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Abstract

This work builds on a paper by Casana et al. [1], in which they calculated an exact, spherically symmetric
solution to the Einstein equations in the presence of a bumblebee vector field. We extend their solutions
by introducing a timelike component to the vector field. We are able to obtain series solutions to the
Einstein equation in the presence of this field. We then demonstrate that these solutions recover flat
spacetime. Our results cast doubt on the physical viability of this model, but a more thorough proof is
required.
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Introduction

1.1 Background

Lorentz symmetry explains that the laws of physics for all observers are the same within an inertial
reference frame. The principle was first introduced by Albert Einstein in his 1905 paper on special
relativity [2]. It has since survived over one hundred years of tests to form the foundation of much
modern physics, including general relativity and the Standard Model. The Standard Model successfully
describes phenomena at quantum scales but falls short for large scales. On the other hand, general
relativity is effective on large scales but not on small scales. Therefore, unifying these two theories
would be of great significance.

Many proposed methods of unification, including string theory and loop quantum gravity, lead to
predictions of Lorentz symmetry violation [3][4][5]. Because Lorentz symmetry underlies much of the
mathematics of general relativity and the Standard Model, its violation presents an opportunity to
investigate the shortcomings of these theories.

In 1997, Colladay and Kostelecký introduced the Standard Model Extension (SME), a framework
covering all possible Lorentz and CPT-violating coefficients [6][7]. The SME also integrates special
relativity, general relativity, and the Standard Model, providing information about possible signals of
Lorentz violation and opening up new experimental searches. It adds terms to the Standard Model that
account for Lorentz violations and become significant at the Planck scale [8]. The SME has already
been extensively studied, including the electromagnetic sector [9][10][11][12][13], the electroweak sector
[14], the strong sector [15], and in hadronic physics [16]. Some of the gravitational sector has also been
studied, especially the effects of Lorentz violation on gravitational waves [17][18][19]. As of the writing
of this thesis, no observations of Lorentz violation have been made, and the bounds on the coefficients
predicted by the SME are continually tightening [20].

Most of the work done which has looked at gravity using the SME focuses on weak gravity models.
This work aims to consider the SME as it relates to strong gravity, such as black holes. We focus on
bumblebee gravity, a model of strong gravity that relies on a fundamental vector field that allows for a
spontaneous violation of Lorentz symmetry.

1.2 Overview

This work extends the results obtained by Casana et al. in ref. [1], in which they calculated an
exact, spherically symmetric solution to the Einstein equations in the presence of the bumblebee field.
This field breaks Lorentz symmetry by assuming a nonzero vacuum expectation value. We modify
their field by introducing a timelike component. Using code written in Mathematica with the package
xTensor[21], we obtain solutions to the Einstein equation and demonstrate that this technique recovers
flat spacetime1. Section 2 presents the theoretical and mathematical framework necessary to calculate

1A copy of the code written for this project will be available on the Connecticut College Digital Commons (digitalcom-
mons.conncoll.edu/)
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the Einstein equation generated by bumblebee gravity and the nonvanishing components of our Einstein
tensor. In Section 3, we present our solutions to the Einstein equation. In Section 4, we discuss the
implications of our results. In Section 5, we conclude that our solutions cast doubt on the viability of
this model and suggest follow-up studies. Appendix A.1 presents a technical overview of the code we
developed to aid our calculations. Appendices A.2 and A.3 present the full form of our series solutions
and their simplification.
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Theory

2.1 Standard Model Extension

The Standard Model Extension (SME) for flat spacetime was developed by Don Colladay and Alan
Kostelecký [6][7] and was later expanded to include Lorentz-breaking terms in curved spacetime [22].
The field theory contains the Standard Model, general relativity, and all possible operators that break
Lorentz symmetry.

The SME provides a framework that allows for the study of Lorentz violation (and CPT violation,
which implies the breaking of Lorentz symmetry) by introducing terms that describe these possible
violations.

It has been shown that of the two forms of Lorentz symmetry breaking, explicit and spontaneous
breaking, only spontaneous breaking is compatible with laws governing the conservation of energy,
momentum, and spin density [22]. Spontaneous symmetry breaking describes a situation in which a
symmetric system spontaneously achieves an asymmetric state. Many models rely on a field with a
nonzero vacuum expectation value (VEV) to achieve spontaneous symmetry breaking. This involves
minimizing the field’s potential energy when the field is nonzero. Such a potential causes the VEV to
be nonzero in a vacuum, thereby allowing a system whose Lagrangian obeys symmetry to break that
symmetry when the system is in a vacuum solution. The Higgs field is a well-known example of such a
field in that it is a scalar field that breaks gauge symmetry by having a nonzero VEV [23]. Similarly,
each term in the SME could arise from the expectation value of a tensor field that spontaneously breaks
Lorentz symmetry.

2.2 Bumblebee Gravity

Bumblebee gravity is a model in which an underlying bumblebee vector field, Bµ, violates Lorentz
symmetry by assuming a nonzero vacuum expectation value [22]. It is the simplest of the models that
consider Lorentz violation in strongly curved spacetime and allows an avenue to study Lorentz violation
within strong gravity models.

