
Connecticut College
Digital Commons @ Connecticut College

Computer Science Faculty Publications Computer Science Department

10-2012

Evolving Predator Control Programs for an Actual
Hexapod Robot Predator
Gary Parker
Connecticut College, parker@conncoll.edu

Basar Gulcu

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscifacpub

Part of the Robotics Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut
College. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of Digital Commons @
Connecticut College. For more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Parker, G.; Gulcu, B., "Evolving predator control programs for an actual hexapod robot predator," Systems, Man, and Cybernetics
(SMC), 2012 IEEE International Conference, vol., no., pp.196-201, 14-17 Oct. 2012 doi: 10.1109/ICSMC.2012.6377699

http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu

Evolving Predator Control Programs for an Actual Hexapod Robot
Predator

Keywords
robotics, genetic algorithm, evolutionary robotics, cyclic genetic algorithm, autonomous agent learning

Comments
© 2012 IEEE

DOI:10.1109/ICSMC.2012.6377699

This conference proceeding is available at Digital Commons @ Connecticut College: http://digitalcommons.conncoll.edu/
comscifacpub/17

http://dx.doi.org/10.1109/ICSMC.2012.6377699
http://digitalcommons.conncoll.edu/comscifacpub/17?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/17?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages

Evolving Predator Control Programs
for an Actual Hexapod Robot Predator

Gary Parker
Department of Computer Science

Connecticut College
New London, CT, USA
parker@conncoll.edu

Basar Gulcu
Department of Computer Science and Engineering

Sabancı University
Istanbul, Turkey

basargulcu@gmail.com

Abstract—In the development of autonomous robots, control
program learning systems are important since they allow the
robots to adapt to changes in their surroundings. Evolutionary
Computation (EC) is a method that is used widely in learning
systems. In previous research, we used a Cyclic Genetic
Algorithm (CGA), a form of EC, to evolve a simulated predator
robot to test the effectiveness of a learning system in the
predator/prey problem. The learned control program performed
search, chase, and capture behavior using 64 sensor states
relative to the nearest obstacle and the target, a simulated prey
robot. In this paper, we present the results of a new set of trials,
which were tested on the actual robots. The actual robots
successfully performed desired behaviors, showing the
effectiveness of the CGA learning system.

Keywords - robotics, genetic algorithm, evolutionary robotics,
cyclic genetic algorithm, autonomous agent learning

I. INTRODUCTION
Learning robot control is an important part of developing

robots. Learning the control program reduces the development
time of the robot as opposed to programming the control
program. Learning the control program also allows the robot
to adapt to changes in its surrounding area. The predator/prey
problem can be used to demonstrate the effectiveness of
learning systems which produce control programs for actual
robots. In this study, a learned control program was tested on a
predator, which is an autonomous hexapod robot tasked to
pursue a prey, which is another autonomous hexapod robot.

The predator/prey problem is well suited to demonstrate
the effectiveness of robot controller learning systems. The
prey tries to avoid the predator by going in the opposite
direction. The predator's aim is to capture the prey. In our
experiments, we did not have obstacles; except the walls and
the robots themselves. The prey considers all obstacles as
dangerous. It runs away from the nearest obstacle with
prioritizing respectively front, middle, and back. The predator
searches for the prey when it is outside of its sensor range. The
predator looks for the prey and then chases it until it is
captured. The predator can detect any obstacle or prey in front
of it. While performing its tasks, the predator will move in
response to the nearest obstacle, while ignoring the obstacles
that are further away.

The method used for learning a controller was the Cyclic
Genetic Algorithm (CGA), which is a form of Evolutionary
Computation (EC). EC has been used by various researchers in
order to learn control programs for autonomous robots. Yao
used EC to learn the connection weights of an artificial neural
network [1]. For a legged locomotion controller, Beer and
Gallagher did their experiments by only specifying their
agent's overall performance [2]. Lund and Miglino used EC to
evolve a neural network controller for a Khepera robot which
avoided walls and obstacles successfully [3].

