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Abstract—In the development of autonomous robots, control 
program learning systems are important since they allow the 
robots to adapt to changes in their surroundings. Evolutionary 
Computation (EC) is a method that is used widely in learning 
systems. In previous research, we used a Cyclic Genetic 
Algorithm (CGA), a form of EC, to evolve a simulated predator 
robot to test the effectiveness of a learning system in the 
predator/prey problem. The learned control program performed 
search, chase, and capture behavior using 64 sensor states 
relative to the nearest obstacle and the target, a simulated prey 
robot. In this paper, we present the results of a new set of trials, 
which were tested on the actual robots. The actual robots 
successfully performed desired behaviors, showing the 
effectiveness of the CGA learning system. 

Keywords - robotics, genetic algorithm, evolutionary robotics, 
cyclic genetic algorithm, autonomous agent learning 

I.  INTRODUCTION 
Learning robot control is an important part of developing 

robots. Learning the control program reduces the development 
time of the robot as opposed to programming the control 
program. Learning the control program also allows the robot 
to adapt to changes in its surrounding area. The predator/prey 
problem can be used to demonstrate the effectiveness of 
learning systems which produce control programs for actual 
robots. In this study, a learned control program was tested on a 
predator, which is an autonomous hexapod robot tasked to 
pursue a prey, which is another autonomous hexapod robot.  

The predator/prey problem is well suited to demonstrate 
the effectiveness of robot controller learning systems. The 
prey tries to avoid the predator by going in the opposite 
direction. The predator's aim is to capture the prey. In our 
experiments, we did not have obstacles; except the walls and 
the robots themselves. The prey considers all obstacles as 
dangerous. It runs away from the nearest obstacle with 
prioritizing respectively front, middle, and back. The predator 
searches for the prey when it is outside of its sensor range. The 
predator looks for the prey and then chases it until it is 
captured. The predator can detect any obstacle or prey in front 
of it. While performing its tasks, the predator will move in 
response to the nearest obstacle, while ignoring the obstacles 
that are further away. 

The method used for learning a controller was the Cyclic 
Genetic Algorithm (CGA), which is a form of Evolutionary 
Computation (EC). EC has been used by various researchers in 
order to learn control programs for autonomous robots. Yao 
used EC to learn the connection weights of an artificial neural 
network [1]. For a legged locomotion controller, Beer and 
Gallagher did their experiments by only specifying their 
agent's overall performance [2]. Lund and Miglino used EC to 
evolve a neural network controller for a Khepera robot which 
avoided walls and obstacles successfully [3]. 

Another EC method used for learning control programs is 
Genetic Programming (GP). Using GP, Busch et al. 
programmed a system to create new gaits from predefined 
movements [4]. The produced gaits were performed by a 
simulated robot. Lazarus and Hu developed a simulated robot, 
which successfully avoided obstacles with the use of sensors 
while following the walls [5]. A controller for the Khepera 
robot was developed by Nordin et al. with the use of GP [6]. 

The CGA was developed to implement loops in the control 
programs [7]. Although the CGA has the standard operations 
as Holland's Genetic Algorithm (GA) has [8], the genes of the 
chromosome represent tasks instead of traits; each gene is 
assigned tasks to execute. Parashkevov and Parker integrated 
Conditional Branching into CGA and experimented on the 
predator/prey scenario [9, 10]. The sensors were used to create 
16 states. Basar and Parker used CGA on the predator/prey 
problem to learn controller of a simulated predator robot with 
64 discrete states [11]. In the research reported in this paper, 
we used a new set of trial cases to test the system on an actual 
predator robot. The controller that was evolved by a CGA 
made the actual robot capable of avoiding the walls while 
locating, chasing, and capturing the prey. 

II. ACTUAL AND SIMULATED ENVIRONMENTS 
The experiments took place in an 8'x8' area called the 

colony space in the lab (Figure 1). The floor was covered with 
a low nap carpet and was divided into 1'x1' squares to help 
measure the distance traveled by robots. The carpet was chosen 
to decrease the slippage of the legged robots. The colony space 
was surrounded by one foot high wooden walls. 

