
Connecticut College Connecticut College

Digital Commons @ Connecticut College Digital Commons @ Connecticut College

Computer Science Honors Papers Computer Science Department

2023

A Study of Attention-Free and Attentional Methods for LiDAR and A Study of Attention-Free and Attentional Methods for LiDAR and

4D Radar Object Detection in Self-Driving Applications 4D Radar Object Detection in Self-Driving Applications

King Wah Gabriel Chan

Follow this and additional works at: https://digitalcommons.conncoll.edu/comscihp

 Part of the Computer Sciences Commons

This Honors Paper is brought to you for free and open access by the Computer Science Department at Digital
Commons @ Connecticut College. It has been accepted for inclusion in Computer Science Honors Papers by an
authorized administrator of Digital Commons @ Connecticut College. For more information, please contact
bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

https://digitalcommons.conncoll.edu/
https://digitalcommons.conncoll.edu/comscihp
https://digitalcommons.conncoll.edu/mathcomsci
https://digitalcommons.conncoll.edu/comscihp?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu

A study of Attention Free and Attentional
methods of LiDAR and 4D radar object

detection for self driving

Gabriel Chan
Department of Computer Science

Connecticut College

Supervisor
Ozgur Izmirli PhD

In partial fulfillment of the requirements for the degree of
Bachelor of Arts in Computer Science

May 2023

Acknowledgements

I’m extremely grateful to Professor Izmirli for being my advisor this

year for providing valuable ideas and feedback to my journey through-

out this thesis. Many thanks to Professor Chung and Professor Lee for

being my readers and providing editing help even with their limited

time.

I would also like to thank my previous collaborators Jianning Deng

and Ivan Zhong at the MAPS lab in the University of Edinburgh for

their invaluable support and guidance as I entered this field. Their

expertise and willingness to collaborate greatly contributed to my

growth as a researcher and the knowledge on this topic.

Abstract

In this thesis, we re-examine the problem of 3D object detection in

the context of self driving cars with the first publicly released View of

Delft (VoD) dataset [1] containing 4D radar sensor data. 4D radar is

a novel sensor that provides velocity and Radar Cross Section (RCS)

information in addition to position for its point cloud. State of the

art architectures such as 3DETR [2] and IASSD [3] were used as a

baseline. Several attention-free methods, like point cloud concate-

nation, feature propagation and feature fusion with MLP, as well

as attentional methods utilizing cross attention, were tested to de-

termine how we can best combine LiDAR and radar to develop a

multimodal detection architecture that outperforms the baseline ar-

chitectures trained only on either modality alone. Our findings in-

dicate that while attention-free methods did not consistently surpass

the baseline performance across all classes, they did lead to notable

performance gains for specific classes. Furthermore, we found that at-

tentional methods faced challenges due to the sparsity of radar point

clouds and duplicated features, which limited the efficacy of the cross-

attention mechanism. These findings highlight potential avenues for

future research to refine and improve upon attentional methods in

the context of 3D object detection.

Contents

1 Introduction 1

1.1 Motivations . 1

1.2 Context of the Study . 2

1.2.1 4D Radar Sensor . 5

1.2.2 Classical approaches to LiDAR object detection 7

1.2.3 Modern Approaches: Deep Learning 8

1.2.4 Attention and Transformers 11

1.3 Objectives and Contributions . 15

2 State of the Art 18

2.1 Notable 3D object detection architectures 18

2.1.1 Frustum PointNet . 19

2.1.2 VoteNet . 20

2.1.3 PointRCNN . 21

2.1.4 3DSSD . 23

2.1.5 IA-SSD . 24

2.2 Point Based Transformer Methods 25

2.2.1 Point Cloud Transformer 25

2.2.2 3DETR . 27

2.2.3 Pointformer . 28

iii

CONTENTS

3 Methodology 29

3.1 Dataset . 29

3.1.1 Popular datasets . 29

3.1.2 Selected dataset . 30

3.2 Framework used . 31

3.2.1 Framework structure . 32

3.3 Evaluation Metrics . 35

3.3.1 Intersection over Union (IoU) 35

3.3.2 Average Precision . 37

3.4 Baseline Models . 39

3.4.1 Transformer baseline . 39

3.4.2 IASSD baseline . 40

3.5 Attention Free Methods . 43

3.5.1 Point Cloud Concatenation 43

3.5.2 Feature interpolation . 45

3.5.3 Feature fusion with MLP 47

3.6 Attentional Methods . 48

3.6.1 Single Cross Attention Layer 49

3.6.2 Cross Attention Block . 51

3.6.3 Cross Attention Variations 52

3.7 Training details . 55

3.7.1 Baseline training . 55

3.7.2 Finetuning procedure . 56

4 Experimental Results 57

4.1 Baseline Performance . 57

4.1.1 Transformer Baseline . 57

4.1.2 IASSD Baseline . 61

iv

CONTENTS

4.2 Attention-free methods . 63

4.2.1 Point Cloud Concatenation 63

4.2.2 Feature interpolation . 65

4.2.3 Feature fusion with MLP 68

4.3 Attentional methods . 69

4.4 Qualitative Results . 73

5 Conclusions 75

References 84

v

List of Figures

1.1 A frame from the dataset Nuscenes [4], LiDAR points are displayed

in grey and radar points in red, 3D ground truth boxes are in green.

Image taken from [5] . 6

1.2 Example output of the Haar road edge detection algorithm oper-

ation on point cloud data. Image taken from [6] 7

1.3 Obstacle map constructed with a LiDAR scan. Image taken from

[6] . 8

1.4 Detected vehicle is outlined in the blue rectangle, and the red line

are the line segments formed by the algorithm. Image taken from

[6] . 9

1.5 Pointnet++ Architecture. Left side illustrates repeated applica-

tions of the set abstraction layer, right side illustrates how the

resulting point features can be used in segmentation and classifi-

cation tasks. 11

1.6 Transformer architecture introduced by Vaswani et al. 12

1.7 Illustration of the attention mechanism. Image taken from [7] . . 13

1.8 Illustration of the multiheaded attention mechanism. Image taken

from [7] . 14

vi

LIST OF FIGURES

2.1 Frustum PointNet detection pipeline. 2D object region proposals

are generated and extruded to a frustum. PointNets are then used

onto the pointcloud within the frustum for prediction 19

2.2 The VoteNet architecture for 3D object detection processes an in-

put point cloud using a PointNet++ backbone network to generate

a subset of seed points with extended features. These seeds create

votes, which are then clustered and refined into final 3D bounding

box proposals [8]. 20

2.3 PointRCNN’s two stage architecture. (a) generates 3D bounding

box proposals from the raw point cloud. (b) refines the proposed

bounding boxes. Image taken from [9]. 22

2.4 3DSSD’s single stage detector architecture. Image taken from [10]. 23

2.5 IASSD’s single stage detector architecture. Image taken from [3]. 24

2.6 PCT architecture. Image taken from [11]. 25

2.7 Left: 3DETR architecture, the Transformer encoder produces a set

of per-point features using multiple layers of self-attention. The

point features and a set of ’query’ embeddings are input to the

Transformer decoder that produces a set of boxes. The predicted

boxes are matched to the ground truth and optimized with a set

loss. 27

2.8 Pointformer architecture. Image taken from [12]. 28

3.1 Vehicle and sensors used for the View of Delft dataset 31

3.2 Design pattern of OpenPCDet . 32

3.3 Directory tree of the View of Delft Dataset 33

3.4 Mathematical expression of 3D IoU. Image taken from [13] 36

3.5 Mathematical expression of BEV IoU. Image taken from [14] . . 36

vii

LIST OF FIGURES

3.6 Orange curve: raw precision-recall points . Green curve: Interpo-

lated precision recall points. Image taken from [15] 38

3.7 3DETR . 39

3.8 Encoder only 3DETR . 39

3.9 Outline of the IASSD-L architecture 41

3.10 Outline of the IASSD-R architecture 42

3.11 Point cloud concatenation architecture, L denotes the number of

LiDAR points and R denotes the number of radar points for a

training example . 44

3.12 Feature interpolation architecture, L denotes the number of Li-

DAR points and R denotes the number of radar points for a train-

ing example . 47

3.13 Late stage feature fusion, L denotes the number of LiDAR points

and R denotes the number of radar points for a training example.

⊕ represents a skip connection . 47

3.14 cross modality cluster matching, the darker colored points are the

points selected via the sampling procedure. For each point, neigh-

bouring points within some radius are sampled. 49

3.15 Query, key, value selection for cross attention applied to a single

matched cluster . 50

3.16 Operations in a MMSA layer. Blue arrows indicate multiscale

grouping, dotted lines and ⊕ represent skip connection 50

3.17 A higher level overview of the architecture utilizing a MMSA layer 51

3.18 Left: Encoder block, which becomes self attention or cross atten-

tion, Right: Cross attention block which utilizes self attention and

cross attention . 52

3.19 Cross-Modality encoder presented in the SelfDoc paper 53

viii

LIST OF FIGURES

3.20 Example of the finetuning procedure. The respective backbones

are training separately in the first stage, then their weights are

used to intialize the corresponding weights in the combined archi-

tecture. 56

4.1 Sample output of 3DETR, ground truth bounding boxes are in

blue, and predicted bounding boxes are in green. 58

4.2 Sample output of encoder only 3DETR, ground truth bounding

boxes are in blue, and predicted bounding boxes are in green. . . 59

4.3 Visualization of seed points used in 3DETR. Input point cloud

is in red, and sampled seed points are in green. Ground truth

bounding boxes are also displayed. 60

4.4 Cropped image of Figure 2.7 illustrating sample input point cloud

of an indoor scene . 61

4.5 toy example of two overlapping gaussian distributions 64

4.6 Visualization of the feature propagation module, length of the pur-

ple vector corresponds to magnitude of velocity 66

4.7 mAP vs k . 67

4.8 mAP vs r . 67

4.9 Another illustration of the attention mechanism [7] 70

4.10 Number of duplicates in radar point clusters in MMSA layer for

each sampling range . 72

4.11 Qualitative results for different methods. Red bounding box indi-

cates the ground truth, while green bounding box represents model

predictions. 74

ix

List of Tables

3.1 KITTI format object label . 34

3.2 Comparison of different choices of Q, K, and V for cross attention 54

4.1 Performance of 3DETR and encoder only 3DETR 58

4.2 Performance of baseline modules. IASSD-L and IASSD-R are

IASSD trained only on LiDAR and radar point cloud as input

respectively. Best performance is in bold 61

4.3 Performance of point cloud concatenation 63

4.4 Performance of feature interpolation with different number of near-

est neighbours k within a search radius r meters. 65

4.5 MLP fusion performance. L denotes the number of layers, Ldim

denotes the dimension of the linear layer in the MLP. 68

4.6 Attentional methods. Single: single cross attention layer, block:

cross attention block as illustrated in 3.18 69

4.7 Average number of points with duplicate features for each sampling

scale, where 16 points are sampled. 72

x

Chapter 1

Introduction

1.1 Motivations

The recent surge in popularity of self-driving cars has sparked significant interest

in the development of advanced perception systems that enable these vehicles to

safely navigate complex environments. The task of autonomous driving poses

a substantial challenge due to the myriad of dynamic factors involved, such as

diverse road conditions, unpredictable behavior of other road users, and ever-

changing environmental factors. Ensuring the safety of passengers, pedestrians,

and other road users is of paramount importance, as any failures or inaccuracies

in the detection and tracking system can lead to severe consequences.

Sensors are the cornerstone of self-driving cars’ detection systems, as they

allow the vehicle to detect, locate, and interpret its surroundings. A wide range

of sensors, including cameras, LiDAR (Light Detection and Ranging), radar,

ultrasonic, and GPS, are employed to capture a comprehensive understanding

of the environment. Among these, LiDAR and cameras have typically been the

main sensors used for perception. However, 4D radar sensors have emerged as

particularly promising for 3D object detection due to their ability to provide

1

1.2 Context of the Study

precise distance, velocity, and object shape information.