Another EC method used for learning control programs is
Genetic Programming (GP). Using GP, Busch et al.
programmed a system to create new gaits from predefined
movements [4]. The produced gaits were performed by a
simulated robot. Lazarus and Hu developed a simulated robot,
which successfully avoided obstacles with the use of sensors
while following the walls [5]. A controller for the Khepera
robot was developed by Nordin et al. with the use of GP [6].

The CGA was developed to implement loops in the control
programs [7]. Although the CGA has the standard operations
as Holland's Genetic Algorithm (GA) has [8], the genes of the
chromosome represent tasks instead of traits; each gene is
assigned tasks to execute. Parashkevov and Parker integrated
Conditional Branching into CGA and experimented on the
predator/prey scenario [9, 10]. The sensors were used to create
16 states. Basar and Parker used CGA on the predator/prey
problem to learn controller of a simulated predator robot with
64 discrete states [11]. In the research reported in this paper,
we used a new set of trial cases to test the system on an actual
predator robot. The controller that was evolved by a CGA
made the actual robot capable of avoiding the walls while
locating, chasing, and capturing the prey.

II. ACTUAL AND SIMULATED ENVIRONMENTS
The experiments took place in an 8'x8' area called the

colony space in the lab (Figure 1). The floor was covered with
a low nap carpet and was divided into 1'x1' squares to help
measure the distance traveled by robots. The carpet was chosen
to decrease the slippage of the legged robots. The colony space
was surrounded by one foot high wooden walls.

A. The Prey

The prey was a ServoBot, which is a hexapod designed by
David Braun. ServoBots were designed for legged robot
experimentation. The prey was made of Masonite (hard-
pressed particle wood). It had six legs, three on each side, and
each leg was controlled by two servo motors. Each leg had two
degrees of freedom, capable of moving horizontally
forward/backward and vertically up/down.

The prey had 360 degrees of vision. Six SONAR sensors
(from Parallax, Inc) were placed with 60 degrees in between
each. Using 0 degrees as the heading of the robot, the SONAR
sensors were facing 30, 90, 150, 210, 270 and 330 degrees.
Each SONAR sensor was capable of 60 degrees of vision with
a range of 150 inches. The whole rack of SONAR sensors were
placed on top of the controller chips. To avoid collisions with
lower obstacles, the prey had two 10'' antennas (tactile sensors)
directed at 45 and 315 degrees. A light bulb was placed on top
of the prey, to enable the predator to distinguish it from the
walls (Figure 2).

The prey gathered data from the sensors after each step. A
step (gait) is a complete leg cycle where a foot gets back to its
initial position after performing a sequence of movements. In
our experiment, we used front left leg being at forward and
down position as the starting point of each gait.

The prey had two controller chips: the locomotion
controller and the main controller. Each has 16 usable pins. The
locomotion controller was a Basic Stamp 2 (BS2, from
Parallax, Inc). The servo motors were all connected to the
locomotion controller (using 12 pins). Each servo was
controlled by a pulse from the locomotion controller, which
told it to rotate clockwise or counter-clockwise. The gait cycles
were formed by a combination of movements of the 12 servo
motors. Three of the controller pins were used to communicate
with the other controller chip, the main controller. The main
controller was a Basic Stamp 2p24 (BS2p24, from Parallax,
Inc). There was no special reason for using a BS2p24 as a main
controller on the prey, except to make the control configuration
similar to that of the predator. All of the sensors were
connected to the main controller. After evaluating the output of
the sensors, the main controller determines which movement
needs to be executed, and then commands the locomotion
controller to perform the movement (Table 1).

