFP chromophore
biosynthesis: controlling backbone cyclization and modifying posttranslational chemistry. Biochemistry
44, 1960-1970 (2005).

Lemay, N. P., Morgan, A. L., Archer, E. J., Dickson, L. A., Megley, C. M. and Zimmer, M. Chem. Phys.
348, 152-160 (2008).

Evdokimov, A. G., Pokross, M. E., Egorov, N. S., Zaraisky, A. G., Yampolsky, I. V., Merzlyak, E. M.,
Shkoporov, A. N., Sander, 1., Lukyanov K. A. and Chudakov, D. M. Structural basis for the fast
maturation of Arthropoda green fluorescent protein. EMBO Rep. 7, 1006-1012 (2006).

Bertz, M., Kunfermann, A. & Rief, M. Navigating the Folding Energy Landscape of Green Fluorescent



Exploration of Hinge Residues among GFP-like Proteins 43

13

14

15

16

17

18

19

20

21

22

23

24

Protein. Angewandte Chemie International Edition. 47, 8192-8195 (2008).

Reddy, G., Liu, Z. and Thirumalai, D. Denaturant-dependent folding of GFP. PNAS.109, 17832-17838
(2012).

Orte, A., Craggs, T. D., White, S. S., Jackson, S. E., and Klenerman, D. Evidence of an intermediate and
parallel pathways in protein unfolding from single-molecule fluorescence, Journal of the American
Chemical Society 130, 7898-7907 (2008).

Mickler, M., Dima, R. L., Dietz, H., Hyeon, C., Thirumalai, D., and Rief, M. Revealing the bifurcation
in the unfolding pathways of GFP by using single-molecule experiments and simulations, Proceedings
of the National Academy of Sciences of the United States of America 104, 20268-20273 (2007).

Huang, J. R., Craggs, T. D., Christodoulou, J., and Jackson, S. E. Stable intermediate states and high
energy barriers in the unfolding of GFP, Journal of Molecular Biology 370, 356-371 (2007).

Enoki, S., Maki, K., Inobe, T., Takahashi, K., Kamagata, K., Oroguchi, T., Nakatani, H., Tomoyori, K.,
and Kuwajima, K. The equilibrium unfolding intermediate observed at pH 4 and its relationship with the
kinetic folding intermediates in green fluorescent protein, Journal of Molecular Biology 361, 969-982
(2006).

Pedelacq, J.D., Cabantous, S., Tran, T., Terwilliger, T.C. & Waldo, G.S. Engineering and
characterization of a superfolder green fluorescent protein. Nat Biotech. 24:79-88 (2005)

Craggs, T.D. Green fluorescent protein: structure, folding and chromophore maturation. Chem. Soc. Rev.
38: 2865-2875 (2009).

Baird, G. S., Zacharias, D. A., and Tsien. R.Y. Circular Permutation and Receptor Insertion within
Green Fluorescent Proteins. Proceedings of the National Academy of Sciences 96 (20), 11241-11246
(1999).

Makino, Y., Amada, K., Taguchi, H., and Yoshida, M. Chaperon-mediated folding of green fluorescent
protein, J. Biol. Chem. 272, 12468-12474 (1997).

Ward, W. W., and Bokman, S. H. Reversible denaturation of Aequorea Green-Fluorescent Protein:
Physical separation and characterization of the renatured protein., Biochemistry. 21, 4535-4540 (1982).
Bokman, S. H., and Ward, W. W. Renaturation of Aequorea green fluorescent protein. Biochem.
Biophys. Res. Commun. 101, 1372-1380 (1981).

Capraro, D. T., Roy, M., Onuchic, J. N., Gosavi, S., and Jennings, P. A. Beta-Bulge triggers
route-switching on the functional landscape of interleukin-1 beta, Proceedings of the National Academy

of Sciences of the United States of America 109, 1490-1493 (2012).



Exploration of Hinge Residues among GFP-like Proteins 44

25

26

27
28

29

30

31

32

33

34

35

36

37

38

Andrews, B. T., Roy, M., and Jennings, P. A. Chromophore Packing Leads to Hysteresis in GFP,
Journal of Molecular Biology 392,218-227 (2009).