 



 
A. The Prey 

The prey was a ServoBot, which is a hexapod designed by 
David Braun. ServoBots were designed for legged robot 
experimentation. The prey was made of Masonite (hard-
pressed particle wood). It had six legs, three on each side, and 
each leg was controlled by two servo motors. Each leg had two 
degrees of freedom, capable of moving horizontally 
forward/backward and vertically up/down. 

The prey had 360 degrees of vision. Six SONAR sensors 
(from Parallax, Inc) were placed with 60 degrees in between 
each. Using 0 degrees as the heading of the robot, the SONAR 
sensors were facing 30, 90, 150, 210, 270 and 330 degrees. 
Each SONAR sensor was capable of 60 degrees of vision with 
a range of 150 inches. The whole rack of SONAR sensors were 
placed on top of the controller chips. To avoid collisions with 
lower obstacles, the prey had two 10'' antennas (tactile sensors) 
directed at 45 and 315 degrees. A light bulb was placed on top 
of the prey, to enable the predator to distinguish it from the 
walls (Figure 2). 

 

The prey gathered data from the sensors after each step. A 
step (gait) is a complete leg cycle where a foot gets back to its 
initial position after performing a sequence of movements. In 
our experiment, we used front left leg being at forward and 
down position as the starting point of each gait. 

The prey had two controller chips: the locomotion 
controller and the main controller. Each has 16 usable pins. The 
locomotion controller was a Basic Stamp 2 (BS2, from 
Parallax, Inc). The servo motors were all connected to the 
locomotion controller (using 12 pins). Each servo was 
controlled by a pulse from the locomotion controller, which 
told it to rotate clockwise or counter-clockwise. The gait cycles 
were formed by a combination of movements of the 12 servo 
motors. Three of the controller pins were used to communicate 
with the other controller chip, the main controller. The main 
controller was a Basic Stamp 2p24 (BS2p24, from Parallax, 
Inc). There was no special reason for using a BS2p24 as a main 
controller on the prey, except to make the control configuration 
similar to that of the predator. All of the sensors were 
connected to the main controller. After evaluating the output of 
the sensors, the main controller determines which movement 
needs to be executed, and then commands the locomotion 
controller to perform the movement (Table 1). 

 

B. The Predator 
The predator was also a ServoBot, although it was made of 

Plexiglas. The predator's sensor configuration was different 
than that of the prey. The predator had two antennas (tactile 
sensors), each of which was 9.5 inches like the prey. The 
purpose of the antennas was to detect obstacles which were 
close to the robot at 25 degrees and 335 degrees. Since 
antennas weren't capable of detecting objects further away two 
SONAR sensors (from Parallax, Inc) directed at their direction, 
30 degrees and 330 degrees. There was also a third SONAR 
sensor directed at the heading direction of the robot. The 

TABLE I.  THE TABLE SHOWS THE POSSIBLE MOVEMENTS OF 
THE PREY (LEFT) AND THE PREDATOR (RIGHT). THE CONTROL 
PROGRAM RUNNING IN THE MAIN CONTROLLER DIRECTS THE 
LOCOMOTION CONTROLLER BY SENDING THE 3-BIT CONTROL SIGNAL. 
THE PREDATOR IS DIFFERENT FROM THE PREY IN THAT 001 IS 
BACKWARD (DEEMED MORE APPROPRIATE FOR THE PREDATOR) 
INSTEAD OF WAIT. 

Binary     
Message 

Prey     
Movement 

Predator 
Movement 

000 Forward Forward 

001 Wait Backward 

010 Right-Forward Right-Forward 

011 Left-Forward Left-Forward 

100 Rotate-Right Rotate-Right 

101 Rotate-Left Rotate-Left 

110 Backup-Right Backup-Right 
111 Backup-Left Backup-Left 

 

Figure 1.   A photograph of the prey and the predator in the colony 
space. 