To achieve a high level of safety and efficiency in autonomous driving, it is

crucial to develop a robust and accurate object detection model that effectively

utilizes the information provided by these sensors. This requires an object de-

tection model that optimally fuses LiDAR and radar sensor data, which is the

primary focus of our research. By exploring various methods to integrate the

complementary strengths of these two sensor modalities, we aim to devise a mul-

timodal object detection model that surpasses the performance of current state-

of-the-art approaches, thereby contributing to the advancement of self-driving

car detection and tracking systems and, ultimately, their widespread adoption.

1.2 Context of the Study

The idea of self-driving vehicles dates back to the early days of computer science,

with concepts and prototypes appearing in the 1920s and 1930s [16]. However, it

wasn’t until the 1980s that significant progress was made in the development of

self-driving technology, and it wasn’t until the 2000s that the field truly began to

take off. Here is a brief history of self-driving from a computer science perspective:

1980s - Early research: In the 1980s, researchers began to explore the idea

of self-driving vehicles. One of the first notable projects was the Navlab project

at Carnegie Mellon University [17], which developed a self-driving van that used

computer vision and neural networks to navigate.

2000s - DARPA Grand Challenge: The DARPA Grand Challenge, first held

in 2004 [18], was a pivotal moment in the history of self-driving vehicles. The

challenge offered a significant cash prize to the team that could develop an au-

tonomous vehicle capable of driving through a designated course. The first year

of the competition saw no successful finishes, but subsequent years saw significant

2

1.2 Context of the Study

progress, with a team from Stanford University winning the 2005 challenge [19]

and a team from Carnegie Mellon winning the 2007 challenge [6].

2010s - Commercialization: In the 2010s, self-driving technology began to be

commercialized, with companies like Waymo, Uber [20], and Tesla [21] investing

heavily in the technology. In 2018, Waymo (a subsidiary of Google) launched

a self-driving taxi service in Phoenix, Arizona [22], marking the first time self-

driving vehicles were available to the public.

2020s - Continued development: Today, self-driving technology continues to

evolve, with advances being made in areas such as machine learning, computer vi-

sion, and sensor technology. While there are still many challenges to be overcome,

including regulatory issues and the need for further technological development.

One aspect is object detection. Object detection is the process of identifying

and localizing objects of interest in an image or a video stream, and is a critical

component of many computer vision systems. In the context of self-driving cars,

object detection is particularly challenging due to the need to identify a wide

range of objects in a variety of environments in real time.

The importance of object detection in self-driving cars can be understood

in the context of the complex and dynamic nature of the driving environment.

Self-driving cars must be able to accurately detect and track a wide variety of

objects, including other vehicles, pedestrians, bicyclists, road signs, and traffic

signals, among others. Attempts to capture the environment often include the

use of a wide range of sensors like cameras, LiDAR, radar (radio detection and

ranging), and ultrasonic, and other sensors [4].

RGB cameras and LiDAR are two most common sensor technologies used in

self-driving cars for perception. RGB cameras capture images of the surrounding

environment using visible light, while LiDAR emits laser beams in a rotating

pattern, scanning the surrounding environment to detect objects. As the laser

3

1.2 Context of the Study

beams hit objects in the environment, they bounce back to the sensor and are

recorded as points in 3D space [23]. The LiDAR sensor then uses algorithms

to process these points and generate a 3D point cloud map of the environment.

The point cloud map is essentially a collection of 3D points, each representing

the location of an object in the environment. Each point has an x, y, and z

coordinate, representing its position in 3D space, as well as an intensity value

representing the return strength of the beam.

One of the main advantages of RGB cameras is their low cost and wide avail-

ability, making them an attractive sensor option for mass-market adoption. In

addition, RGB cameras can capture color and texture information about objects,

which can be useful for identifying objects that are difficult to detect with LiDAR

alone, such as road signs and traffic lights. While an RGB camera may be able

to capture the textual information of a sign (e.g. speed limit), LiDAR can only

capture the shape of the sign. Hence why RGB cameras can be a cost effect way

to provide a rich source of visual data for object detection algorithms.

However, there are also some drawbacks to using RGB cameras in self-driving

cars. One of the main challenges is their sensitivity to lighting conditions, which

can affect their performance and accuracy. For example, changes in lighting

due to weather conditions or the position of the sun can make it difficult for

cameras to accurately detect objects. In addition, since RGB cameras essentially

project light onto a 2D plane to form an image, very little 3D information can be

inferred natively from a single image. While there are ways to mitigate this by

using multiple cameras [24], RGB cameras fundamentally have a limited depth

perception compared to LiDAR, which can make it difficult to accurately estimate

the distance and speed of objects. Finally, the quality of the image captured by

RGB cameras can be affected by factors such as motion blur and focus, which

can impact their usefulness for object detection.

4

1.2 Context of the Study

LiDAR, on the other hand, provides accurate depth information of the envi-

ronment with a high definition point cloud with hundreds of thousands of points.

This provides valuable information about the shape, size and orientation of ob-

jects in a scene, which can be used to identify and classify objects. In addition,

LiDAR can operate in a wide range of lighting and weather conditions unlike

RGB cameras, making it a reliable sensor for self-driving cars.

However, there are also some drawbacks to using LiDAR in self-driving cars.

One of the main challenges is the cost of the sensor, which can be prohibitively ex-

pensive for mass-market adoption. For example, the flagship LiDAR sensor from

Velodyne can cost up to $75,000, while even the cheapest alternatives by compa-

nies like Luminar Technologies still cost around $1,000 [25]. Another drawback is

the size and weight of the sensor, which can limit its placement and integration

into the vehicle. Finally, LiDAR provides little information regarding the speed

of objects in the environment, as the intensity value of the point is the intensity

of the reflected laser beam and is largely dependent on the distance. As a result,

it is difficult to determine the type of material and the velocity of an object in a

LiDAR point cloud.

1.2.1 4D Radar Sensor

Unlike traditional radar sensors, which have very low spatial resolution and are

therefore able to capture data only in the ground plane in the environment, as

illustrated in Figure 1.1, 4D radar captures additional information about the

height, velocity, and radar cross-section (RCS) of objects. This additional infor-

mation has the potential to significantly improve the accuracy of object detection

and tracking, making 4D radar an exciting emerging sensor for autonomous driv-

ing applications.

4D radar sensors work by emitting electromagnetic waves, which bounce off

5

1.2 Context of the Study

Figure 1.1: A frame from the dataset Nuscenes [4], LiDAR points are displayed
in grey and radar points in red, 3D ground truth boxes are in green. Image taken
from [5]

of objects in the environment and are then detected by the sensor. The time

it takes for the waves to bounce back to the sensor provides information about

the distance to the object, while the Doppler effect provides information about

the object’s velocity. The radar cross-section, or RCS, of an object refers to the

amount of electromagnetic energy that is reflected back to the sensor, which can

be used to infer the size and shape of the object.

Like LiDAR sensors, 4D radar data is most often captured in a point cloud

format, and is similarly robust to adverse weather conditions and poor lighting

conditions. However, while they have a much higher resolution (higher number of

points) than traditional radar sensors, a single scan from a 4D radar sensor still

only contains on the order of hundreds of points. While it is able to provide data

like velocity and RCS that LiDAR and RGB cameras cannot, the sparsity of the

point cloud prevents 4D radar sensors from being used independently for object

detection purposes, especially for safety critical tasks like self driving. Therefore

6

1.2 Context of the Study

one of the main objects is to investigate how we could integrate radar with other

sensors to enhance object detection capabilties.

1.2.2 Classical approaches to LiDAR object detection

While LiDAR has always played a part in attempts to solve self driving, the al-

gorithms employed to use the acquired point cloud data has evolved over time. In

team Carnegie Mellon University’s vehicle in the 2007 DARPA Urban Challenge[6],

they employed various non deep learning methods such as Haar wavelet trans-

forms, heuristic edge detection with adaptive thresholding, and dynamic pro-

gramming methods for optimal line splitting to detect road edges. Figure 1.2

illustrates sample output using the Haar wavelet transform method.

Figure 1.2: Example output of the Haar road edge detection algorithm operation
on point cloud data. Image taken from [6]

Another method used for object detection utilized the elevation differences of

points in a scan coupled with a cost function to determine the traversability of the

terrain to build an obstacle map of its environment, as illustrated in Figure 1.3.

As the authors stated themselves, this approach had many limitations as well.

7

1.2 Context of the Study

For example, the algorithm considers foliage as obstacles and does not explicitly

locate the object in the point cloud.

Figure 1.3: Obstacle map constructed with a LiDAR scan. Image taken from [6]

Algorithms were deployed to detect objects for each of the sensors, and while

this may have increased the detection robustness, their approach to detecting

vehicles using LiDAR in isolation was rather simple. It utilizes an algorithm to

cluster LiDAR points into linear segments and convex 90 degree corner objects,

as shown in Figure 1.4. While this algorithm may be sufficient to detect basic

shapes, it would have been difficult to classify the different detected objects for

further downstream tasks. Moreover, the detected object is only considered from

the Bird’s Eye View (BEV) perspective, neglecting the vertical dimension.

1.2.3 Modern Approaches: Deep Learning

With advances in LiDAR sensors, deep learning architectures and hardware,

complex tasks such as object detection on point clouds has largely shifted to-

wards using deep learning models. The shift accelerated when PointNet[26] and

PointNet++[27] were published. They were two seminal papers in deep learning

architectures for processing point clouds, which have had a significant impact on

the field of 3D perception.

8

1.2 Context of the Study

Figure 1.4: Detected vehicle is outlined in the blue rectangle, and the red line are
the line segments formed by the algorithm. Image taken from [6]

Prior to the introduction of PointNet[26] in 2017, point clouds were typi-

cally processed using hand-crafted features, such as point feature histograms [28].

These techniques were often computationally expensive and required domain-

specific knowledge, making them difficult to generalize to different applications.

Furthermore, processing point clouds come with their own challenges, the

primary one being that points can be ordered arbitrarily in a point cloud as they

are essentially stored as 2D arrays. E.g. a point cloud consisting of 5 points and

their 3D coordinates would be a 5×3 array. Thus any model must be invariant to

all n! permutations of a point cloud of size n. Additionally, it is not guaranteed

that each LiDAR scan will contain the same number of points. Contrasting to

images where the image resolution is typically predefined and can be manipulated.

9

1.2 Context of the Study

PointNet was introduced to address these issues, by introducing a neural

network architecture that can directly process raw point cloud data without the

need for hand-crafted features. The architecture uses a combination of multi-layer

perceptrons (MLPs) and max pooling to learn a global feature representation for

the point cloud. This representation can be used for tasks such as classification,

segmentation, and object detection. PointNet achieved state-of-the-art (SOTA)

performance on several benchmark datasets, and is now considered a foundational

method for point cloud processing. The PointNet model can be summarized as

follows. Given an unordered point set {x1, x2, . . . , xn} with xi ∈ Rk, one can

define a set function f : X→ R, that maps a set of points to a vector:

f(x1, x2, . . . , xn) = γ

(
Max
i=1,...,n

{h(xi)}
)

(1.1)

where γ and h are typically MLPs, and X = (M,d) is a discrete metric space, with

M ⊆ Rk being the set of points and d being the Euclidean metric. PointNet was

the first published deep learning model capable of approximating any continuous

set function.

PointNet++ [27] was introduced in 2017 as an extension of the PointNet

architecture, which addresses the issue of scale invariance. Its architecture is

displayed in Figure 1.5. While PointNet can process point clouds of any size, it

is not able to capture fine-grained details at different scales. PointNet++ ad-

dresses this issue by using a hierarchical neural network architecture to process

point clouds at different scales. The network uses a set abstraction module to

group points into local regions. For a point cloud with N points, M points are

chosen with M < N via a downsampling algorithm like farthest point sampling

(FPS), and for each M points, group k nearest points within some sampling ra-

dius r, and pass those k points and their features through a PointNet to acquire

a point cloud with M points and new features. This process constitutes one set

10

1.2 Context of the Study

abstraction layer, and this is typically repeated multiple times. Furtheremore,

one technique that is often used in practice is called multiscale grouping (MSG).