B. The Predator
The predator was also a ServoBot, although it was made of

Plexiglas. The predator's sensor configuration was different
than that of the prey. The predator had two antennas (tactile
sensors), each of which was 9.5 inches like the prey. The
purpose of the antennas was to detect obstacles which were
close to the robot at 25 degrees and 335 degrees. Since
antennas weren't capable of detecting objects further away two
SONAR sensors (from Parallax, Inc) directed at their direction,
30 degrees and 330 degrees. There was also a third SONAR
sensor directed at the heading direction of the robot. The

TABLE I. THE TABLE SHOWS THE POSSIBLE MOVEMENTS OF
THE PREY (LEFT) AND THE PREDATOR (RIGHT). THE CONTROL
PROGRAM RUNNING IN THE MAIN CONTROLLER DIRECTS THE
LOCOMOTION CONTROLLER BY SENDING THE 3-BIT CONTROL SIGNAL.
THE PREDATOR IS DIFFERENT FROM THE PREY IN THAT 001 IS
BACKWARD (DEEMED MORE APPROPRIATE FOR THE PREDATOR)
INSTEAD OF WAIT.

Binary
Message

Prey
Movement

Predator
Movement

000 Forward Forward

001 Wait Backward

010 Right-Forward Right-Forward

011 Left-Forward Left-Forward

100 Rotate-Right Rotate-Right

101 Rotate-Left Rotate-Left

110 Backup-Right Backup-Right
111 Backup-Left Backup-Left

Figure 1. A photograph of the prey and the predator in the colony
space.

Figure 2. Photo of the prey with 6 range finding SONAR sensors and
two antennas (wire touch sensors)

SONAR sensors had 60 degrees of vision with a range of 150
inches. It was mounted 5 inches above the ground level. Unlike
the prey, the predator had a limited angle of vision since it had
only three SONAR sensors, which were directed in the front.
The predator was also equipped with two light sensors, which
were facing forward. Their range was variable depending on
the ambient light. Our recordings were completed in an area
with ambient light, which decreased the range of the light
sensors to 30 inches whereas the experiments were held in a
completely dark area. The light sensors were covered with
tubes that faced forward, which limited them to see only
directional light sources. They were positioned to detect light
from North-East and North-West (North as the direction of the
robot). The light source had to be almost directly in the front in
order to invoke both of the light sensors (Figure 3).

The predator was equipped with two chips: the main

controller and the locomotion controller. All of the sensors on
the predator were connected to the main controller chip, which
was a BS2p24. A BS2p24 was essential for the predator to
implement the control program that was learned. Like the prey,
the predator also had a locomotion controller, which was a
BS2. It worked exactly the same as the prey's locomotion
controller. Three pins were used for the main controller to
command the locomotion controller to execute eight different
movements.

Depending on the output of the sensors, the predator
determined which action to execute. In order to allow the
learning to operate at a higher level, we developed the
processing needed to transform the raw sensor data into 8
categories of the robot's situation relative to both the nearest
obstacle and the target (prey). The predator's state at any point
in time was the combination of these two factors. Since there
were 8 possible situations for the nearest obstacle, and 8 for the
target, there were 64 possible combinations (Table 2).

C. Simulation
The learning of the robots took place in a simulated area of

300x300 units, in which each robot was represented with an x
and y coordinate and a direction between 0-359. In the

simulation area, the point (0, 0) was positioned on the bottom
left corner and the direction 0 was to the East of the area. The
program was written in Java.

A population of predators was created to be tested against a

pre-programmed prey robot. During each step of the learning
process, the simulation updated the positions of the robots and
their sensors with respect to each other and the walls (there
were no other obstacles). The learning system took in the
desired number of generations for the agents to evolve as a
parameter and while operating, the average fitness of the
population was output every 10th generation. In the 1st, 100th
and the 300th generations, the whole population was printed out
with the corresponding fitness values. For observation
purposes, each robot was represented by a circle and a line
pointing at the direction of the robot. In the simulation, we
were able to position the agents as we wanted, and move step
by step to see which movement was going to be executed as a
result of their decision (Figure 4).