The action for such a field, as coupled to gravity and matter and assuming no torsion or cosmological
constant, can be expressed as

SB =

∫
ζ

(
1

2κ
R+

1

2κ
ξBµBνRµν − 1

4
BµνB

µν − V (Bµ) + LM

)
d4x, (2.2.1)

where ζ ≡
√
−g, κ = 8πGN , ξ is the real coupling constant, and LM is the Lagrangian for the conven-

tional matter field. The field strength is defined as

Bµν = ∂µBν − ∂νBµ. (2.2.2)

The potential V is defined to be a function of the quantity BµBµ ± b2, i.e.

V ≡ V (BµBµ ± b2), (2.2.3)
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so that Bµ has a nonzero VEV. If the field is in the vacuum manifold, the set of all points at which the
potential is minimized, we expect that V = 0 and V ′ = 0. Therefore, Equation 2.2.3 can be simplified
to

BµBµ ± b2 = 0 (2.2.4)

where b2 is a positive real constant. Therefore, Bµ assumes a nonzero expectation value; call it〈
Bµ

〉
= bµ, (2.2.5)

such that bµbµ = ±b2. While the potential here is Lorentz invariant, the VEV breaks Lorentz symmetry,
meaning there is a spontaneous breaking of Lorentz symmetry at those solutions.

The stress-energy tensor associated with this field has the form

Tµν = TM
µν + TB

µν (2.2.6)

where TM
µν is the stress-energy from the matter sector, and TB

µν is that of the bumblebee field. Imposing

TM
µν = 0, we can limit our solutions to vacuum solutions–those describing the empty space surrounding

a gravitating body. Therefore,

Tµν = TB
µν =−BµαB

α
ν − 1

4
BµαB

αβgµν − V gµν + 2V ′BµBν

+
ξ

κ

[
1

2
BαBβRαβgµν −BµB

αRαν −BνB
αRαµ +

1

2
∇α∇µ(B

αBν) +
1

2
∇α∇ν(B

αBµ)

− 1

2
∇2(BµBν)−

1

2
gµν∇α∇β(B

αBβ)

]
. (2.2.7)

The Einstein equation, which is the equation of motion associated with the metric Gµν , can therefore
be written as

Gµν = κTµν (2.2.8)

where Gµν is the Einstein tensor. Similarly, the action (2.2.1) can be varied with respect to the vector
field Bµ to obtain the equation of motion for the field as

∇µBµν = Jν = JB
ν + JM

ν , (2.2.9)

where JM
ν is the contribution to the equations of motion from the matter sector, which vanishes in the

vacuum solutions, and JB
ν is from the bumblebee self-interaction and is defined as

JB
ν = 2V ′Bν − ξ

κ
BµRµν . (2.2.10)

2.3 Metric

Casana et al. [1] utilized a Birkhoff metric in their research to obtain static and spherically symmetric
vacuum solutions for the extended Einstein equations. A Birkhoff metric is defined as

gµν = diag(−e2γ , e2ρ, r2, r2 sin2 θ) (2.3.1)

where γ and ρ are both functions of r. In their paper, Casana and their colleagues assumed a spacelike
background field of the form

bµ = (0, br, 0, 0). (2.3.2)
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The primary difference between their work and ours is that we introduce a timelike component to the
background field. This change is motivated primarily by the fact that a purely radial vector field would
always point in the direction of the black hole at its origin. Therefore, it would imply the existence of
some black hole which, as the origin of the vector field, would constitute the “center of the universe.”
This goes against the cosmological principle, which states that the universe is homogeneous and isotropic
on large scales. Adding a time component to the vector field allows it to be timelike, meaning it would
behave like flat spacetime asymptotically, thereby preserving homogeneity and isotropy.

Implementing this addition gives the background field the form

bµ = (bt, br, 0, 0). (2.3.3)

The derivation for the exact form of the time component of this equation is as follows. Given BµBµ =
±b2, decomposing the norm into components gives

gttb2t + grrb2r = ±b2. (2.3.4)

It follows from the identity

gµνgµβ = δµβ (2.3.5)

that the raised form of the Birkhoff metric given in 2.3.1 is

gµν = diag(−e−2γ , e−2ρ, r−2, r−2 csc2 θ). (2.3.6)

Substituting the relevant components into 2.3.4 gives

−e−2γb2t + e−2ρb2r = ±b2, (2.3.7)

which implies

bt =

[
e2γ(e−2ρb2r ± b2)

]1/2
. (2.3.8)

We also rearrange this result for br in terms of bt to find

br =

[
e2ρ(±b2e−2γ + b2t )

]1/2
. (2.3.9)

2.4 Solving for the Einstein Tensor and Equations of Motion

Having derived the components of our field, the next step is to find the field equations. By noting
that V = 0, as shown in the simplification to Equation 2.2.3, and that Bµν takes a restricted form, we
can simplify Equation 2.2.7 to

TB
µν =−BµαB

α
ν − 1

4
BµαB

αβgµν

+
ξ

κ

[
1

2
BαBβRαβgµν −BµB

αRαν −BνB
αRαµ +

1

2
∇α∇µ(B

αBν) +
1

2
∇α∇ν(B

αBµ)