This is modification where the sampling procedure is repeated twice within a set

abstraction layer, with sampling radii r1 and r2 and sampled points k1 and k2 re-

spectively. The features at each scale are passed through a PointNet respectively

before concatentation and passed through MLP once more. Pointnet++ and the

set abstraction module has continued to be key design in state of the art object

detection models that followed its publication.

Figure 1.5: Pointnet++ Architecture. Left side illustrates repeated applications
of the set abstraction layer, right side illustrates how the resulting point features
can be used in segmentation and classification tasks.

1.2.4 Attention and Transformers

A Transformer is a deep neural network architecture that was introduced in the

paper ”Attention Is All You Need” by Vaswani et al. in 2017 [29]. It was originally

designed specifically for natural language processing (NLP) tasks such as machine

translation, language modelling, and text generation, but has since seen usage

across different fields like computer vision, becoming a foundational model within

11

1.2 Context of the Study

the field of deep learning.

Figure 1.6: Transformer architecture introduced by Vaswani et al.

At the heart of the transformer is the attention mechanism, which allows the

model to focus on the most relevant parts of the input sequence when making

predictions. In a traditional recurrent neural network (RNN), the model processes

the input sequence one element at a time, using a hidden state to summarize

the information learned so far. However, this approach has several drawbacks,

including difficulty in capturing long-term dependencies and slow training times.

The attention mechanism in the transformer addresses these issues by allowing

the model to directly attend to all elements of the input sequence at once, without

the need for recurrent connections. In the transformer model, the architecture

of which is illustrated in Figure 1.6, each layer consists of two sub-layers: a

multi-head self-attention mechanism and a feed-forward neural network. The self-

12

1.2 Context of the Study

attention mechanism allows the model to attend to different parts of the input

sequence with varying degrees of importance, while the feed-forward network

applies a non-linear transformation to the attention output. Given a set of query

vectors Q ∈ Rn×dk , a set of key vectors K ∈ Rn×dk , and a set of value vectors

V ∈ Rn×dv , the scaled dot product attention computes the weighted sum of value

vectors as:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V

where n is the number of elements in the input sequence, dk and dv are the

dimensions of the key and value vectors respectively, and softmax is the softmax

function that normalizes the attention scores across the input sequence. The dot

product QKT is scaled by
√
dk to ensure that the magnitude of the dot product

is not affected by the dimensionality of the input sequence.

Figure 1.7: Illustration of the attention mechanism. Image taken from [7]

The special case where Q = K = V is most frequently called self attention,

as the mechanism re-weights the input feature vectors using the input vectors

13

1.2 Context of the Study

themselves. This mechanism enabled back propagation to differentially determine

which features are important and updating the vectors themselves accordingly.

This process is illustrated in figure 1.7.

In practice however, multi-headed self attention is more frequently used, where

each feature vector x ∈ Rd
k is linearly projected into n different vectors with

dimension dk
n

, where the n final vectors are concatenated back together, this is

illustrated in Figure 1.8. The authors point out that this enabled the network to

learn multiple relationships between the set of vectors.

Figure 1.8: Illustration of the multiheaded attention mechanism. Image taken
from [7]

Notably, the self-attention mechanism is naturally permutation invariant be-

cause it uses dot product and softmax operations to compute the weights between

every pair of input vectors, without considering their position in the set. This

means that each feature vector is compared to every other input vector in the

set, and the resulting weights are used to compute a weighted sum that captures

the relationships between all vectors, regardless of their order.

14

1.3 Objectives and Contributions

This permutation invariance is a desirable property for some tasks, where the

order of the input features are not important. It allows the self-attention mech-

anism to capture the relationships between all pairs of input vectors, regardless

of their position.

In many natural language processing tasks however, such as language model-

ing and machine translation, the order of the tokens is critical to the meaning of

the text. To address this issue, additional vectors called positional embeddings

are added to the input vectors to encode their position in the sequence. These

positional embeddings are learned during the training process and are added to

the input embeddings before they are fed into the self-attention layer.

The positional embeddings provide a way for the model to distinguish be-

tween tokens based on their position in the sequence. By adding the positional

embeddings to the input embeddings, the model can differentiate between tokens

with the same embedding but different positions in the sequence.

1.3 Objectives and Contributions

The objective of this thesis is therefore to explore the following three main ques-

tions:

1. Is it possible to utilize a vanilla transformer-like model to not only per-

form object detection on outdoor dataset, but also incorporate additional

information from an extra modality?

• The motivation being the simplicity of the transformer model and the

success of modern architectures based on the transformer. This ques-

tion is most tempting of all as it would further illustrate the flexibility

of the transformer architecture to multimodal point cloud problems.

15

1.3 Objectives and Contributions

2. If we cannot achieve (1), how can we then take a state of the art archi-

tecture for LiDAR based object detection and improve it such that it can

process both LiDAR and radar information without the use of the attention

mechanism?

• Relative to developing an entirely new architecture, it would be ad-

vantageous to build off state of the art methods and incorporate tech-

niques such as transfer learning to tackle this problem.

3. If we use the attention mechanism in the form of cross attention, is it

possible to outperform methods that do not use attention?

• Given the supposed superiority of the attention mechanism, can we

incorporate into our methods building off the state of the art archi-

tectures to further improve performance?

and we summarize our contributions in exploring these questions as follows:

1. Vanilla Transformer-like models like [2] cannot achieve reasonable perfor-

mance for outdoor datasets due to the following reasons. Firstly, randomly

selecting points as seed points as the decoder input, which ultimately be-

comes the prediction proposals, is poor strategy for outdoor datasets due to

how little points an object may have. This is compared to indoor datasets

where point clouds are much more smaller and therefore more dense. Fur-

thermore, even when only using the encoder coupled with downsampling,

the resulting proposals are of much more lower quality compared to archi-

tectures based on Pointnet.

2. We introduced three attention free methods: (a) point cloud concatenation,

(b) feature interpolation, and (c) feature fusion with MLP. These methods

are advantageous given the little additional computations requires. This

16

1.3 Objectives and Contributions

because the operations introduced are either performed on the raw input

point cloud for (a) and (b), or utilize a single MLP at the final stage. While

(c) was able to improve the overall average performance above the baseline

method, much like (a) and (b) it suffered from a loss of performance in the

car class.

3. We introduce the Multimodal Set Abstraction (MMSA) layer which inte-

grates variations of cross attention, from a single layer, to stacked trans-

former encoder with normalization layers and MLPs. We find that the best

variation performs similar to the feature fusion with MLP. Investigations

attribute this phenomenon to the fact that nearby radar proposal points in

the final layer frequently have the same features. As a result, when apply-

ing cross attention with LiDAR to these duplicated features, the net result

is essentially applying the identity matrix to the set of radar features.

17

Chapter 2

State of the Art

2.1 Notable 3D object detection architectures

In the following section, we review a selection of relevant architectures developed

in recent years. The model described in section 2.1.1 was the first work that uti-

lized PointNet as the base model, VoteNet (Section 2.1.2) introduced a shifting

operations that was adopted in many subsequent models like [10] [3]. PointRCNN

(Section 2.1.3) is a two stage anchor box model that illustrates a common but

computationally intensive approach used by earlier models similar to 2D anchor

box based models. 3DSSD (Section 2.1.4) was the first model to drastically sim-

plify the two-stage anchor based model into a single stage detector that directly

regressed bounding boxes from the final point features. IASSD (Section 2.1.5)

is a subsequent model that further improved the performance and efficiency of

single stage detectors by introducing a novel downsampling strategy. Section 2.2

overviews several methods that adapted the vanilla transformer model for point

clouds.

18

2.1 Notable 3D object detection architectures

2.1.1 Frustum PointNet

Frustum PointNet [30] was proposed by the creator of PointNet++[27] Charles

R. Qi et al. in their 2018 paper titled “Frustum PointNets for 3D Object Detec-

tion from RGB-D Data”. The Frustum PointNet model builds upon the Point-

Net++ architecture by incorporating a frustum-based approach to object de-

tection, which involves generating 2D bounding boxes from RGB-D data and

projecting them into 3D space to create frustums. Figure 2.1 illustrates this ap-

proach. The algorithm then uses PointNet++’s set abstraction module to extract

features from the point clouds within the frustums and classify the objects within

them.

Figure 2.1: Frustum PointNet detection pipeline. 2D object region proposals
are generated and extruded to a frustum. PointNets are then used onto the
pointcloud within the frustum for prediction

Frustum PointNet was trained on the KITTI dataset and achieved SOTA

performance, outperforming previous methods. Frustum PointNet’s use of Point-

Net++’s set abstraction (SA) module was significant because it demonstrated the

effectiveness of a SA module in handling point clouds for object detection tasks.

The set abstraction module allowed Frustum PointNet to efficiently capture local

and global features from point clouds, and provided a scalable framework for han-

19

2.1 Notable 3D object detection architectures

dling point clouds of varying sizes and densities. Since then, the set abstraction

module has become a popular component in many lidar point cloud object detec-

tion algorithms, including PointRCNN, PV-RCNN, 3DSSD, and many others.

2.1.2 VoteNet

Figure 2.2: The VoteNet architecture for 3D object detection processes an input
point cloud using a PointNet++ backbone network to generate a subset of seed
points with extended features. These seeds create votes, which are then clustered
and refined into final 3D bounding box proposals [8].

After PointNet++, many architectures like Frustum PointNet was published, uti-

lizing the set abstraction layers as the key building block of the models. However,

all such models still face an intrinsic problem of predicting a 3D bounding box

from point clouds. The center of a 3D object can be far from any surface point,

thus making it hard to regress accurately in one step.

The key innovation in VoteNet is the vote layer, inspired by the Hough trans-

form [31], which is a feature extraction technique that transforms an image from

the spatial domain to a parameter space. In this parameter space, the object’s

features are represented as points, and the object’s location is identified by de-

tecting the parameters that cause these points to align.

The Hough transform works by accumulating evidence for each parameter

hypothesis from the input data, and object detection is performed by identifying

the parameters with the highest evidence. In the case of Hough voting, the

evidence is obtained by casting votes from individual data points, which can

20

2.1 Notable 3D object detection architectures

be image pixels or point cloud points, to the parameter space. The votes are

accumulated in a voting space, and the peaks in this space correspond to the

most likely object locations or poses.

VoteNet adapts the concept of Hough voting for deep learning-based 3D object

detection in point clouds. Instead of relying on hand-crafted features and a

predefined parameter space, VoteNet learns to generate votes for object centers

directly from the input point cloud using a deep neural network. Each point in

the point cloud casts a vote to predict the center of the object it belongs to, and

these votes are aggregated to generate a set of potential object centers. This

method is illustrated in Figure 2.2

Thus, the vote layer can then be added after several set abstraction layers to

further shift points closer towards potential object centers before predicting the

final bounding boxes.

2.1.3 PointRCNN

Unlike Frustum PointNet, PointRCNN [9] is a lidar-based 3D object detection

algorithm that was proposed by Shi et al. in their 2019 paper titled “PointRCNN:

3D Object Proposal Generation and Detection from Point Cloud”. It is a two-

stage detection framework that aims to generate accurate object proposals and

classify them into different object categories. Notably, it does not use any images

during training and inference, while outperforming previous methods.

21

2.1 Notable 3D object detection architectures

Figure 2.3: PointRCNN’s two stage architecture. (a) generates 3D bounding box
proposals from the raw point cloud. (b) refines the proposed bounding boxes.
Image taken from [9].

In the first stage of PointRCNN, as illustrated in Figure 2.3, a region proposal

network (RPN) is used to generate a set of 3D object proposals from the input

point cloud. The RPN is designed to first segment the point cloud into foreground

(points within an object’s bounding box) and background (points not within a

bounding box) points. This is done using PointNet Set Abstraction and Feature

Propagation modules. Similar to the image based RCNN, it then generates 3D

bounding boxes for each of these predicted points.