Li, B. S., Shahid, R., Peshkepija, P., and Zimmer, M. Water diffusion in and out of the beta-barrel of
GFP and the fast maturing fluorescent protein, TurboGFP, Chemical Physics 392, 143-148 (2012).
RCSB PDB Bank. http://www.rcsb.org/pdb/home/home.do

Chang, G., Guida, W. C., and Still, W. C. An internal-coordinate monte carlo method for searching
conformational space, J. Am. Chem. Soc. 111, 4379-4386 (1989).

Saunders, M., Houk, K., Wu, Y.-D., Still, W., Lipton, M., Chang, G., and Guida, W. Conformations of
cycloheptadecane. A comparison of methods for conformational searching., J. Am. Chem. Soc. 112,
1419 (1990).

Bartol, J., Comba, P., Melter, M., and Zimmer, M. Conformational searching of transition metal
compounds, J Comput Chem 20, 1549-1558 (1999).

Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L.,
Kolossvary, 1., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., and Shaw, D. E. Scalable
Algorithms for Molecular Dynamics Simulations on Commodity Clusters. , in Proceedings of the 2006
ACM/IEEE Conference on Supercomputing (SC06), ACM Press, Tampa, FL (2006).

Onuchic, J. N., LutheySchulten, Z., and Wolynes, P. G. Theory of protein folding: The energy
landscape perspective, Annu Rev Phys Chem 48, 545-600 (1997).

Onuchic, J. N., and Wolynes, P. G. Theory of protein folding, Current Opinion in Structural Biology,
14,70-75 (2004).

Liu, Y., and Bahar, 1. Sequence Evolution Correlates with Structural Dynamics, Molecular Biology and
Evolution 29, 2253-2263 (2012).

Tang, G. W, and Altman, R. B. Remote Thioredoxin Recognition Using Evolutionary Conservation and
Structural Dynamics, Structure 19,461-470 (2011).

Dill, K. A., and Chan, H. S. From Levinthal to pathways to funnels, Nature Structural Biology 4, 10-19
(1997).

Mirny, L. A., and Shakhnovich, E. I. Universally conserved positions in protein folds: Reading
evolutionary signals about stability, folding kinetics and function, Journal of Molecular Biology. 291,
177-196 (1999).

Zimmer, M. Molecular mechanics, data and conformational analysis of first-row transition metal

complexes in the Cambridge Structural Database, Coordination Chemistry Reviews 212, 133-163



Exploration of Hinge Residues among GFP-like Proteins 45

39

40

41

42

43

44

(2001).

Temiz, N. A., and Bahar, I. Inhibitor binding alters the directions of domain motions in HIV-1 reverse
transcriptase, Proteins-Structure Function and Genetics. 49, 61-70 (2002).

Andrews, B. T., Gosavi, S., Finke, J. M., Onuchic, J. N., & Jennings, P. A. The Dual-basin Landscape
in GFP Folding, PNAS. 105, 12283-12288 (2008).

Crameri, A., Whitehorn, E. A., Tate, E., and Stemmer, W. P. C. Improved green fluorescent protein by
molecular evolution using DNA shuffling., Nat. Biotechnol. 14,315-319 (1996).

Heim, R., Prasher, D. C., and Tsien, R. Y. Wavelength mutations and posttranslational autoxidation of
green fluorescent protein., Proc. Natl. Acad. Sci. USA 91, 12501-12504 (1994).

Andrews, B. T., Schoenfish, A. R., Roy, M., Waldo, G., & Jennings, P. A. The rough energy landscape
of superfolder GFP is linked to the chromophore. Journal of Molecular Biology, 373(2), 476-490
(2007).

Anisotropic Network Model Web Server. Http://ignmtest.ccbb.pitt.edu/cgi-bin/anm/anm1.cgi



	Connecticut College
	Digital Commons @ Connecticut College
	2013

	Exploration of Hinge Residues among GFP-like Proteins
	Binsen Li
	Recommended Citation


	Microsoft Word - Li_Binsen_2013.docx