The data used to determine movement by the simulated
robots was measured by the performance on the actual robots.
The measurements taken were the changes in distance traveled
in the direction of the heading, distance traveled perpendicular
to the initial heading, and heading after the move. For example,
for the prey ServoBot, a command of Forward (Table 1)
involved distance change of 5 units along the initial heading, a
0.05 unit perpendicular distance change, and a 4.6 degree
change from the initial heading. A command of Right-Forward
(Table 1) involved a distance change of 2.38 units along the
initial heading, a 1.11 unit perpendicular distance change, and a
-39 degree change from the initial heading. These changes were
used to calculate the new x and y position of the simulated
robot and its new orientation after each move.

The Prey and Predator simulations included the list of
values for each movement (measured from executing the
command on the actual robot) and the decision function that
determined which movement to make.

TABLE II. THE TABLE SHOWS THE EIGHT POSSIBLE SENSOR
SITUATIONS RELATIVE TO THE NEAREST OBSTACLE AND EIGHT
RELATIVE TO THE TARGET. THE COMBINATION OF THESE DEFINES THE
STATE OF THE ROBOT.

Obstacle Target

no_object no_target

near_right near_right

far_right far_right

near_left near_left

far_left far_left

near_front near_front

middle_front middle_front

far_front far_front

Figure 3. The photo of the predator with 2 light sensors, 3 SONAR
sensors, and 2 antennas.

III. GENETIC ALGORITHM
Evolutionary Computation (EC) in this study to evolve a

control program for the predator to catch the prey. It was used
with a computer simulation to run a population of possible
solutions to determine their fitness values.

The type of EC used was the Cyclic Genetic Algorithm
(CGA). It is capable of learning a cyclic combination of
decisions/actions, which are coded in the chromosome [7]. The
chromosome can be divided into blocks that contain the
movement primitive and the number of times that it should be
repeated. These blocks can also represent conditionals that
control the process of execution. The CGA provides a method
for learning control programs that produce cyclic behavior.

A. The Cyclic Genetic Algorithm Applied to the
Predator/Prey Problem
For the predator/prey problem in this study, it was

determined that only one action was needed for each of the
possible sensor inputs. This action could continue until the
sensor situation changed. A CGA with conditional branching
[9] that has only one instruction in each loop could be used. In
effect, this would be functionally the same as a fully connected
finite state machine with control returning to the present node if
there are no changes. A population of 256 randomly generated
chromosomes was used for this problem.

The predator can only be in 64 (8*8) different states (Table
2). Therefore, a chromosome with 64 genes is sufficient for the
CGA to learn a controller for the predator. Each block of the
chromosome (gene) represents the action to be taken. When the
condition is met for a gene, the movement in that block takes
place. An example chromosome is shown in Figure 5. Since
each movement is represented with 3 bits and there are 64
states, each chromosome is 192 bits. If the robot does not sense
an obstacle or the prey, the action taken (Table 1) is the one
corresponding to the 3 bits of the first block. In this case, it
would execute movement 001, which is move backwards.

With random positioning, the possibility of a certain gene

not being visited was high. Therefore, at each generation, 10
different starting positions were randomly selected. Each of
the individuals of the population was tested using these
starting positions by running for 200 steps (gait cycles) in
pursuit of the prey. Each individual was evaluated by the
average distance that they approached the prey. The maximum
distance that the predator and the prey could be was 424.26
(since the field is a square of 300 units). Therefore Equation 1
was used to calculate positive change.

 score = maximum_distance – distance_between_agents (1)

The score is calculated after each step. If the score of the
individual was greater than 403.05 (95% of the maximum
score), it means the predator was close enough to catch the
prey. In this case the score was doubled as a reward for the
capture. To encourage a rapid capture, a bonus that decreases
as the number of steps increases is added to the score (Equation
2).

 2_
n

scorescorescorestepnth += (2)

At the 1st step, the bonus is as much as the score. As the run
progresses, the bonus quickly becomes negligible. The fitness
value was average of these step scores. Since we let each
individual to run 200 steps from each starting position, and
there were 10 starting positions, they took 2000 steps. Hence
the fitness value was the total sum of the step scores divided by
2000.