In the second stage of PointRCNN, as illustrated in Figure 2.3, the point-wise

features and foreground mask is used to refine each of the proposed bounding

boxes utilizing a PointNet style encoder. All point features inside a proposed

bounding box is fed into a PointNet style encoder to refine the bounding box

location and dimensions and predict a final confidence value for that bounding

box.

22

2.1 Notable 3D object detection architectures

2.1.4 3DSSD

At the time of publication, PointRCNN did outperform existing methods, how-

ever its two stage anchor box based architecture was slow. To this end, 3DSSD

was introduced as an efficient one stage model eliminating the computationally

expensive feature propagation modules.

The architecture of 3DSSD was relatively simple compared to previous meth-

ods, as illustrated in Figure 2.4. At each stage, it used various sampling algo-

rithms to select a number of a seed points from the input point cloud as input

for the set abstraction layer. This included D − FPS, which is simply vanilla

Farthest point sampling, and F−FPS or Feature-Farthest point sampling, which

selected points based on the spatial distance and semantic feature distance as the

criterion in FPS.

C(A,B) = λLd(A,B) + Lf (A,B)

where Ld(A,B) and Lf (A,B) represent L2 XY Z distance and L2 feature distance

between two points and λ is the balance factor.

At the final stage, the resulting feature vectors are fed into two MLPs to

predict the class and parameters of bounding boxes. The entire architecture is

shown in Figure 2.4

Figure 2.4: 3DSSD’s single stage detector architecture. Image taken from [10].

23

2.1 Notable 3D object detection architectures

3DSSD outperformed previous single stage methods, and have similar perfor-

mance to the top performing two stage detector. This is while being 2.6 times

faster than PointRCNN, and 2.1 times faster than STD, the best performing two

stage detector at the time.

2.1.5 IA-SSD

IA-SSD was introduced by Zhang et al. in the 2022 paper “Not All Points Are

Equal: Learning Highly Efficient Point-Based Detectors for 3D LiDAR Point

Clouds.”

IA-SSD’s main improvement upon 3DSSD’s single stage architecture by intro-

ducing a new centroid aware sampling strategy during the set abstraction layers.

Figure 2.5: IASSD’s single stage detector architecture. Image taken from [3].

This is accomplished by utilizing a soft point mask during training

Maski =

√
min(f ∗, b∗)

max(f ∗, b∗)
× min(l∗, r∗)

max(l∗, r∗)
× min(u∗, d∗)

max(u∗, d∗)
(2.1)

where f ∗, b∗, l∗, r∗, u∗, d∗ represent the distance of a point to the 6 surfaces (front,

back, left, right, up and down) of the bounding box, respectively. This mask is

24

2.2 Point Based Transformer Methods

used to assign higher weight towards points inside a bounding box via a weighted

cross entropy loss to train a MLP to output confidence values. These confidence

values outputted by the MLP are then used during inference to keep the top k

points, therefore performing a downsampling operation with preference towards

points closer to object centroids.

With this centroid-aware downsampling strategy, IASSD removes the use of

F − FPS of 3DSSD, which were still computationally intensive. IASSD has

maintained competitive performance with both two stage and single stage meth-

ods, and most notably being much more efficient than all previous methods. For

example, it is 5.9 times faster than PointRCNN.

2.2 Point Based Transformer Methods

The following section provides an overview of several related works that explore

transformer based architectures for point cloud based detection.

2.2.1 Point Cloud Transformer

Figure 2.6: PCT architecture. Image taken from [11].

The Point Cloud Transformer (PCT) is a novel framework designed specifically

for point cloud learning. It successfully adapts the transformer architecture from

natural language processing to handle unordered point sets effectively and ef-

25

2.2 Point Based Transformer Methods

ficiently. The architecture of PCT is illustrated in Figure 2.6 [11]. The key

contributions of PCT can be summarized as follows:

Coordinate-based Input Embedding: PCT introduces a coordinate-based in-

put embedding module that incorporates raw positional encoding and input em-

bedding. Since each point in a point cloud has unique coordinates representing

its spatial position, this module generates distinguishable features that allow the

model to process unordered point sets.

Optimized Offset-Attention Module: PCT improves upon the original self-

attention mechanism with an optimized offset-attention module. This approach

replaces the attention feature with the offset between the input of the self-

attention module and the attention feature. The offset-attention module offers

two advantages: it uses relative coordinates, which are more robust due to varying

absolute coordinates caused by rigid transformations, and it is akin to a Laplace

process, as the point cloud is treated as a graph with a float adjacency matrix as

the attention map.

Neighbor Embedding Module: To enhance the point embedding process, PCT

incorporates a neighbor embedding strategy. The attention mechanism is effective

in capturing global features but may overlook local geometric information. The

neighbor embedding module addresses this issue by considering attention between

local groups of points containing semantic information, rather than individual

points.

PCT demonstrated state-of-the-art performance on shape classification, part

segmentation, semantic segmentation, and normal estimation tasks. However, it

was not used for object detection.

26

2.2 Point Based Transformer Methods

2.2.2 3DETR

Figure 2.7: Left: 3DETR architecture, the Transformer encoder produces a set of
per-point features using multiple layers of self-attention. The point features and
a set of ’query’ embeddings are input to the Transformer decoder that produces a
set of boxes. The predicted boxes are matched to the ground truth and optimized
with a set loss.

3DETR [2] is an end-to-end Transformer-based model for 3D object detection in

point clouds, offering a competitive and conceptually simple alternative to spe-

cialized architectures that rely on hand-tuned hyperparameters and 3D-specific

operators. By employing standard Transformers with non-parametric queries and

Fourier positional embeddings, 3DETR is able to process unordered 3D point

cloud data effectively, casting 3D object detection as a set-to-set problem. The

model’s architecture is illustrated in Figure 2.7.

The 3DETR model follows a general encoder-decoder structure similar to

both its 2D counterpart DETR [32] and the vanilla transformer architecture [29].

It replaces the PointNet++ set abstraction layer with a standard Transformer

applied directly on point clouds, and adapts the parallel decoding strategy from

DETR with Transformer layers to suit 3D detection. Key modifications include

non-parametric query embeddings and Fourier positional embeddings.

Experiments were only conducted on standard indoor 3D detection datasets

ScanNetV2[33] and SUN RGB-D [34], and efforts to reproduce 3DETR on outdoor

datasets like KITTI [35] have met little success. In a recent paper by He et al.[36],

they claim that “3DETR present a promising solution by computing self-attention

on a reduced set of seed points, this solution is only applicable to indoor scenes,

where the point clouds are relatively dense and concentrated.”

27

2.2 Point Based Transformer Methods

2.2.3 Pointformer

Figure 2.8: Pointformer architecture. Image taken from [12].

Pointformer [12] is another transformer-based backbone, unlike the previous two

methods however, pointformer was tested on the outdoor self driving dataset

KITTI [35]. Pointformer utilizes various modified transformer blocks they denote

by pointformer blocks, as follows:

Local Transformer (LT) Module: The LT module models interactions among

points within a local region, learning context-dependent region features at an

object level. This enables the Pointformer to capture local dependencies and

improve feature learning for scenes with multiple cluttered objects.

Local-Global Transformer (LGT): The LGT integrates local features with

global features from higher resolutions, allowing the Pointformer to capture both

local and global dependencies effectively.

Global Transformer (GT) Module: The GT module learns context-aware rep-

resentations at the scene level, further enhancing the Pointformer’s ability to

process 3D point clouds effectively.

28

Chapter 3

Methodology

In the follow chapter, we will introduce the dataset and framework used to develop

and test our models, the metrics used to evaluation detection models and the

several attention free and attention based methods we introduce. Finally we also

outline the training details of the methods.

3.1 Dataset

3.1.1 Popular datasets

One of the most popular datasets used for self-driving research is the KITTI

Vision Benchmark Suite, which was developed by the Karlsruhe Institute of

Technology and the Toyota Technological Institute at Chicago. The KITTI

dataset includes a range of data types, including high-resolution color images,

grayscale stereo images, 3D point clouds captured by a Velodyne LiDAR sensor,

and GPS/IMU data. The dataset contains 7481 training images and 7518 test

images, with a total of 80,256 labeled objects in the training set and 80,408 la-

beled objects in the test set. The labeled objects include cars, pedestrians, and

cyclists, and are divided into eight classes: car, van, truck, pedestrian, person

29

3.1 Dataset

sitting, cyclist, tram, and miscellaneous. The KITTI dataset has been widely

used to train and test object detection, tracking, and segmentation algorithms

for autonomous driving [35].

Another notable dataset is the nuScenes dataset [4], which was developed by

autonomous vehicle technology company nuTonomy (now part of Aptiv). The

nuScenes dataset includes 1000 scenes captured in Boston and Singapore, with

each scene consisting of 20 seconds of sensor data captured by a range of sensors,

including six high-resolution cameras, one LiDAR sensor, and five radar sensors.

The dataset contains 1.4 million images, 400,000 LiDAR scans, and 1.1 million

3D annotated bounding boxes across 23 object classes. In addition, the nuScenes

dataset includes information about the weather, lighting conditions, and traffic

flow for each scene. The nuScenes dataset has been widely used for a variety of

tasks, including object detection, tracking, and behavior prediction.

Another notable dataset is the Waymo Open Dataset [37], which was de-

veloped by Alphabet subsidiary Waymo. The dataset was captured with the

following sensors by Waymo’s autonomous vehicles, including five high-resolution

cameras and 5 LiDAR sensors. The dataset contains over 12.6 million 3D anno-

tated bounding boxes with tracking ID across 28 different classes. The Waymo

Open Dataset has been used to train and test a range of object detection and

tracking algorithms, as well as for other tasks such as sensor fusion and semantic

segmentation.

3.1.2 Selected dataset

Although all the previous datasets have been popular for training state of the art

architectures, they cannot be used in this case. 4D radar only became accessible

in the past two years, and therefore none of these datasets have 4D radar data.

Recently, the View Of Delft (VoD) Dataset [1] was released. The VoD dataset is

30

3.2 Framework used

Figure 3.1: Vehicle and sensors used for the View of Delft dataset

the first publicly available dataset with 4D radar data. The size of the dataset

is comparable to KITTI, with 8600 frames and 13 annotated classes collected in

the city streets of the Dutch city Delft. While there exists two other datasets

with 4D radar data (TJ4DRadSet[38], KAIST-Radar[39]), they are not currently

publicly accessible yet and therefore not usable for now. As a result, all of the

investigation in this thesis will be conducted using the VoD dataset.

3.2 Framework used

The foundation of our experiments is the OpenPCDet framework [40], an open-

source project developed by the OpenMMLab team, which provides a compre-

hensive framework for 3D object detection from point clouds.

31

3.2 Framework used

OpenPCDet is a versatile and flexible library designed to facilitate the im-

plementation, training, and evaluation of 3D object detection models that utilize

point cloud data. Point clouds are sets of points in a 3D coordinate system, usu-

ally obtained from devices such as LiDAR sensors or stereo cameras. OpenPCDet

provides a modular and extensible platform that integrates various state-of-the-

art 3D object detection methods, making it an ideal choice for our experiments.

Furthermore, the authors of the baseline model IASSD also used OpenPCDet,

therefore developing upon IASSD in OpenPCDet is a natural choice.

The library supports many prominent 3D object detection algorithms, includ-

ing PointPillars [41], SECOND , and Part-A2 Net, among others. Furthermore, it

provides extensive pre-processing, data augmentation, and evaluation tools that

enable seamless experimentation and customization. The library is implemented

in Python and built on top of the PyTorch deep learning framework, allowing for

efficient GPU acceleration during model training and inference.