 
Figure 2.   Photo of the prey with 6 range finding SONAR sensors and 
two antennas (wire touch sensors) 



SONAR sensors had 60 degrees of vision with a range of 150 
inches. It was mounted 5 inches above the ground level. Unlike 
the prey, the predator had a limited angle of vision since it had 
only three SONAR sensors, which were directed in the front. 
The predator was also equipped with two light sensors, which 
were facing forward. Their range was variable depending on 
the ambient light. Our recordings were completed in an area 
with ambient light, which decreased the range of the light 
sensors to 30 inches whereas the experiments were held in a 
completely dark area. The light sensors were covered with 
tubes that faced forward, which limited them to see only 
directional light sources. They were positioned to detect light 
from North-East and North-West (North as the direction of the 
robot). The light source had to be almost directly in the front in 
order to invoke both of the light sensors (Figure 3). 

 
The predator was equipped with two chips: the main 

controller and the locomotion controller. All of the sensors on 
the predator were connected to the main controller chip, which 
was a BS2p24. A BS2p24 was essential for the predator to 
implement the control program that was learned. Like the prey, 
the predator also had a locomotion controller, which was a 
BS2. It worked exactly the same as the prey's locomotion 
controller. Three pins were used for the main controller to 
command the locomotion controller to execute eight different 
movements. 

Depending on the output of the sensors, the predator 
determined which action to execute. In order to allow the 
learning to operate at a higher level, we developed the 
processing needed to transform the raw sensor data into 8 
categories of the robot's situation relative to both the nearest 
obstacle and the target (prey). The predator's state at any point 
in time was the combination of these two factors. Since there 
were 8 possible situations for the nearest obstacle, and 8 for the 
target, there were 64 possible combinations (Table 2). 

C. Simulation 
The learning of the robots took place in a simulated area of 

300x300 units, in which each robot was represented with an x 
and y coordinate and a direction between 0-359. In the 

simulation area, the point (0, 0) was positioned on the bottom 
left corner and the direction 0 was to the East of the area. The 
program was written in Java.  

 
A population of predators was created to be tested against a 

pre-programmed prey robot. During each step of the learning 
process, the simulation updated the positions of the robots and 
their sensors with respect to each other and the walls (there 
were no other obstacles). The learning system took in the 
desired number of generations for the agents to evolve as a 
parameter and while operating, the average fitness of the 
population was output every 10th generation. In the 1st, 100th 
and the 300th generations, the whole population was printed out 
with the corresponding fitness values. For observation 
purposes, each robot was represented by a circle and a line 
pointing at the direction of the robot. In the simulation, we 
were able to position the agents as we wanted, and move step 
by step to see which movement was going to be executed as a 
result of their decision (Figure 4). 

The data used to determine movement by the simulated 
robots was measured by the performance on the actual robots. 
The measurements taken were the changes in distance traveled 
in the direction of the heading, distance traveled perpendicular 
to the initial heading, and heading after the move. For example, 
for the prey ServoBot, a command of Forward (Table 1) 
involved distance change of 5 units along the initial heading, a 
0.05 unit perpendicular distance change, and a 4.6 degree 
change from the initial heading. A command of Right-Forward 
(Table 1) involved a distance change of 2.38 units along the 
initial heading, a 1.11 unit perpendicular distance change, and a 
-39 degree change from the initial heading. These changes were 
used to calculate the new x and y position of the simulated 
robot and its new orientation after each move. 

The Prey and Predator simulations included the list of 
values for each movement (measured from executing the 
command on the actual robot) and the decision function that 
determined which movement to make. 

 

TABLE II.  THE TABLE SHOWS THE EIGHT POSSIBLE SENSOR 
SITUATIONS RELATIVE TO THE NEAREST OBSTACLE AND EIGHT 
RELATIVE TO THE TARGET. THE COMBINATION OF THESE DEFINES THE 
STATE OF THE ROBOT. 

Obstacle Target 

no_object no_target 

near_right near_right 

far_right far_right 

near_left near_left 

far_left far_left 

near_front near_front 

middle_front middle_front 

far_front far_front 

 

Figure 3.   The photo of the predator with 2 light sensors, 3 SONAR 
sensors, and 2 antennas. 



 

III. GENETIC ALGORITHM 
Evolutionary Computation (EC) in this study to evolve a 

control program for the predator to catch the prey. It was used 
with a computer simulation to run a population of possible 
solutions to determine their fitness values.  