− 1

2
∇2(BµBν)−

1

2
gµν∇α∇β(B

αBβ)

]
. (2.4.1)

We rearrange the Einstein equation,2.2.8, such that

Gµν − κTµν = 0. (2.4.2)

Substituting in the simplified stress-energy tensor 2.4.1, setting ±b2 = −1, and setting our constants to
unity allows us to find the nonvanishing components of the Einstein tensor.
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The components found using the form of the vector field in terms of br (2.3.8) are

Gtt − κTtt =
1

2r2
(
b2r + e2ρ

)(
e−2(γ+2ρ)

(
−
(
b2r

(
2rbrb

′
r

(
rγ′ − rρ′ + 2

ξ

κ

)

+ r2b′r
2 + b2r

(
r

(
2r

ξ

κ
γ′′ + 2γ′

(
2
ξ

κ
− r(

ξ

κ
+ 1)ρ′

)
+ (2r

ξ

κ
+ r)γ′2 − 8

ξ

κ
ρ′ + rρ′2

)
+ 2

ξ

κ

)))
− 2bre

2ρ

(
rb′r

(
rγ′ + 2

ξ

κ

)
+ br

(
r

(
2r

ξ

κ
γ′′ +

(
γ′ − ρ′

)(
(2r

ξ

κ
+ r)γ′ + 4

ξ

κ

)
− 2ρ′

)
+

ξ

κ
+ 1

))
+ e4ρ

(
2b2r − r

(
2r

ξ

κ
γ′′ + γ′

(
(2r

ξ

κ
+ r)γ′ − 2r

ξ

κ
ρ′ + 4

ξ

κ

)
− 4ρ′

)
− 2

)
+ 2e6ρ

)
2r2

(
b2r + e2ρ

))
(2.4.3)

Grr − κTrr =
1

2r2
(
b2r + e2ρ

)(
e−6ρ

(
b2r

(
2rbrb

′
r

(
rγ′ − rρ′ + 2

ξ

κ

)

+ r2b′r
2 + b2r

(
r

(
r

(
ρ′2 − 2

ξ

κ
γ′′

)
+ 2γ′

(
r(

ξ

κ
− 1)ρ′ + 2

ξ

κ

)
+ (r − 2r

ξ

κ
)γ′2

)
+ 2

ξ

κ

))
− 2bre

2ρ

(
br

(
r

(
r
ξ

κ
γ′′ + γ′

(
r(

ξ

κ
− 1)

(
γ′ − ρ′

)
− 2(

ξ

κ
+ 1)

))
− ξ

κ
− 1

)
− rb′r

(
rγ′ + 2

ξ

κ

))
+ e4ρ

(
− 2b2r + rγ′

(
rγ′ + 4

)
+ 2

)
− 2e6ρ

))
(2.4.4)

Gθθ − κTθθ = sin2 θGϕϕ − κTϕϕ =
1

2r3
(
b2r + e2ρ

)
(
e−4ρ

(
b2r

(
r(2

ξ

κ
− 1)b′r

2 + 2br

(
r
ξ

κ
b′′r + b′r

(
r(3

ξ

κ
− 1)γ′ + r(1− 5

ξ

κ
)ρ′ + 2

ξ

κ

))
+ b2r

(
2r

ξ

κ

(
γ′′ − ρ′′

)
+ 2γ′

(
(r − 4r

ξ

κ
)ρ′ +

ξ

κ

)
+ r(2

ξ

κ
− 1)γ′2 + r(6

ξ

κ
− 1)ρ′2 − 6

ξ

κ
ρ′
))

+ 2e2ρ
(
r
ξ

κ
b′r

2 + br

(
r
ξ

κ
b′′r + b′r

(
r(3

ξ

κ
− 1)γ′ +

ξ

κ

(
2− 5rρ′

)))
+ b2r

(
r(

ξ

κ
+ 1)γ′′ + γ′

(
− 4r

ξ

κ
ρ′ +

ξ

κ
+ 1

)
+ r

ξ

κ
γ′2 − r

ξ

κ
ρ′′ + 3r

ξ

κ
ρ′2 − (3

ξ

κ
+ 1)ρ′

))
+ e4ρ

(
2rγ′′ + γ′

(
rγ′ − 2rρ′ + 2

)
− 2ρ′

)))
(2.4.5)

where primes indicate derivatives with respect to r.