3.2.1 Framework structure

Figure 3.2: Design pattern of OpenPCDet

Figure 3.2 illustrates the design pattern of OpenPCDet. There currently exists

32

3.2 Framework used

many popular dataset formats, but the three most common follow the format of

KITTI, Waymo, and NuScenes. The VoD dataset follows the format of KITTI,

where the data for the lidar sensor is stored as follows:

Lidar

ImageSets

full.txt

test.txt

train.txt

train_val.txt

val.txt

testing

calib

image_2

pose

velodyne

training

calib

image_2

label_2

pose

velodyne

Figure 3.3: Directory tree of the View of Delft Dataset

The point clouds themselves are stored as binary files under the velodyne

folder, images under the image_2 folder, calibration files containing the data to

calculate the transformation matrices from one reference frame to another (e.g.

LiDAR to camera, radar to LiDAR), and the ground truth bounding boxes are

in the label_2 folder in a text file where each line represents an object,

OpenPCDet then converts the data into a unified coordinate system, ready

for data preparation. The framework has many built-in data processing and aug-

mentation functions, a few of them are listed below.

33

3.2 Framework used

Values Name Description
1 type Describes the type of object: ’Car’, ’Van’, ’Truck’,

’Pedestrian’, ’Person_sitting’, ’Cyclist’, ’Tram’, ’Misc’
or ’DontCare’

1 truncated Not used, only there to be compatible with KITTI for-
mat.

1 occluded Integer (0,1,2) indicating occlusion state: 0 = fully vis-
ible, 1 = partly occluded 2 = largely occluded.

1 alpha Observation angle of object, ranging [−π..π]
4 bbox 2D bounding box of object in the image (0-based index):

contains left, top, right, bottom pixel coordinates
3 dimensions 3D object dimensions: height, width, length (in meters)
3 location 3D object location x, y, z in camera coordinates (in me-

ters)
1 yaw Rotation around -Z axis of the LiDAR sensor [−π..π]
1 score Only for results: Float, indicating confidence in detec-

tion, needed for p/r curves, higher is better.

Table 3.1: KITTI format object label

Data processing

• Voxelization: Transforming raw point cloud data into a structured 3D grid

representation by dividing the point cloud into voxels, which can help im-

prove the efficiency of the detection process.

• Masking points: Removing points outside a range

• Shuffling points: Shuffling the order of points

• Sampling points: Sampling n points from each input.

Data Augmentation:

• Point cloud rotation: Rotating the point cloud around a specific axis to

generate new orientations of the data and improve model robustness.

34

3.3 Evaluation Metrics

• Point cloud scaling: Scaling the point cloud data by a random factor to

simulate different object sizes and improve model generalization.

• Point cloud flipping: Flipping the point cloud along one or multiple axes

to generate new views of the data.

• Random sampling: Randomly sampling points from the point cloud to

generate a fixed-size input for the model, which can help control the com-

putational complexity.

• Ground Truth Sampling: Placing additional ground truth boxes and the

containing points for each object class.

Such augmentation methods are frequently used during training of object

detection models like [10][9][3].

3.3 Evaluation Metrics

3.3.1 Intersection over Union (IoU)

In the realm of 3D object detection, evaluating the performance and accuracy

of a model is crucial for understanding its effectiveness in real-world scenarios.

This section provides an overview of commonly used evaluation metrics for 3D

object detection models, including 3D Intersection over Union (IoU), and Bird’s

Eye View (BEV) IoU.

3D Intersection over Union (IoU) is a widely-used evaluation metric for 3D

object detection. It quantifies the overlap between the predicted and ground-truth

3D bounding boxes, providing an intuitive measure of the model’s accuracy. The

3D IoU is defined as the ratio of the volume of the intersection between the two

bounding boxes to the volume of their union. The 3D IoU can be expressed as:

35

3.3 Evaluation Metrics

Figure 3.4: Mathematical expression of 3D IoU. Image taken from [13]

A higher IoU value indicates a better alignment between the predicted and

ground-truth bounding boxes, with 1 being a perfect match and 0 indicating no

overlap. The 3D IoU metric is particularly useful for measuring the localization

accuracy of a 3D object detection model, as it considers the spatial dimensions

and orientation of the bounding boxes.

The Bird’s Eye View (BEV) IoU is another evaluation metric that assesses

the performance of 3D object detection models. It focuses on the 2D projection of

the 3D bounding boxes onto the ground plane, providing a top-down perspective.

This metric measures the overlap between the predicted and ground-truth 2D

bounding boxes in the horizontal plane, disregarding the height information.

To calculate the BEV IoU, the following formula is used:

Figure 3.5: Mathematical expression of BEV IoU. Image taken from [14]

36

3.3 Evaluation Metrics

Similar to the 3D IoU, a higher BEV IoU value signifies a better alignment

between the predicted and ground-truth bounding boxes, with 1 indicating a

perfect match and 0 representing no overlap. BEV IoU is particularly relevant in

scenarios where the primary focus is on the horizontal localization accuracy,

3.3.2 Average Precision

We can now understand the context of using average precision (AP) as an eval-

uation metric for object detection models. To calculate AP, we utilize precision

and recall

Precision =
TP

TP + FP

Recall = TP

TP + FN

where true positives (TP) are the number of instances correctly predicted as

positive by the model, false positives (FP) are the number of instances incorrectly

predicted as positive by the model, and false negatives (FN) are the number of

instances incorrectly predicted as negative by the model. In the case for 3D

object detection, TP are predictions that have a 3D IoU with the ground truth

of greater than some threshold.

Suppose our model outputted n predictions, the predictions are first sorted by

their confidence value, then Precisioni and Recalli are calculated for i = 1, . . . , n,

where Precisioni and Recalli are the metrics calculated with the top i confident

predictions. The precision values can then be plotted against the recall values in

what is commonly called the precision-recall (PR) curve. An example of a PR

curve is illustrated in Figure 3.6.

37

3.3 Evaluation Metrics

Figure 3.6: Orange curve: raw precision-recall points . Green curve: Interpolated
precision recall points. Image taken from [15]

The raw PR curve is then smoothed out by replacing all precision values p at

a recall value r with the maximum precision for all recall values greater than r.

Then finally, the convention is to select 11 evenly spaced out points on this green

curve and average the precision values to yield the AP.

For all experiments, we calculate the AP for the classes car, pedestrian, and

cyclist with an IoU threshold of 0.5,0.25,0.25 respectively, unless stated otherwise,

in accordance to the authors of the VoD dataset [1]. Finally, mean average

precision (mAP) is a metric used to demonstrate a model’s overall performance

across all classes. mAP is calculated by taking the average of the AP of each

class.

mAP =
1

nclasses

nclasses∑
i

APi

38

3.4 Baseline Models

3.4 Baseline Models

3.4.1 Transformer baseline

First to address research question 1, we would like to test whether it is possible

to employ an encoder-decoder network similar to the vanilla transformer model.

Since 3DETR most resembles this, we first determine whether 3DETR can be

adapted for this purpose.

Figure 3.7: 3DETR

Figure 3.7 illustrates the 3DETR architecture in more detail. The input point

cloud is processed by the pre-encoder which downsamples the point cloud to 2048

points through a shared MLP. Next, the points are passed through eight normal

transformer encoder blocks. 256 seed points are then sampled from the 2048

points via FPS and used as the input to the decoder block. The seed points

and the encoder output are then used as input for the decoder block, similarly

repeated eight times before regressing into bounding boxes.

Figure 3.8: Encoder only 3DETR

Furthermore, we also test an encoder only model by removing the decoder

blocks from the 3DETR module and reducing the number of encoder blocks.

39

3.4 Baseline Models

After each encoder block, we downsample the points and pass the features through

an MLP to increase the feature dimension. The number of points and feature

dimension is chosen to be (4096, 128) → (1024, 128) → (512, 128) → (256, 512)

to closely resemble the number of points in each set abstraction layer in IASSD

as illustrated in Figure 3.9.

3.4.2 IASSD baseline

In addition to adapting 3DETR to our dataset, we will also test several methods

by modifying an existing state of the art architecture. The model chosen is IA-

SSD, which is currently the most efficient single stage detector with competitive

performances to two stage detectors. Figures 3.9 and 3.10 illustrate the archi-

tecture of IASSD trained on LiDAR and radar inputs denoted as IASSD-L and

IASSD-R respectively. The main difference is the number of points sampled at

each set abstraction layer.

40

3.4 Baseline Models

Figure 3.9: Outline of the IASSD-L architecture

41

3.4 Baseline Models

Figure 3.10: Outline of the IASSD-R architecture

IASSD-L during training, each LiDAR point cloud is first downsampled to

4096 points via Furthest Point Sampling. The point cloud is then fed into the

first set abstraction layer, resulting in 1024 points each with feature dimension of

64. This is then repeated twice more to 256 points with feature dimension of 256

before passing through a vote layer to shift points towards potential centroids,

before one more set abstraction layer to yield 256 points with feature dimension

of 512. These 256 points can be interpreted as 256 proposals for potential objects.

They are then fed into the prediction head which consists of two MLP branches.

The CLS branch predicts the class of each proposal, and the REG branch predicts

the parameters of the bounding box, such as x, y, z, l, w, h, θ. These two branches

combined output 256 bounding boxes, which during training is fed into various

loss functions. During inference, post processing is then applied, like non-maximal

suppression, to yield the final predicted bounding boxes. Training process is

42

3.5 Attention Free Methods

identical for IASSD-R except for number of downsampled points.

More generally, we can describe the consecutive set abstraction layers as the

feature extraction backbone as outlined in red in Figures 3.9 and 3.10. As the

layers in aggregate take in a set of point clouds, and output a set of features for

the prediction head.

3.5 Attention Free Methods

Compared to other multimodal fusion problems, such as text with image, audio

with video, where the representation of the modalities the problem of fusing

LiDAR and radar sensor information may seem ostensibly more straightforward

given that both LiDAR and 4D radar sensor information is represented as point

clouds. Contrasting to other common multimodal problems with text being a

sequence of words or characters, images are 2D grids of pixels with color channels

(e.g., RGB), and audio is a time series of continuous or discrete samples. This

heterogeneity in data representation makes it challenging to develop a unified

framework for processing and combining the data.

Although both data from both sensors are captured in the form of a point

cloud, fusing information is still no easy task given the characteristics of point

cloud processing. Thus, the following methods we introduced will be explored.

3.5.1 Point Cloud Concatenation

A canonical approach that one may hope would work is to preprocess both cloud

points and combine them into one. Let R ∈ R3+2 be the radar point cloud and

L ∈ R3+1 be the LiDAR point cloud, then we apply the map points from both

modalities to a common feature dimension using fr : R → R6 and fl : L → R6,

43

3.5 Attention Free Methods

where the mapping functions are defined as.

fl

([
x y z I

]T)
=
[
x y z I 0 0

]T
fr

([
x y z RCS vdoppler

]T)
=
[
x y z 0 RCS vdoppler

]T
We can then concatenate the sets of points, thus our input point cloud P

becomes

P ∈ R6 := {fl(p) | ∀ p ∈ L} ∪ {fr(p) | ∀ p ∈ R}

The motivation behind this approach is not dissimilar to audio-image tasks

where the audio data is first transformed into a spectrogram, and concatenated

along the channel axis of the image. Another view of this approach is simply

that we are padding to match the feature dimensions and concatenating the set

of points.

Figure 3.11: Point cloud concatenation architecture, L denotes the number of
LiDAR points and R denotes the number of radar points for a training example

By transforming both LiDAR and radar data into a common feature space,

we can more effectively combine the two modalities into a single input. This

approach may help in leveraging the strengths of both LiDAR and radar data,

providing a more comprehensive representation of the environment. As a result,

the performance of 3D object detection models could be improved, as the models

44

3.5 Attention Free Methods

would have access to richer feature information from both LiDAR and radar

sources while maintaining similar computational costs as only one backbone is

needed. The modifications to IASSD to test this method are illustrated in Figure

3.11, where we only need one additional lightweight layer before the backbone.

3.5.2 Feature interpolation

Another reasonable approach can be derived from examining the drawbacks of

both modalities. LiDAR provides robust and detailed geometric information,

but is unable to provide any additional information about the collected data

points. I.e. the point cloud of a person moving at 50mph would appear the same

as someone not moving at all. Which the 4D radar sensor is able to provide,

as it contains information about the material (RCS) and the velocity (Doppler

velocity) of collected points. Thus the question arises: would the hypothetical

optimal sensor be one that is able to capture a dense and feature rich point

cloud? I.e. would the ideal sensor be one that captures points with features

[x, y, z, Intensity, RCS, vdoppler]?