The type of EC used was the Cyclic Genetic Algorithm 
(CGA). It is capable of learning a cyclic combination of 
decisions/actions, which are coded in the chromosome [7]. The 
chromosome can be divided into blocks that contain the 
movement primitive and the number of times that it should be 
repeated. These blocks can also represent conditionals that 
control the process of execution. The CGA provides a method 
for learning control programs that produce cyclic behavior. 

A. The Cyclic Genetic Algorithm Applied to the 
Predator/Prey Problem 
For the predator/prey problem in this study, it was 

determined that only one action was needed for each of the 
possible sensor inputs. This action could continue until the 
sensor situation changed. A CGA with conditional branching 
[9] that has only one instruction in each loop could be used. In 
effect, this would be functionally the same as a fully connected 
finite state machine with control returning to the present node if 
there are no changes. A population of 256 randomly generated 
chromosomes was used for this problem. 

The predator can only be in 64 (8*8) different states (Table 
2). Therefore, a chromosome with 64 genes is sufficient for the 
CGA to learn a controller for the predator. Each block of the 
chromosome (gene) represents the action to be taken. When the 
condition is met for a gene, the movement in that block takes 
place. An example chromosome is shown in Figure 5. Since 
each movement is represented with 3 bits and there are 64 
states, each chromosome is 192 bits. If the robot does not sense 
an obstacle or the prey, the action taken (Table 1) is the one 
corresponding to the 3 bits of the first block. In this case, it 
would execute movement 001, which is move backwards. 

 

 
With random positioning, the possibility of a certain gene 

not being visited was high. Therefore, at each generation, 10 
different starting positions were randomly selected. Each of 
the individuals of the population was tested using these 
starting positions by running for 200 steps (gait cycles) in 
pursuit of the prey. Each individual was evaluated by the 
average distance that they approached the prey. The maximum 
distance that the predator and the prey could be was 424.26 
(since the field is a square of 300 units). Therefore Equation 1 
was used to calculate positive change. 

  score = maximum_distance – distance_between_agents     (1)  

The score is calculated after each step. If the score of the 
individual was greater than 403.05 (95% of the maximum 
score), it means the predator was close enough to catch the 
prey. In this case the score was doubled as a reward for the 
capture. To encourage a rapid capture, a bonus that decreases 
as the number of steps increases is added to the score (Equation 
2).  

           2_
n

scorescorescorestepnth +=                     (2) 

At the 1st step, the bonus is as much as the score. As the run 
progresses, the bonus quickly becomes negligible. The fitness 
value was average of these step scores. Since we let each 
individual to run 200 steps from each starting position, and 
there were 10 starting positions, they took 2000 steps. Hence 
the fitness value was the total sum of the step scores divided by 
2000. 

The roulette wheel method of selection was used. An 
individual's chance of selection for the next generation was 
biased by its fitness. The more successful an individual was, 
the more chance it had to be involved in producing the next 
generation. Two-point crossover was performed on the two 
selected individuals. The newly formed chromosome was 
subjected to a mutation function, which inverts a bit (if the bit 
is 0, make it 1 and vice versa) by a chance of 0.003%. This 
process was repeated 256 times and the next generation was 
formed. The population size was constant. 

IV. RESULTS 
Five trials, where the initial population was randomly 

generated and the CGA ran for 300 generations, were 
conducted. The average of the individuals at each generation 
was highly varying due to random generation of the starting 
positions. In order to standardize the comparison, we randomly 
generated 100 starting positions before the simulation. Every 
10th generation, individuals also run from these starting 

001 101 111 011 … 
   no_object & no_target 

Figure 5. Example chromosome divided into blocks. The total length 
is 192 bits. Each block holds a movement corresponding to that state 
(a combination of sensor readings). The first block holds movement 
for the state of no_object & no_target. 

Figure 4.   A random screenshot of the Simulation. Each agent is 
represented with a circle and a line showing its direction. The prey is 
the blue one and the predator is the red one. 



positions and the data was recorded (Figure 6). The 
improvement of individuals increase vigorously until 100th 
generation and the average fitness did not improve significantly 
after the 170th generation. 

 

 
From each of the five trials, individuals from 1st, 100th and 

300th generations were picked to test the effectiveness of the 
developed control program on the actual robot. In all of these 
tests, the predator was placed at south east corner, 10 inches 
away from the walls, heading to west. The prey was placed in 
the middle of the west wall, heading to north (Figure 7).  