The roulette wheel method of selection was used. An
individual's chance of selection for the next generation was
biased by its fitness. The more successful an individual was,
the more chance it had to be involved in producing the next
generation. Two-point crossover was performed on the two
selected individuals. The newly formed chromosome was
subjected to a mutation function, which inverts a bit (if the bit
is 0, make it 1 and vice versa) by a chance of 0.003%. This
process was repeated 256 times and the next generation was
formed. The population size was constant.

IV. RESULTS
Five trials, where the initial population was randomly

generated and the CGA ran for 300 generations, were
conducted. The average of the individuals at each generation
was highly varying due to random generation of the starting
positions. In order to standardize the comparison, we randomly
generated 100 starting positions before the simulation. Every
10th generation, individuals also run from these starting

001 101 111 011 …
 no_object & no_target

Figure 5. Example chromosome divided into blocks. The total length
is 192 bits. Each block holds a movement corresponding to that state
(a combination of sensor readings). The first block holds movement
for the state of no_object & no_target.

Figure 4. A random screenshot of the Simulation. Each agent is
represented with a circle and a line showing its direction. The prey is
the blue one and the predator is the red one.

positions and the data was recorded (Figure 6). The
improvement of individuals increase vigorously until 100th
generation and the average fitness did not improve significantly
after the 170th generation.

From each of the five trials, individuals from 1st, 100th and

300th generations were picked to test the effectiveness of the
developed control program on the actual robot. In all of these
tests, the predator was placed at south east corner, 10 inches
away from the walls, heading to west. The prey was placed in
the middle of the west wall, heading to north (Figure 7).

In each trial, the robots were allowed to run until the

predator caught the prey or for 100 steps, whichever came first.
The results of these tests were shown in Figure 8. As can be
seen, the actual tests verify the effectiveness of the learning
system.

A detailed description of the movements of the robot using
control programs from trial 4 follows. In each test, the predator
started with a left turn while the prey was located at the west of
the colony. Figures 9, 10 and 11 depict the movements of the

robots in the 1st, 100th and 300th generations respectively. The
black robot is the prey and the light robot is the predator.

In the 1st generation, the robot began with a left rotation

(Rotate-Left, see Table 1). While it was rotating, it got closer to
the South wall and started to perform the Left-Forward
movement. The result was that the robot rotated to be
perpendicular to the South wall. Facing the South wall, it
continued to attempt to go straight and the trial ended as the
robot kept pushing the South wall. While the predator was
moving as such, the prey moved toward the opposite corner
and then turned to head to the center of the colony, which gave
it several escape options.

At the 100th generation the predator made a couple of Left-

Forward movements, bumped to the South wall, but kept
performing several more left turns. While turning left, the
predator got close to the South-East corner of the area, hence
performed a back-up right (the robots' heading changes to left),
which gave it an advantage on turning to the left. As a result, it
oriented itself in the right direction to sense the prey. When the
predator detected the prey, the prey was turning toward the
center of the colony space from the North-West corner as in the
previous test. It was moving away from the corner, which
turned it in a direction to head toward the predator. Since the
prey was trying to get away from the closest obstacle, it started

Figure 9. The predator rotated left, performed a Left-Forward and
then went straight to the South wall.

Figure8. Numbers of steps of the randomly selected three individuals
from 1st, 100th and 300th generations over 5 trials are displayed. Each
individual was allowed to run until capture, but no more than 100
steps.

Figure7. Diagram of the actual robot test. The light colored (striped)
object is the predator directed to West. The shaded object is the prey
directed to North.

Figure 6. The average fitness for 100 fixed positions over 300
generations in 5 trials are displayed. The bold line is the average of all
trials.

to head towards the predator. By the time the distance between
the prey and the wall was greater than the distance between the
prey and the predator, the predator was moving straight toward
the prey. Although the prey tried to run away from the predator
with a right rotation, the gap closed before it could make the
turn and the trial ended with a capture.

At the 300th generation, the predator started with a right

turn. Since the prey was placed by the west wall, starting with a
right turn favored the predator. Once the prey was detected, the
predator tracked directly toward it and made the capture shortly
after it left the North-West corner. The result was a significant
improvement in the capture time.