To test this hypothesis, we apply Algorithm 1 as outlined below to approxi-

mate this hypothetical ideal point cloud by interpolating radar features to neigh-

boring LiDAR points.

We first define the following helper functions. knn(K,l,R) is the standard

knn neighbours, that samples K nearest neighbours of point l within a radius R

in the radar point cloud R. It returns a subset of R with size K.

knn : R→ R′ where R′ ⊆ R and |R′| = K

average_features(k_radar_points) takes in a set of radar points, and av-

45

3.5 Attention Free Methods

Algorithm 1 Feature interpolation
Require: L ∈ R3+1 set of LiDAR points
Require: R ∈ R3+2 set of radar points

R← r ▷ r is sampling radius
K ← k ▷ k is number of neighbours
Lnew ← []
for l in L do

k_radar_points ← knn(K,R, l,R)
k_features← average_features(k_radar_points[3 :])
l ←concat(l,k_features)
Lnew.append(l)

end for
return Lnew

erages the features of the points excluding x, y, z, its coordinates. I.e. the function

averages the RCS and vdoppler values of the set of points.

average_features : R′ → R2

Finally, concat(l,k_features) simply concatenates the averaged radar fea-

tures to the LiDAR point l. I.e. it maps the LiDAR point from (x, y, z, Intensity)

to (x, y, z, Intensity, RCS, vdoppler).

concat : L→ R6

The algorithm begins by initializing the input LiDAR points, L, and radar

points, R. It then proceeds to iterate through each LiDAR point, finding the K

nearest radar points to each LiDAR point using the k-nearest neighbors (knn)

method. The average of the radar point features is then computed, and the

LiDAR point is augmented with these interpolated features. This updated LiDAR

point is then appended to the new LiDAR point set, Lnew. Once all LiDAR

points have been processed, the updated point set, Lnew, is returned.

46

3.5 Attention Free Methods

Figure 3.12: Feature interpolation architecture, L denotes the number of LiDAR
points and R denotes the number of radar points for a training example

The architecture used to test this method is illustrated in Figure 3.12, like

directly concatenating the point clouds, this method is lightweight and only re-

quires one additional module prior to the feature extraction backbone. This

method allows us to examine the potential benefits of combining the strengths

of both LiDAR and radar data in a single, dense point cloud. By incorporating

the interpolated radar features into the LiDAR data, the resulting point cloud

may provide a more comprehensive representation of the environment, potentially

improving the performance of 3D object detection models.

3.5.3 Feature fusion with MLP

Given how sensor fusion is typically categorized into early and late stage [42], we

will now introduce a late stage method to test late stage fusion.

Figure 3.13: Late stage feature fusion, L denotes the number of LiDAR points
and R denotes the number of radar points for a training example. ⊕ represents
a skip connection

47

3.6 Attentional Methods

As illustrated in Figure 3.13, we first employ two separate feature extraction

backbones, one for LiDAR and one for radar respectively to extract features for

each modality. Next, we match each of the LiDAR proposals to its nearest radar

proposal and concatenate the features before passing them through a multilayer

layer perceptron with a skip connection. The resulting features have locally rele-

vant features from the opposing modality, and hence contains more information

compared to the baseline single modality method.

While late stage feature level fusion may have its advantages, one clear down-

side is the additional computational cost required to train the additional feature

extraction backbone for the second modality.

3.6 Attentional Methods

Next, we dicuss the methods used to test whether introducing the attention mech-

anism can benefit multimodal fusion. All such methods will be tested on the final

set abstraction layer of the feature extraction backbone. This is due to the fact

that literature shows evidence that the attention mechanism benefits when the

input feature sequence has higher dimension [29].

The three attention based methods will be tested using the following layer

that we will now introduce, the multimodal set abstraction (MMSA) layer. All

point based object detection models that utilize the pointnet++ set abstract layer

benefit from the fact that throughout each layer, we aggregate local point features

through local sampling and grouping. Therefore with an additional modality,

we must take into consideration the importance of locality. Thus, the key idea

behind the MMSA layer is first matching each LiDAR cluster to a radar cluster,

as illustrated in Figure 3.14. If both of the LiDAR and radar clusters are close

together in the scene, one can expect that the points in both modalities to belong

48

3.6 Attentional Methods

to the same foreground or background object.

Figure 3.14: cross modality cluster matching, the darker colored points are the
points selected via the sampling procedure. For each point, neighbouring points
within some radius are sampled.

Since we will be replacing the final set abstract layer with the proposed MMSA

layer, the features at this stage are physically close to the final prediction pro-

posals. Thus we should expect an effective mechanism to be able to combine the

LiDAR and radar features.

3.6.1 Single Cross Attention Layer

The most direct method to incorporate attention is to apply cross attention on

the matched features. Cross attention as originally proposed by Vaswani et al.

[29] assigned one set of feature vectors as the query, and the other set of features

to be the key and value. Again, the motivation behind this approach is to allow

the query and key vectors to create a mask that reweights each key vector as a

linear combination of all key vectors.

49

3.6 Attentional Methods

Figure 3.15: Query, key, value selection for cross attention applied to a single
matched cluster

This is illustrated in Figure 3.15. Therefore after applying the cross attention

layer, we will have a set of radar features reweighted by the LiDAR features.

These features are then concatenated with the original LiDAR features before

passing through a PointNet layer.

Figure 3.16: Operations in a MMSA layer. Blue arrows indicate multiscale group-
ing, dotted lines and ⊕ represent skip connection

Figure 3.16 illustrates how the MMSA layer behaves in more detail when

replacing the final set abstraction layer. Points from both modalities are passed

50

3.6 Attentional Methods

through their respective feature extraction backbones normally until the the final

layer, which they are then inputted into the MMSA layer. As per pointnet++

convention, multiscale grouping is used to sampled points are different scales,

yielding 16 and 32 clusters respectively. At each scale, cross attention is then

applied with the LiDAR features being the query, and radar features being the key

and value. Finally, the resulting attenuated features are then concatenated back

to the original features before maxpooling and MLP to yield the final features.

After understanding what the MMSA layer is doing, we can represent it like

another module and therefore represent this proposed architecture as illustrated

in Figure 3.17.

Figure 3.17: A higher level overview of the architecture utilizing a MMSA layer

3.6.2 Cross Attention Block

As discussed in the related works section, there has been some success in creating

point based transformer models for object detection, but few specifically for out-

door scenarios like self driving. Pointformer was one architecture that was able

to be applied to outdoor datasets like KITTI with competitive results. We there-

fore replace the single cross attention layer with a cross attention block, which is

adapted from the Local-Global Transformer [12]. Where LiDAR and radar are

the input instead of LiDAR points at different scales in the original Local-Global

Transformer. The block is illustrated in Figure 3.18.

51

3.6 Attentional Methods

Figure 3.18: Left: Encoder block, which becomes self attention or cross attention,
Right: Cross attention block which utilizes self attention and cross attention

3.6.3 Cross Attention Variations

Given the multimodal nature of our problem, it may be helpful to observe what

approaches others are taking for different problems. For example, document and

PDF analysis with deep learning is another challenging task due to the inherent

nature of documents. Documents often consist of various elements, such as text,

images, tables, and graphs, that are organized in diverse layouts and structures.

Analyzing and understanding these elements require processing and extracting

information from both the visual and textual modalities, making document anal-

ysis perhaps surprisingly a multimodal problem, despite ostensibly being a text

based problem.

52

3.6 Attentional Methods

The multimodal aspect of document analysis necessitates the integration of

computer vision and natural language processing techniques. Convolutional Neu-

ral Networks (CNNs) are often employed to extract visual features from document

images, while NLP methods are utilized to process and extract textual informa-

tion. This is similar to the multimodal problem of LiDAR and 4D radar, where

complementary sensor modalities are combined to improve object detection and

perception in autonomous systems.

One recent approach to tackling this problem was presented in the paper Self-

Doc: Self-Supervised Document Representation Learning by [43], where optical

character recognition was used to extract textual features and a document ob-

ject detector using Faster R-CNN [44] to extract visual features. A transformer

based method utilizing cross attention and self attention was then used to fuse

the features together.

Figure 3.19: Cross-Modality encoder presented in the SelfDoc paper

However, the key difference between the cross attention used here compared

to vanilla cross attention is the values of the query, key and values. Normally

the key and value features come from one modality, while the query feature is

53

3.6 Attentional Methods

from the other. In the cross-modality encoder, as illustrated in Figure 3.19, the

query, key, and value features are selected differently. The different ways these

values were selected are illustrated in Table 3.2, where A and B are sets of feature

vectors from different modalities.

Scenario Query (Q) Key (K) Value (V)
Normal Cross Attention A B B
CrossAtt1 A B A
CrossAtt2 A A B

Table 3.2: Comparison of different choices of Q, K, and V for cross attention

In CrossAtt1, the attention scores between A and B is used to reweight A.

In the context of LiDAR and radar features, where A represents LiDAR features

and B represents radar features, we are using the relationships between LiDAR

and radar features to reweight the LiDAR features. The final set of output

features in this case would contain LiDAR features, but their significance would

be determined by the relationships found between LiDAR and radar features.

This version of cross attention allows for the incorporation of radar features’

information to influence the final output, while still maintaining the output to be

based on the LiDAR features.

Compared to CrossAttn2, which uses the attention scores between A and A

to reweight B. In the context of LiDAR and radar features, where A represents

LiDAR features and B represents radar features, we are using the relationships

within the LiDAR features to reweight the radar features. The final set of output

features in this case would contain radar features, but their significance would be

determined by the relationships found within the LiDAR features. This version of

cross attention allows for the incorporation of radar features into the final output,

while still being guided by the structure present in the LiDAR features.

For all previous methods then, we can utilize these variations of cross attention

54

3.7 Training details

to determine whether there exists one variation that is best suited for fusing

LiDAR and radar information

3.7 Training details

3.7.1 Baseline training

For IASSD-L, we apply the following scene-level and object level. The detailed

settings are as follows:

• Random world flip along x axis.

• Random world rotation along z axis with random angle with range [−π
4
, π
4
].

• Random world scaling with random factors with range [0.95, 1.05] Object-

level augmentation

• Random objects from other scenes with more than 5 points are added to

the current scene. Number of objects samples per class is as follows:

– Car: 20

– Pedestrian: 15

– Cyclist: 15

We use a learning rate of 0.01 and the Adam one-cycle optimizer with a weight

decay of 0.2 and momentum of 0.9 to train IASSD-L with a maximum number

of epochs of 80.

55

3.7 Training details

3.7.2 Finetuning procedure

For all methods that involve two separate feature extraction backbones, we em-

ploy the following common finetuning procedure that is common for transfer

learning tasks [45]. First, we train the baselines IASSD-L and IASSD-R from

scratch, the weights from the epoch with the best validation set preformance is

then used to initialize all the corresponding weights in the combined architecture.

If the combined architecture has any new modules or layers, those are initialized

as normal. This process is illustrated in Figure 3.20. Since there is only one

prediction head in a combined model, the weights from IASSD-L are used to

intialize the combined prediction head. Therefore only weights from the feature

extraction backbone is used from IASSD-R.

Figure 3.20: Example of the finetuning procedure. The respective backbones are
training separately in the first stage, then their weights are used to intialize the
corresponding weights in the combined architecture.

56

Chapter 4

Experimental Results

In this chapter, we present and discuss the performance results of

• Baseline methods: 3DETR, encoder only 3DETR, IASSD-L, IASSD-R

• Attention-free methods: Point cloud concatenation, feature interpolation,

feature fusion with MLP

• Attentional methods: MMSA layer with single cross attention layer and

cross attention block

4.1 Baseline Performance

In the following section, we present the performance results of the baseline meth-

ods, which is then used for comparison to the various other methods tested.