 
In each trial, the robots were allowed to run until the 

predator caught the prey or for 100 steps, whichever came first. 
The results of these tests were shown in Figure 8. As can be 
seen, the actual tests verify the effectiveness of the learning 
system. 

A detailed description of the movements of the robot using 
control programs from trial 4 follows. In each test, the predator 
started with a left turn while the prey was located at the west of 
the colony.  Figures 9, 10 and 11 depict the movements of the 

robots in the 1st, 100th and 300th generations respectively. The 
black robot is the prey and the light robot is the predator. 

 
In the 1st generation, the robot began with a left rotation 

(Rotate-Left, see Table 1). While it was rotating, it got closer to 
the South wall and started to perform the Left-Forward 
movement.  The result was that the robot rotated to be 
perpendicular to the South wall. Facing the South wall, it 
continued to attempt to go straight and the trial ended as the 
robot kept pushing the South wall. While the predator was 
moving as such, the prey moved toward the opposite corner 
and then turned to head to the center of the colony, which gave 
it several escape options. 

 
At the 100th generation the predator made a couple of Left-

Forward movements, bumped to the South wall, but kept 
performing several more left turns. While turning left, the 
predator got close to the South-East corner of the area, hence 
performed a back-up right (the robots' heading changes to left), 
which gave it an advantage on turning to the left.  As a result, it 
oriented itself in the right direction to sense the prey. When the 
predator detected the prey, the prey was turning toward the 
center of the colony space from the North-West corner as in the 
previous test. It was moving away from the corner, which 
turned it in a direction to head toward the predator. Since the 
prey was trying to get away from the closest obstacle, it started 

 
Figure 9. The predator rotated left, performed a Left-Forward and 
then went straight to the South wall. 

 
Figure8. Numbers of steps of the randomly selected three individuals 
from 1st, 100th and 300th generations over 5 trials are displayed. Each 
individual was allowed to run until capture, but no more than 100 
steps. 

 
Figure7. Diagram of the actual robot test. The light colored (striped) 
object is the predator directed to West. The shaded object is the prey 
directed to North. 

 
Figure 6. The average fitness for 100 fixed positions over 300 
generations in 5 trials are displayed. The bold line is the average of all 
trials. 



to head towards the predator. By the time the distance between 
the prey and the wall was greater than the distance between the 
prey and the predator, the predator was moving straight toward 
the prey. Although the prey tried to run away from the predator 
with a right rotation, the gap closed before it could make the 
turn and the trial ended with a capture. 

 
At the 300th generation, the predator started with a right 

turn. Since the prey was placed by the west wall, starting with a 
right turn favored the predator. Once the prey was detected, the 
predator tracked directly toward it and made the capture shortly 
after it left the North-West corner.  The result was a significant 
improvement in the capture time. 

 
Since the control program was generated randomly at 1st 

generation, we didn't expect the individuals from 1st generation 
to capture the prey.   These controllers were not capable of 
avoiding walls, much less tracking toward the prey.  By the 
100th generation, the controllers were capable of avoiding walls 
and tracking toward the prey.  The changes from the 100th to 
the 300th generations were minor as the robot improved on the 
effectiveness of its wall avoidance and tracking capabilities. 

V. CONCLUSIONS 
The results show that the CGA can learn an effective 

control program for a predator in the predator/prey problem. 
The tests on the actual robots also show that the learning 
method was effective. The CGA learned the proper actions in 
response to 64 different possible sensor inputs. In the 
initial/random population, the predator would not get close to 
the prey except by chance. After 100 generations of training, 
the trained predators were able to avoid walls and chase the 
prey. The tests on actual robots matched with the results of the 
simulation. 

The next step will be to use the CGA learning method to 
evolve the prey. Since our final predator controller was 
successful at capturing the prey, we want to determine if a prey 
controller can be evolved that will allow it to successfully 
evade the current best predator. If this is the case, we will 
experiment with competitive co-evolution as both the predator 
& prey learn concurrently. 
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Figure 11. The predator rotated right and went straight. 

 
Figure 10. The predator performed a series of Left-Forward, then 
Backup-Left (where the crosses are) and then went straight. 
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