The same process using the form of the vector field in terms of bt 2.3.9 results in the components

Gtt − κTtt =
1

2r2
e−2(2γ+ρ)

(
− 4r

ξ

κ
btb

′
t − r2b′t

2 − 2
ξ

κ
b2t

(
r

(
r

(
γ′′ − γ′ρ′ + γ′2

)
− 2ρ′

)
+ 1

)
+ 2e2γ

(
− 2r(

ξ

κ
− 1)ρ′ + e2ρ +

ξ

κ
− 1

))
(2.4.6)
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Grr − κTrr =
1

2r2
e−2(γ+2ρ)

(
4r

ξ

κ
btb

′
t + r2b′t

2 + 2
ξ

κ
b2t

(
r

(
2ρ′ − r

(
γ′′ − γ′ρ′ + γ′2

))
+ 1

)
− 2e2γ

(
r

(
ξ

κ

(
2ρ′ − rγ′′

)
+ γ′

(
r
ξ

κ
ρ′ + 2

ξ

κ
− 2

)
+ r(− ξ

κ
)γ′2

)
+ e2ρ +

ξ

κ
− 1

))
(2.4.7)

Gθθ − κTθθ = sin2 θGϕϕ − κTϕϕ =
1

2r3
e−2(γ+ρ)

(
r(2

ξ

κ
− 1)b′t

2 + 2
ξ

κ
bt

(
rb′′t − b′t

(
r

(
γ′ + ρ′

)
− 2

))
− 2

ξ

κ
b2t

(
γ′ + ρ′

)
− 2(

ξ

κ
− 1)e2γ

(
rγ′′ +

(
rγ′ + 1

)(
γ′ − ρ′

)))
. (2.4.8)

Using the same argument as above, we can eliminate the potential term from our equation of motion
2.2.10, resulting in

JB
ν =

ξ

κ
BµRµν . (2.4.9)

Solving in terms of br (2.3.8) we get

∇µBµt − Jt =
1

r

(
e2γ

(
b2re

−2ρ + 1

))3/2
e2γ−6ρ

(
b3r

(
− rb′′r − b′r

(
rγ′ − 3rρ′ + 2

)

+ br

(
r

(
(
ξ

κ
− 1)γ′′ + ρ′′ − 2ρ′2

)
+ γ′

(
2(

ξ

κ
− 1)− r(

ξ

κ
− 2)ρ′

)
+ r

ξ

κ
γ′2 + 2ρ′

))
+ e2ρ

(
− rb′2r + br

(
− rb′′r − b′r

(
rγ′ − 5rρ′ + 2

))
+ b2r

(
r

(
2(

ξ

κ
− 1)γ′′ + ρ′′ − 3ρ′2

)
+ γ′

(
r(3− 2

ξ

κ
)ρ′ + 4(

ξ

κ
− 1)

)
+ 2r

ξ

κ
γ′2 + 2ρ′

))
+ e4ρ

(
r(

ξ

κ
− 1)γ′′ − (

ξ

κ
− 1)γ′

(
rρ′ − 2

)
+ r

ξ

κ
γ′2

))
(2.4.10)

∇µBµr − Jr =
ξ

κ
bre

−4ρ

(
− γ′′ + γ′

(
ρ′ − γ′

)
+

2ρ′

r

)
(2.4.11)

∇µBµθ − Jθ = ∇µBµϕ − Jϕ = 0. (2.4.12)

Again repeating this process for the vector field in terms of bt (2.3.9), we find the components

∇µBµt − Jt =
1

r

(
e−2(γ+ρ)

(
− rb′′t + b′t

(
r

(
γ′ + ρ′

)
− 2

)
+

ξ

κ
bt

(
rγ′′ + γ′

(
rγ′ − rρ′ + 2

))))
(2.4.13)

∇µBµr − Jr =
ξ

κ
e−4ρ

√
e2ρ

(
b2t e

−2γ − 1

)(
− γ′′ + γ′

(
ρ′ − γ′

)
+

2ρ′

r

)
(2.4.14)

∇µBµθ − Jθ = ∇µBµϕ − Jϕ = 0. (2.4.15)

2.5 Power Series Ansatz Form of the Solution

In order to find solutions from our field equations and our equations of motion, we must find the values
of ρ, γ, and the vector field both in the form of br and bt. To do this, we need to define an ansatz form
for our solution.
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All continuous functions can be written as a power series expansion around some central point. In
particular, the origin can be chosen to generalize the power series to include all positive and negative
terms. Such a series is called a Laurent series and is defined by:

f(z) =

∞∑
n=−∞

anz
n (2.5.1)

The advantage of this form over a more typical sum over only positive exponents is that we cannot
have positive powers of r. We expect the geometry of the space to be asymptotically flat in the limit
as r tends towards infinity. Any positive power of r in our sum would tend towards infinity as r goes
to infinity, disrupting this local flatness; therefore, we are left only with constant and negative power
terms.

f(z) =

0∑
n=−∞

anz
n (2.5.2)

Adapting this more general form of the series to the exact parameters given by the bumblebee field
and our metric, we can use

f = a0 +
a1
r

+
a2
r2

+O(1/r3) (2.5.3)

as the ansatz for our solutions. We use this ansatz form for γ, ρ, and either br or bt within any given
calculation.
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Results

3.1 Ansatz form of ρ and γ

Writing ρ and γ in the form of our ansatz, defined in Equation 2.5.3, gives

ρ = a0 +
a1
r

+
a2
r2

+O(1/r3) (3.1.1)

and

γ = b0 +
b1
r

+
b2
r2

+O(1/r3), (3.1.2)

where b0 is the coefficient that allows for the rescaling of the time coordinate. We find later that this
constant remains undetermined in our solutions because of this rescaling freedom.