4.1.1 Transformer Baseline

We report the best results of adapting 3DETR in Table 4.1 on LiDAR points only.

These results mostly match the findings of [36], who also discovered that 3DETR

57

4.1 Baseline Performance

Model Car
3D IoU=0.5

Pedestrian
3D IoU=0.25

Cyclist
3D IoU=0.25 mAP

3DETR did not converge
encoder only

3DETR 17.91 0.82 2.22 6.98

Table 4.1: Performance of 3DETR and encoder only 3DETR

was largely ineffective for outdoor scenes. Figures 4.1 and 4.2 are examples of

the predictions for the respective models.

Figure 4.1: Sample output of 3DETR, ground truth bounding boxes are in blue,
and predicted bounding boxes are in green.

To investigate why 3DETR fails to converge and deliver competitive benefits,

we can visualise the input points, along with the sampled seed points used for

the decoder. An example scene is illustrated in Figure 4.3. We observe that the

seed points sampled extremely evenly throughout the scene, as expected when

using FPS. Since the seed points and their features are ultimately what is used to

regress into bounding boxes, this results in predicted bounding boxes being evenly

58

4.1 Baseline Performance

Figure 4.2: Sample output of encoder only 3DETR, ground truth bounding boxes
are in blue, and predicted bounding boxes are in green.

spread across the entire scene. The visualization in Figure 4.1 supports this claim

as well. Furthermore, this demonstrates the need of specialized downsampling

algorithms in addition to FPS, such as F-FPS as proposed in 3DSSD [10], and

center-aware sampling by IASSD [3]. Finally, this also illustrates how object

detection models developed for indoor datasets are not transferrable to outdoor

datasets. As shown in Figure 4.4, point cloud representing indoor scenes are

much more dense compared to outdoor scenes. Therefore using FPS to select

seed points is a valid method since a higher percentage of the sampled seed

points would belong to some object, which is the opposite for outdoor scenes as

shown in Figure 4.3.

Due to the already poor results of attempting to adapt 3DETR on LiDAR

points only, the focus of the study became more focused on research questions 2

and 3: Investigating how we can build upon state of the art architectures with

and without attention for outdoor scenes. The following sections report on these

59

4.1 Baseline Performance

findings.

Figure 4.3: Visualization of seed points used in 3DETR. Input point cloud is in
red, and sampled seed points are in green. Ground truth bounding boxes are also
displayed.

60

4.1 Baseline Performance

Figure 4.4: Cropped image of Figure 2.7 illustrating sample input point cloud of
an indoor scene

4.1.2 IASSD Baseline

Car
3D IoU=0.5

Pedestrian
3D IoU=0.25

Cyclist
3D IoU=0.25 mAP

IASSD-L 78.66 42.56 67.24 62.82
IASSD-R 31.24 32.50 60.69 41.48

Table 4.2: Performance of baseline modules. IASSD-L and IASSD-R are IASSD
trained only on LiDAR and radar point cloud as input respectively. Best perfor-
mance is in bold

First to establish the baseline model performance, the baseline model IASSD

was trained separately on LiDAR and radar, the results are reported in Table 4.2.

Unsurprisingly, we find that IASSD-L outperformed IASSD-R in every category.

Given the sparsity of radar point clouds, it lacks the geometric information that

LiDAR point clouds contain, thus explaining the large gap in performance for

larger objects like the car class. However for the pedestrian and cyclist classes,

we find that the performance gap is not as large. This may be because of the

smaller size of the objects, thus geometry playing less of a role. Additionally,

61

4.1 Baseline Performance

radar has additional information in the form of RCS and doppler velocity, thus

enabling it to classify cyclist rather well given the unique feature footprint of the

objects in the class. I.e. velocity of cyclists are much different than pedestrians.

Finally, this establishes the performance baselines for the attention-free and

attentional methods. Given the best performing baseline (IASSD-L), one should

expect a well designed architecture that takes advantage of both modalities to

outperform IASSD-L in all classes.

62

4.2 Attention-free methods

4.2 Attention-free methods

Now that we have a baseline to compare the performance of our methods, we will

now present the results of the three attention-free methods introduced earlier.

4.2.1 Point Cloud Concatenation

Car
3D IoU=0.5

Pedestrian
3D IoU=0.25

Cyclist
3D IoU=0.25 mAP

IASSD-L 78.66 42.56 67.24 62.82
CONCAT 61.84 (-16.82) 49.13 (+ 6.57) 67.06 (-0.18) 59.34 (-3.84)

Table 4.3: Performance of point cloud concatenation

Point cloud concatenation is perhaps the most straightforward method, and

its performance is displayed in Table 4.3. We observe that this simplistic method

does yield performance gain for the difficult pedestrian class, exhibits reduced

performance for the cyclist class minimally, and shows significant decrease in

performance for the car class. The resulting performance is not entirely surpris-

ing, given the nature of the concatenated point cloud. Given the difference in

statistical properties of LiDAR and radar point clouds, e.g. number of points per

scene, range of values for each feature, there exists two statistical distributions

in the concatenated point cloud. An analogy would be similar to a mixture of

gaussians as illustrated in the toy example of Figure 4.5.

Since all points share the same MLP, the MLP must learn a valid mapping for

both LiDAR and radar, thus only mapping from some space that lies within the

intersection between both domains to the target dimension. This is supported

by the fact that the performance of IASSD-R and IASSD-L are closest in the

order of cyclist, pedestrian, and car (Table 4.2) and this behaviour is exhibited

in the results of the concatenation method as well. The performance disparity

63

4.2 Attention-free methods

Figure 4.5: toy example of two overlapping gaussian distributions

being the largest for the car class is not surprising given the amount of geometric

information provided by the numerous LiDAR points covering a car’s surface.

However, it is not uncommon for the same car to only have a handful of radar

points. Therefore we can clearly observe how disjoint the geometric properties of

LiDAR and radar point clouds are for the car class, leading to the degradation

in performance when using point cloud concatenation. For the pedestrian class,

the performance improvement can be attributed to the fact that pedestrians are

relatively small and have less geometric detail compared to cars, the intersection

between the domains may have been unique enough to sufficiently differentiate it

from other classes. In the case of the cyclist class, the performance degradation

is minimal, possibly because the statistical properties of LiDAR and radar point

clouds for cyclists are more similar than for cars. Cyclists have more geometric

detail than pedestrians but less than cars, so the concatenated point cloud can

still provide useful information for the MLP to process.

64

4.2 Attention-free methods

In conclusion, point cloud concatenation as a method for combining LiDAR

and radar data has its limitations, mainly due to the differing statistical properties

of the two types of point clouds. While it does show some promise in improving

performance for certain classes, like pedestrians, it may not be the most effective

approach overall. Perhaps in scenarios where pedestrian and cyclists make up a

majority of the objects of interest, higher false negative rates are acceptable, and

the system has a very low power budget, then this may be an acceptable method.

Examples of this may be autonomous mall robots that roam around and spray

disinfectants [46].

4.2.2 Feature interpolation

k r
Car

3D IoU =0.5
Pedestrian

3D IoU =0.25
Cyclist

3D IoU =0.25 mAP

1 0.1 45.78 35.27 42.32 41.12
1 0.5 58.65 (-20.01) 54.03 (+11.47) 68.17 (+0.93) 60.28 (-2.54)
1 1 48.73 37.68 57.24 47.88
3 0.1 44.22 36.11 51.15 43.82
3 0.5 45.17 37.55 50.67 44.46
3 1 40.14 37.88 49.28 42.43
5 0.1 45.86 36.89 50.27 44.34
5 0.5 39.89 36.76 47.50 41.38
5 1 38.8 35.98 49.94 41.92
IASSD-L 78.66 42.56 67.24 62.82

Table 4.4: Performance of feature interpolation with different number of nearest
neighbours k within a search radius r meters.

The performance of feature interpolation is given in Table 4.4. Figures 4.7 and 4.8

displays the mAP plotted as a function of k and r respectively The rationale of

choosing radii r = 0.1, 0.5, 1.0 stems from the hypothesis that we are testing with

65

4.2 Attention-free methods

feature interpolation, that we want to approximate what a hypothetical sensor

with the capabilities of both LiDAR and 4D radar would be like. Therefore

the radar features interpolated onto a LiDAR point must lie within some close

proximity of each other for the approximation to make sense. At larger radii,

it is possible that the radar features interpolated may not even belong to the

same object. For example, a radar point belonging to a car may be wrongly

interpolated to a nearby pedestrian.

Figure 4.6: Visualization of the feature propagation module, length of the purple
vector corresponds to magnitude of velocity

Interestingly, the best hyperparameter values of k = 1 and r = 0.5 outper-

formed the baseline for pedestrian and cyclist class with an increase of Average

Precision of 11.47 and 0.93 respectively. This may illustrate that when we inter-

polate features, using only 1 nearest neighbor best approximates the hypothesized

ideal point cloud.

66

4.2 Attention-free methods

Figure 4.7: mAP vs k

Figure 4.8: mAP vs r

67

4.2 Attention-free methods

4.2.3 Feature fusion with MLP

This method is relatively conceptually straightforward, since we are essentially

taking the final proposal points in both modalities, matching to the nearest neigh-

bour, and passing both sets of features through a MLP. While the computation

cost does roughly double, it is straightforward to implement and yields significant

performance benefits for the pedestrian and cyclist classes. Various hyperparam-

eter settings have been tested and results displayed in Table 4.5 with AP increase

of 15.00 and 5.4 respectively.

L Ldim
Car

3D IoU=0.5
Pedestrian

3D IoU=0.5
Cyclist

3D IoU=0.5 mAP

1 512 71.47 57.56 72.78 67.27
1 256 71.79 50.27 70.81 64.29
4 512 71.29 52.27 68.81 64.13
4 256 70.82 42.30 73.30 62.14
IASSD-L 78.66 42.56 67.24 62.82

Table 4.5: MLP fusion performance. L denotes the number of layers, Ldim denotes
the dimension of the linear layer in the MLP.

Notice however that across all hyperparameter settings, the performance of

the car class worsens. The AP at a minimum dropped by 7.19. This may be

an indication that the MLP, in order to fuse the features from LiDAR and radar

together, guides the finetuning process in such a way that it degrades certain

features from the LiDAR side, perhaps some geometric information, given the

size of the car class compared to the other two classes. This would also explain

why having a skip connection did not prevent the performance loss.

68

4.3 Attentional methods

4.3 Attentional methods

Attention type Query Key Value Car Pedestrian Cyclist mAP
single LiDAR radar radar 71.56 56.08 71.20 66.28
single LiDAR radar LiDAR 71.43 57.02 69.23 65.89
block LiDAR radar radar 70.60 57.00 74.57 67.39
block LiDAR radar LiDAR 71.45 57.25 73.97 67.56

IASSD-L 78.66 42.56 67.24 62.82

Table 4.6: Attentional methods. Single: single cross attention layer, block: cross
attention block as illustrated in 3.18

The performance results for all attentional methods are presented in Table 4.6.

We observe that while there exist a performance increase over IASSD-L, the

performance increases are remarkably similar to that result of feature fusion with

a simple one layer MLP as shown in section 4.2.3. This is a rather surprising

result given the theoretical ability of the attention mechanism to efficiently weight

and aggregate input feature vectors by assigning higher importance to relevant

features. Especially even when using an encoder style block which has more

parameters compared to the architecture used when testing feature fusion with a

MLP.

A closer examination of the attention weights reveals the answer. We discover

that across the two sampling scales in the MMSA layer, each radar cluster on av-

erage has 13 duplicate features, with 22% of clusters having all identical features.