Since the control program was generated randomly at 1st

generation, we didn't expect the individuals from 1st generation
to capture the prey. These controllers were not capable of
avoiding walls, much less tracking toward the prey. By the
100th generation, the controllers were capable of avoiding walls
and tracking toward the prey. The changes from the 100th to
the 300th generations were minor as the robot improved on the
effectiveness of its wall avoidance and tracking capabilities.

V. CONCLUSIONS
The results show that the CGA can learn an effective

control program for a predator in the predator/prey problem.
The tests on the actual robots also show that the learning
method was effective. The CGA learned the proper actions in
response to 64 different possible sensor inputs. In the
initial/random population, the predator would not get close to
the prey except by chance. After 100 generations of training,
the trained predators were able to avoid walls and chase the
prey. The tests on actual robots matched with the results of the
simulation.

The next step will be to use the CGA learning method to
evolve the prey. Since our final predator controller was
successful at capturing the prey, we want to determine if a prey
controller can be evolved that will allow it to successfully
evade the current best predator. If this is the case, we will
experiment with competitive co-evolution as both the predator
& prey learn concurrently.

REFERENCES
[1] Yao, X. Evolving artificial neural networks. Proc. Computation,

(2001), 283-289. IEEE, 87, 9 (1999), 1423-1447.
[2] Beer, R. D. and Gallagher, J. C. Evolving dramatical neural

networks for adaptive behavior. Adaptive Behavior, 1, 1 (1992),
91-122.

[3] Lund, H. H. and Miglino, O. From simulated to real robots.
Proc. IEEE Third International Conference on Evolutionary
Computation, NJ (1996).

[4] Busch, J., Ziegler, J., Aue, C., Ross, A., Sawitzki, D. and
Banzhaf, W. Automatic generation of control programs for
walking robots using genetic programming. EuroGP 2002,
LNCS 2278 (2002), 258-267.

[5] Lazarus, C. and Hu, H. Using genetic programming to evolve
robot behaviours. Proc. Third British Conference on
Autonomous Mobile Robotics & Autonomous Systems,
Manchester, UK (2001).

[6] Nordin, P., Banzhaf, W. and Brameier, M. Evolution of a world
model for a miniature robot using genetic programming.
Robotics and Autonomous Systems, 25 (1998), 105-116.

[7] Parker, G. B. Generating arachnid robot gaits with cyclic genetic
algorithms. Genetic Programming 1998: Proc. of the Third
Annual Conference, (July 1998), 576-583.

[8] Holland, J. H. Adaptation in Natural and Artificial Systems. Ann
Arbor, MI, The University of Michigan Press, (1975).

[9] Parker, G. B., Parashkevov I. I., Blumenthal, H. J. and
Guildman, T. W. Cyclic genetic algorithms for evolving multi-
loop control programs. Proc. of the World Automation Congress
(WAC '04) (June 2004).

[10] Parker, G. B. and Parashkevov, I. Cyclic genetic algorithm with
conditional branching in a predator-prey scenario. Proc. of the
2005 IEEE International Conference on Systems, Man, and
Cybernetics (SMC 2005) (Waikoloa, Hawaii, October 2005).

[11] Parker, G. B. and Gulcu, B. Evolving predator control programs
for a hexapod robot pursuing a prey. Proc. of the World
Automation Congress International Symposium on Intelligent
Automation and Control (ISIAC 2008) (Waikoloa, Hawaii,
October 2008.

Figure 11. The predator rotated right and went straight.

Figure 10. The predator performed a series of Left-Forward, then
Backup-Left (where the crosses are) and then went straight.

	Connecticut College
	Digital Commons @ Connecticut College
	10-2012

	Evolving Predator Control Programs for an Actual Hexapod Robot Predator
	Gary Parker
	Basar Gulcu
	Recommended Citation

	Evolving Predator Control Programs for an Actual Hexapod Robot Predator
	Keywords
	Comments

	Microsoft Word - SMC2012_ParkerBasar.doc