Similarly, we can write br and bt as

br = c0 +
c1
r

+
c2
r2

+O(1/r3) (3.1.3)

and

bt = c0 +
c1
r

+
c2
r2

+O(1/r3). (3.1.4)

It is important to note here that br and bt both use c as their coefficient because the results of the
vector field in terms of each were solved independently of the other. The c0 coefficients determine the
asymptotic behavior of the vector field; in order to have a uniform field asymptotically, they would need
to have constant values.

3.2 Solving for Values of ρ and γ

The form of the Einstein equation that we used in 2.4.2 requires all the components of Gµν to equal
zero, meaning each term in our series must also equal zero. Therefore, we expect to find values for the
coefficients such that the numerators of each term become zero.

To solve for our coefficients, we began by attempting to simplify our series equations by looking for
coefficients whose values we could substitute into the code without the risk of losing any solutions. In
effect, we wanted to find coefficients that have exactly one value, without which at least one of our terms
would not go to zero. The full form of our series equations and the exact process by which they were
simplified is presented in appendices A.2 and A.3.

3.2.1 Solutions for Vector Field Written in Terms of br

In the case of the series defined in terms of br, γ, and ρ, we defined c0 = 0 so as to have a timelike
solution where br goes to 0 asymptotically. We were able to determine that a0 = 0 must be true, as does
a1 = −b1 (detailed process in appendix A.2).
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Implementing these simplifications, we were able to use our Mathematica code to solve for the other
coefficients. This yielded the results,

a2 = 0 b1 = 0 b2 = 0 c1 = 0 (3.2.1)

b0 remains undetermined which represents that we are able to rescale our time coordinate, as we would
expect. All instances of c2 were eliminated by the substitution of a1 = −b1, meaning it, too, remains
undetermined.

3.2.2 Solutions for Vector Field Written in Terms of bt

The same process was used to solve for the vector field in terms of bt (appendix A.3), where the
substitutions used to simplify the equations before they were solved using Mathematica were a0 =
0, a1 = −b1, and c0 = eb0 . In this case, the code yielded

a2 =

e−2b0

(
8e2b0b21

ξ
κ

2
− 12e2b0b21

ξ
κ + 8e2b0b21 + 2c21

ξ
κ

2
+ 3c21

ξ
κ − 2c21

)
4

(
2 ξ
κ

2
− 3 ξ

κ + 2

)

b2 = −
e−2b0

(
4e2b0b21

ξ
κ

2
− 6e2b0b21

ξ
κ + 4e2b0b21 + 2c21

ξ
κ − c21

)
2

(
2 ξ
κ

2
− 3 ξ

κ + 2

)
c2 = −

e−b0c21
ξ
κ (2

ξ
κ − 1)

2

(
2 ξ
κ

2
− 3 ξ

κ + 2

) . (3.2.2)
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Discussion

The solutions presented in 3.2.1, and 3.2.2 have different values for the c0 coefficient. As mentioned in
Section 3.1, the values for c0 describe the asymptotic behavior of the different components of the vector
field. Therefore, it is possible for them different to have different values. However, we would expect all
other coefficients’ values to be the same. One possible solution to the results shown in 3.2.2 is every
coefficient equalling zero, like those in 3.2.1, which would match our expectations. However, the square
root in Equation 2.3.9 implies the potential existence of fractional powers of r, which are not included
in the current form of our ansatz.

While further work is needed to confirm our results, especially those presented in 3.2.2, our results
for 2.3.8, as seen in 3.2.1, suggest that all defined coefficients of the series to the third order other
than c0 are zero. It is possible that higher-order terms have nonzero coefficients. In order to verify our
result, we attempted to solve the field equations and equations of motion directly. To demonstrate these
calculations, we will be using the vector field in terms of br.

We begin by assuming that br ̸= 0, γ ̸= 0, and ρ ̸= 0, in effect, preserve that the bumblebee vector
field does exist and that our equations do have solutions other than those that were already found. We
then can consider the ∇µBµr − Jr 2.4.11 component as it is the simplest

∇µBµr − Jr =
ξ

κ
bre

−4ρ

(
− γ′′ + γ′

(
ρ′ − γ′

)
+

2ρ′

r

)
= 0. (4.0.3)

There are several ways for this statement to be true; however, the one that does not violate our assump-
tions is when

γ′′ = γ′
(
ρ′ − γ′

)
+

2ρ′

r
. (4.0.4)

As all our field equations and equations of motion must equal zero, we can now implement this form
of γ′′ as a simplification in our other equations. From there, we can use our program to solve other
equations looking for exclusively real solutions. Given this simplification, our code could not find any
real solutions, suggesting that one or more of our assumptions cannot hold. Proving these solutions
analytically would take substantial effort and is beyond the scope of this work. However, our code being
unable to find any real solutions without violating our initial assumptions does support the conclusions
found earlier.

The previous work in this section suggests that γ = ρ = 0 is likely the only solution to our Einstein
equations. If that is the case, then we can substitute them back into our metric 2.3.1 to get

gµν = diag(−e2(0), e2(0), r2, r2 sin2 θ), (4.0.5)

which simplifies to

gµν = diag(−1, 1, r2, r2 sin2 θ). (4.0.6)

This is the metric for flat space written in spherical coordinates.
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If the only solutions to our Einstein equations are those associated with flat spacetime, this presents
a problem for the model we are considering, as it suggests that there are no black hole solutions for an
asymptotically timelike bumblebee field. Our current understanding of general relativity dictates that
the existence of a black hole necessitates a curvature of spacetime. Our solutions predict a spacetime
that is perfectly flat everywhere, which by definition cannot contain a black hole. Given that such an
empty space is incompatible with the universe as we know it to exist, our model is likely not viable.
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Conclusion

The results of our work solving the Einstein equations in the presence of a bumblebee vector field cast
doubt on the viability of this model. Our solutions suggest that this model can only exist in a perfectly flat
spacetime. Such a situation is fundamentally at odds with our observations of the universe. Therefore,
if these results hold, the bumblebee model is not a physically viable model.

There are some significant limits to the work done for this project, and future work must be conducted
to test this model further and validate our results. Most importantly, our ansatz will need to be redefined
to account for possible fractional powers. Along with this, exact analytical or numerical solutions should
be found for the Einstein equations to prove that the only solutions are the ones shown in this work.
Finally, a further study should be conducted to solve the Einstein equation with the inclusion of the
matter sector. It is also possible that solutions could be found using this model if we relaxed some of
our constraints, including looking for possible solutions that might exist outside the potential minimum
or those that do not require strict spherical symmetry.
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[18] V. Alan Kostelecký and Matthew Mewes. “Testing local Lorentz invariance with gravitational
waves”. In: Physics Letters B 757 (June 2016), pp. 510–514. issn: 0370-2693. doi: 10.1016/j.
physletb.2016.04.040. url: http://dx.doi.org/10.1016/j.physletb.2016.04.040.
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Appendices

A.1 Overview of Method

We created a program using Mathematica and the xTensor package which allows for solving the
Einstein tensor and the equations of motion to find solutions for ρ and γ in terms of their ansatz
equations.

We begin by defining a four-dimensional manifold, reserving the letters ”a” through ”p” to use as
indices. We also define ρ and γ to be scalar functions. We then define a Birkhoff metric within this
manifold as a diagonal metric with components shown in equation 2.3.1.

To define the background field, we define br and bt as scalar functions and ±b2 as a constant symbol.
We then express the background vector field in terms of these symbols. It is important to note here that
we create two code files that run identical processes, with one defining the background field entirely in
terms of br, and the other entirely in terms of bt, as made possible by 2.3.8.

We then calculate the covariant derivative of the metric and the Ricci tensor. Using these and equation
2.2.7, we calculate the stress-energy tensor using a constant symbol for ξ

κ . We use equation 2.2.8 to find
the Einstein tensor. We then calculate the equations of motion using equation 2.2.10. We can simplify
the resulting equations by setting ±b2 = 1 and setting our constants to unity.

A.2 Ansatz forms for γ, ρ, and br

In this section, we provide the ansatz forms of γ, ρ, and br (ref eqs here) and detail the method by
which they were simplified. To do this, we rewrite Equations 2.4.3, 2.4.4, 2.4.5, 2.4.10, and 2.4.11 using
the series forms of γ, ρ, and br which result in

Gtt − κTtt =

e−2(a0+b0)

(
e2a0 − 1

)
r2

−

(
e2a0 − 1

)(
2b1e

−2(a0+b0)

)
r3

+

e−2(2a0+b0)

(
e2a0

(
b21

(
4e2a0 − 2 ξ

κ − 5

)
− 4b2

(
e2a0 + ξ

κ − 1

)
+ 4a21 + 2a1b1

ξ
κ − 4a2

)
+ 2c21

ξ
κ

)
2r4

+O
(

1

r5

)
(A.2.1)
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Grr − κTrr =
e−4a0 − e−2a0

r2
+

2e−4a0

(
− b1 + a1

(
e2a0 − 2

))
r3

+

e−6a0

(
e2a0

(
16a21 + 16a1b1 − 8a2 + 8b2 + b21

)
− 4e4a0

(
a21 − a2

)
− 2c21

ξ
κ

)
2r4

+O
(

1

r5

)
(A.2.2)

Gθθ − κTθθ =

1
2e

−2a0

(
− 4a21 − 6a1b1 + 4a2 + b21 + 8b2

)
+ c21

ξ
κe

−4a0

r6
+

e−2a0(a1 + b1)

r5
+O

(
1

r7

)
(A.2.3)

∇µBµt − Jt =

e−4a0

(
e2a0

(
a1(b1 − b1

ξ
κ ) + b21

ξ
κ + (2b2)(

ξ
κ − 1)

)
− c21

)
√
e2b0r4

+O
(

1

r5

)
(A.2.4)

∇µBµr − Jr = −
2c1

ξ
κe

−4a0(a1 + b1)

r4
+

ξ
κe

−4a0

(
c1(8a

2
1 + 9a1b1 − 4a2 − b21 − 6b2)− 2c2(a1 + b1)

)
r5

+O
(

1

r6

)
(A.2.5)

Given the form of the Einstein equation in 2.4.2 that we used requires all the components of Gµν to
equal zero we expect to find values for the coefficients such that every term of these series also go to
zero. To that end, we look for numerators that require a set value for one of our coefficients to become
zero.

In the case of the above equations, the 1
r2 term of Grr − κTrr is

e−4a0 − e−2a0

r2
.

we can see from this term that a0 = 0 is the only possible value that allows the whole term to be zero.
We can then implement this value as a simplification to our equations resulting in the series forms of γ,
ρ, and br simplifying to

Gtt − κTtt =

e−2b0

(
4a21 + 2a1b1

ξ
κ − 4a2 − 2b21

ξ
κ − b21 − 4b2

ξ
κ + 2c21

ξ
κ

)
2r4

+O
(

1

r5

)
(A.2.6)

Grr − κTrr = −2(a1 + b1)

r3
+

6a21 + 8a1b1 − 2a2 +
b21
2 − 4b2 − c21

ξ
κ

r4
+O

(
1

r5

)
(A.2.7)

Gθθ − κTθθ =
a1 + b1

r5
+

−2a21 − 3a1b1 + 2a2 +
b21
2 + 4b2 + c21

ξ
κ

r6
+O

(
1

r7

)
(A.2.8)

∇µBµt − Jt =
a1(b1 − b1

ξ
κ ) + b21

ξ
κ + 2b2(

ξ
κ − 1)− c21√

e2b0r4
+O

(
1

r5

)
(A.2.9)
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∇µBµr − Jr = −
2c1

ξ
κ (a1 + b1)

r4
+

ξ
κ

(
8a21c1 + 9a1b1c1 − 2a1c2 − 4a2c1 − b21c1 − 2b1c2 − 6b2c1

)
r5

+O
(

1

r6

)
. (A.2.10)

In these simplified forms of the equations, we find that the 1
r3 term of Grr − κTrr and the 1

r5 term of
Gθθ − κTθθ have an (a1 + b1) as the primary component of their numerator, implying that a1 = −b1.
Using this, we find that

Gtt − κTtt =

e−2b0

(
− 4a2 + b21(3− 4 ξ

κ ) + 2 ξ
κ

(
c21 − 2b2

))
2r4

+O
(

1

r5

)
(A.2.11)

Grr − κTrr =
−2a2 − 3b21

2 − 4b2 − c21
ξ
κ

r4
+O

(
1

r5

)
(A.2.12)

Gθθ − κTθθ =
2a2 +

3b21
2 + 4b2 + c21

ξ
κ

r6
+O

(
1

r7

)
(A.2.13)

∇µBµt − Jt =
b21(2

ξ
κ − 1) + 2b2(

ξ
κ − 1)− c21√

e2b0r4
+O

(
1

r5

)
(A.2.14)

∇µBµr − Jr =
−2c1

ξ
κ (2a2 + b21 + 3b2)

r5
+O

(
1

r6

)
(A.2.15)

This is the final form the series equations were reduced to before being solved with Mathematica.

A.3 Ansatz forms for γ, ρ, and bt

In this section, we provide the ansatz forms of γ, ρ, and bt (3.1.2, 3.1.1 3.1.4) and detail the method
by which they were simplified. To do this, we rewrite Equations 2.4.6, 2.4.7, 2.4.8, 2.4.13, and 2.4.14
using the series forms of γ, ρ, and bt which result in

Gtt − κTtt =

e−4b0 ξ
κ

(
e2b0 − c20

)
r2

−
2

(
e−4b0b1

ξ
κ

(
e2b0 − c20

))
r3

+
1

2r4

(
e−4b0

(
− 4e2b0

(
a21(

ξ

κ
− 1)− ξ

κ

(
a2 + b21 − b2

)
+ a2

)
+ 2c0

ξ

κ

(
c0

(
2a21 + 5a1b1 − 2(a2 + b2)− b21

)
+ 2c2

)
− 8c0c1

ξ

κ
(a1 + b1) + c21(2

ξ

κ
− 1)

))
+O

(
1

r5

)
(A.3.1)
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Grr − κTrr =

ξ
κ

(
e−2b0c20 − 1

)
r2

+
−2e−2b0c20

ξ
κ (3a1 + 2b1) + 6a1

ξ
κ − 2a1 + 4b1

ξ
κ − 2b1

r3

+

(
e−2b0

(
− 2e2b0

(
2a21(8

ξ

κ
− 3) + a1b1(17

ξ

κ
− 8)− ξ

κ

(
8a2 + b21 + 10b2

)
+ 2a2 + 4b2

)
+ 2c0

ξ

κ
(c0(a1 + b1)(16a1 + 5b1)− 8c0(a2 + b2)− 2c2)− 8c0c1

ξ

κ
(a1 + b1) + c21(1− 2

ξ

κ
)

))
1

2r4

+O
(

1

r5

)
(A.3.2)

Gθθ − κTθθ =

(a1 + b1)

(
ξ
κ

(
e−2b0c20 − 1

)
+ 1

)
r5

+
1

2r6

(
e−2b0

(
2e2b0(

ξ

κ
− 1)

(
2a21 + 3a1b1 − 2a2 − b21 − 4b2

)
(A.3.3)

+ 4c0
ξ

κ

(
c0

(
− (a1 + b1)

2 + a2 + b2

)
+ c2

)
+ 2c0c1

ξ

κ
(a1 + b1) + c21(2

ξ

κ
− 1)

))
+O

(
1

r7

)
(A.3.4)

∇µBµt − Jt =

e−2b0

(
c0

ξ
κ

(
− a1b1 + b21 + 2b2

)
+ c1(a1 + b1)− 2c2

)
r4

+O
(

1

r5

)
(A.3.5)

∇µBµr − Jr = −
2

(
ξ
κ (a1 + b1)

√
e−2b0c20 − 1

)
r3

+
1

r4
(
e2b0 − c20

)(
ξ

κ

√
e−2b0c20 − 1

(
e2b0

(
6a21 + 7a1b1 − 4a2 − b21 − 6b2

)

+ c0

(
2c1(a1 + b1)− c0

(
6a21 + 9a1b1 − 4a2 + b21 − 6b2

))))
+O

(
1

r5

)
. (A.3.6)

Given the form of the Einstein equation in 2.4.2 that we used requires all the components of Gµν to
equal zero we expect to find values for the coefficients such that every term of these series also go to
zero. To that end, we look for numerators that require a set value for one of our coefficients to become
zero.

In the case of the above equations, the 1
r2 term of Gtt − κTtt is

e−4b0 ξ
κ

(
e2b0 − c20

)
r2

. (A.3.7)

In order for the numerator of this term to equal zero e2b0 − c20 must equal zero. This implies that
c0 = eb0 .We can then implement this value as a simplification to our equations resulting in the series
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forms of γ, ρ, and bt simplifying to

Gtt − κTtt =
1

2r4

(
e−4b0

(
2eb0

(
eb0

(
2a21 +

ξ

κ

(
5a1b1 + b21 − 4b2

)
− 2a2

)
+ 2c2

ξ

κ

)
− 8eb0c1

ξ

κ
(a1 + b1) + c21(2

ξ

κ
− 1)

))
+O

(
1

r5

)
(A.3.8)

Grr − κTrr = −2(a1 + b1)

r3

+
1

r4

(
6a21 − 2e−b0

ξ

κ
(2c1(a1 + b1) + c2) + 4a1b1(

ξ

κ
+ 2)− 2a2 +

1

2
e−2b0c21(1− 2

ξ

κ
)

+ 6b21
ξ

κ
+ 2b2(

ξ

κ
− 2)

)
+O

(
1

r5

)
(A.3.9)

Gθθ − κTθθ =
a1 + b1

r5

+
1

r6

(
− 2a21 + e−b0

ξ

κ
(c1(a1 + b1) + 2c2)− a1b1(

ξ

κ
+ 3) + 2a2 +

1

2
e−2b0c21(2

ξ

κ
− 1)

+ b21(1− 3
ξ

κ
)− 2b2(

ξ

κ
− 2)

)
+O

(
1

r7

)
(A.3.10)

∇µBµt − Jt =

e−2b0

(
− eb0 ξ

κ (b1(a1 − b1)− 2b2) + c1(a1 + b1)− 2c2

)
r4

+O
(

1

r5

)
(A.3.11)

∇µBµr − Jr = −2

(
1

r

)7/2(√
2
√
r
ξ

κ
(a1 + b1)

√√√√√e−b0

(
c1 − eb0b1

)
r

)
+O

(
1

r9/2

)
. (A.3.12)

In these simplified forms of the equations, we find that the 1
r3 term of Grr − κTrr and the 1

r5 term of
Gθθ − κTθθ have an (a1 + b1) as the primary component of their numerator, implying that a1 = −b1.
Using this, we find that

Gtt − κTtt =

e−4b0

(
4eb0

(
eb0

(
− a2 − 2 ξ

κ

(
b21 + b2

)
+ b21

)
+ c2

ξ
κ

)
+ c21(2

ξ
κ − 1)

)
2r4

+O
(

1

r5

)
(A.3.13)

Grr − κTrr =
−2a2 +

1
2e

−2b0c21(1− 2 ξ
κ )− 2e−b0c2

ξ
κ + 2b21(

ξ
κ − 1) + 2b2(

ξ
κ − 2)

r4
+O

(
1

r5

)
(A.3.14)

Gθθ − κTθθ =

e−2b0

(
4eb0

(
eb0

(
a2 − ξ

κ

(
b21 + b2

)
+ b21 + 2b2

)
+ c2

ξ
κ

)
+ c21(2

ξ
κ − 1)

)
2r6

+O
(

1

r7

)
(A.3.15)

∇µBµt − Jt =

e−2b0

(
2eb0 ξ

κ

(
b21 + b2

)
− 2c2

)
r4

+O
(

1

r5

)
(A.3.16)

∇µBµr − Jr = O
(

1

r9/2

)
. (A.3.17)

This is the final form the series equations were reduced to before being solved with Mathematica.
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