When all the radar features are the same, the attention weights are identically

1/n where n is the number of features in the sampled group. In such cases, this

implies that either rank(Q) = 1 or rank(K) = 1, where Q and K is the matrix of

query and key feature vectors. Figure 4.9 illustrates the mathematical operations

in the attention mechanism more clearly. Each row in the attention matrix is the

69

4.3 Attentional methods

Figure 4.9: Another illustration of the attention mechanism [7]

dot product of a query and key vector, or that

aij = qi · kj
once the attention matrix is calculated, the softmax operator is applied row-wise.

i.e.

aij =
exp(qi · kj)∑n
m=1 exp(qikm)

these scores are then used as the weights to compute the weighted sum of the value

vectors as illustrated in Figure 4.9. However, observe that if k1 = k2 = · · · = kn,

the attention weights become

aij =
exp(qi · k1)∑n
m=1 exp(qik1)

=
exp(qi · k1)

n · exp(qi · k1)

=
1

n

70

4.3 Attentional methods

which means that the every single output feature vector will just be an average

of the value vectors. In cross attention, recall that the keys and value vectors

are the same. Therefore the output feature vectors will just be identical to the

keys. Thus we have inadvertently shown the following, albeit somewhat trivial,

theorem:

Theorem 1 (Attention is Identity) Applying the attention mechanism

S = softmax

(
QKT√

dq

)
V

with Q ∈ Rd×dq , K ∈ Rd×dk , V ∈ Rd×dv , is identical to

S = IV

with I being the identity matrix, if either rank(Q) = 1 or rank(K) = 1

Therefore, the output features from applying cross attention between LiDAR

and radar features are simply the radar features, since a skip connection is applied

afterwards anyway. Applying cross attention has no effect if all the radar features

are the same. The overall result is approximately the same as feature fusion with

MLP, as the linear layers, normalization, and dropout layers in the cross attention

modules affect the performance in a negligible manner.

But how frequent is it that we have radar clusters with identical features?

We take the sampled groups from the MMSA layer at both sampling scales of

r = 4.8 and r = 6.4 and check the number of points with identical features

across the entire validation set. The results are displayed in Figure 4.10, where

no ckpt represents the model at the beginning of training, i.e. backbone weights

are identical to IASSD-L and IASSD-R, and ’with ckpt’ represents the model at

71

4.3 Attentional methods

the end of training in the graph.

Figure 4.10: Number of duplicates in radar point clusters in MMSA layer for each
sampling range

What we observe is that in both cases and at both scales, a majority of

grouped radar points actually have duplicate features. Table 4.7 illustrates the

average number of duplicated features per radar cluster.

scale ckpt average duplicates
r = 4.8 ✓ 13.60
r = 4.8 X 13.49
r = 6.4 ✓ 12.92
r = 6.4 X 12.84

Table 4.7: Average number of points with duplicate features for each sampling
scale, where 16 points are sampled.

Therefore in practice, most instances of applying cross attention between a

group of LiDAR and radar points is still approximately doing nothing, since for

clusters with a high number of the duplicates, the remaining unique features

72

4.4 Qualitative Results

will contribute very little to the output features. Furthermore, since the set of

output features are passed through a maxpool operator, the dominant duplicated

features will likely be selected anyway. Therefore explaining why all attentional

methods are similar in performance with feature fusion with MLP.

4.4 Qualitative Results

Qualitative results for each method are displayed in Figure 4.11, best viewed in

color and zoomed in for detail.

73

4.4 Qualitative Results

(a) Point Cloud Concatenation

(b) Feature Interpolation

(c) Feature fusion with MLP

(d) MMSA layer with single cross attention
layer

(e) IASSD-L

Figure 4.11: Qualitative results for different methods. Red bounding box indi-
cates the ground truth, while green bounding box represents model predictions.

74

Chapter 5

Conclusions

In this thesis we have proposed several attentional and attention free methods to

fuse information from LiDAR and 4D radar point clouds in order to increase per-

formance. We first discovered that an encoder-decoder style network like 3DETR

that was designed for indoor datasets was unable to be adopted for outdoor

datasets like VoD. Attention free methods included point cloud concatenation,

feature propagation and feature fusion with MLP. Out of the three, feature fu-

sion with MLP was the only method to outperform IASSD in overall performance.

Furthermore, several attentional methods were tested through the introduction

of the multimodal set abstraction layer, which attempted to combine information

from both modalities by utilizing the cross attention mechanism. However, due to

how radar points within a sampled neighbourhood have duplicated features, the

cross attention mechanism was reduced to approximately applying the identity

matrix to the set of radar features. As a result, the attentional methods perform

very similarly to the feature fusion with MLP.

Our findings point to possible future research directions. Firstly, while IASSD-

R appears to perform best with the current downsampling point settings, this

results in the feature duplication phenomenon as described earlier. While the

duplication does not affect single modality (radar) performance, one avenue of

75

research could be to further investigate to what extent this phenomenon improves

or hinders the model’s performance. Secondly, given that the point features are

more diverse after the first set abstraction layer, perhaps a more optimal way to

fuse features from both modalities would be in the earlier stages of the feature

extraction backbone.

76

References

[1] A. Palffy, E. Pool, S. Baratam, J. F. P. Kooij, and D. M. Gavrila, “Multi-

class road user detection with 3+1d radar in the view-of-delft dataset,” IEEE

Robotics and Automation Letters, vol. 7, no. 2, pp. 4961–4968, 2022. ii, 30,

38

[2] I. Misra, R. Girdhar, and A. Joulin, “An End-to-End Transformer Model for

3D Object Detection,” in ICCV, 2021. ii, 16, 27

[3] Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan, and Y. Guo, “Not all points

are equal: Learning highly efficient point-based detectors for 3d lidar point

clouds,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 18953–18962, 2022. ii, vii, 18, 24, 35, 59

[4] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan,

Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for

autonomous driving,” in CVPR, 2020. vi, 3, 6, 30

[5] R. Nabati and H. Qi, “Radar-camera sensor fusion for joint object de-

tection and distance estimation in autonomous vehicles,” arXiv preprint

arXiv:2009.08428, 2020. vi, 6

[6] C. Urmson, J. A. Bagnell, C. Baker, M. Hebert, A. Kelly, R. Rajkumar,

P. E. Rybski, S. Scherer, R. Simmons, S. Singh, et al., “Tartan racing: A

multi-modal approach to the darpa urban challenge,” 2007. vi, 3, 7, 8, 9

77

REFERENCES

[7] T. A. S. Team, “Why multi-head self attention works: math, intuitions

and 10+1 hidden insights.” Accessed: 2023-04-22, 2021. Available online

at: https://theaisummer.com/self-attention/. vi, ix, 13, 14, 70

[8] C. R. Qi, O. Litany, K. He, and L. J. Guibas, “Deep hough voting for 3d

object detection in point clouds,” in proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pp. 9277–9286, 2019. vii, 20

[9] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation and

detection from point cloud,” in Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pp. 770–779, 2019. vii, 21, 22, 35

[10] Z. Yang, Y. Sun, S. Liu, and J. Jia, “3dssd: Point-based 3d single stage

object detector,” in Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pp. 11040–11048, 2020. vii, 18, 23, 35, 59

[11] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu, “Pct:

Point cloud transformer,” Computational Visual Media, vol. 7, pp. 187–199,

2021. vii, 25, 26

[12] X. Pan, Z. Xia, S. Song, L. E. Li, and G. Huang, “3d object detection with

pointformer,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 7463–7472, June 2021. vii, 28,

51

[13] M. Takahashi, Y. Ji, K. Umeda, and A. Moro, “Expandable yolo: 3d ob-

ject detection from rgb-d images,” in 2020 21st International Conference on

Research and Education in Mechatronics (REM), pp. 1–5, IEEE, 2020. vii,

36

[14] KryoTech, “Object Detection for Self-Driving Cars.” https://kryotech.co.

78

https://theaisummer.com/self-attention/
https://kryotech.co.uk/object-detection-for-self-driving-cars/
https://kryotech.co.uk/object-detection-for-self-driving-cars/

REFERENCES

uk/object-detection-for-self-driving-cars/, 2021. Accessed: 2023-

04-22. vii, 36

[15] J. Hui, “MAP: Mean Average Precision for Ob-

ject Detection.” https://jonathan-hui.medium.com/

map-mean-average-precision-for-object-detection-45c121a31173,

2018. Accessed: 2023-04-22. viii, 38

[16] A. LaFrance, “Your grandmother’s driverless car,” Jun 2016. 2

[17] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,”

Advances in neural information processing systems, vol. 1, 1988. 2

[18] R. Behringer, S. Sundareswaran, B. Gregory, R. Elsley, B. Addison,

W. Guthmiller, R. Daily, and D. Bevly, “The darpa grand challenge-

development of an autonomous vehicle,” in IEEE Intelligent Vehicles Sym-

posium, 2004, pp. 226–231, IEEE, 2004. 2

[19] S. Thrun, “Winning the darpa grand challenge,” in Machine Learning:

ECML 2006: 17th European Conference on Machine Learning Berlin, Ger-

many, September 18-22, 2006 Proceedings 17, pp. 4–4, Springer, 2006. 3

[20] C. M. University, “Uber, carnegie mellon announce strategic partnership

and creation of advanced technologies center in pittsburgh - news - carnegie

mellon university.” 3

[21] K. Korosec, “Elon musk says tesla vehicles will drive themselves in two

years,” Apr 2021. 3

[22] “Waymo launches nation’s first commercial self-driving taxi service in ari-

zona,” Dec 2018. 3

79

https://kryotech.co.uk/object-detection-for-self-driving-cars/
https://kryotech.co.uk/object-detection-for-self-driving-cars/
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173

REFERENCES

[23] P. Dong and Q. Chen, LiDAR remote sensing and applications. CRC Press,

2017. 4

[24] H. Laga, L. V. Jospin, F. Boussaid, and M. Bennamoun, “A survey on deep

learning techniques for stereo-based depth estimation,” IEEE transactions

on pattern analysis and machine intelligence, vol. 44, no. 4, pp. 1738–1764,

2020. 4

[25] A. J. Hawkins, “Mercedes-benz and luminar expand their partnership on

lidar and adas,” The Verge, Feb 2023. 5

[26] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on

point sets for 3d classification and segmentation,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 652–660, 2017.

8, 9

[27] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchi-

cal feature learning on point sets in a metric space,” Advances in neural

information processing systems, vol. 30, 2017. 8, 10, 19

[28] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (fpfh)

for 3d registration,” in 2009 IEEE international conference on robotics and

automation, pp. 3212–3217, IEEE, 2009. 9

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural

information processing systems, vol. 30, 2017. 11, 27, 48, 49

[30] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets for

3d object detection from rgb-d data,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 918–927, 2018. 19

80

REFERENCES

[31] J. Illingworth and J. Kittler, “A survey of the hough transform,” Computer

vision, graphics, and image processing, vol. 44, no. 1, pp. 87–116, 1988. 20

[32] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,

“End-to-end object detection with transformers,” in Computer Vision–

ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,

Proceedings, Part I 16, pp. 213–229, Springer, 2020. 27

[33] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner,

“Scannet: Richly-annotated 3d reconstructions of indoor scenes,” in Pro-

ceedings of the IEEE conference on computer vision and pattern recognition,

pp. 5828–5839, 2017. 27

[34] S. Song, S. P. Lichtenberg, and J. Xiao, “Sun rgb-d: A rgb-d scene un-

derstanding benchmark suite,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 567–576, 2015. 27

[35] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?

the kitti vision benchmark suite,” in 2012 IEEE conference on computer

vision and pattern recognition, pp. 3354–3361, IEEE, 2012. 27, 28, 30

[36] C. He, R. Li, S. Li, and L. Zhang, “Voxel set transformer: A set-to-

set approach to 3d object detection from point clouds,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 8417–8427, 2022. 27, 57

[37] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,

J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,

H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi, Y. Zhang,

J. Shlens, Z. Chen, and D. Anguelov, “Scalability in perception for au-

tonomous driving: Waymo open dataset,” in Proceedings of the IEEE/CVF

81

REFERENCES

Conference on Computer Vision and Pattern Recognition (CVPR), June

2020. 30

[38] L. Zheng, Z. Ma, X. Zhu, B. Tan, S. Li, K. Long, W. Sun, S. Chen, L. Zhang,

M. Wan, et al., “Tj4dradset: A 4d radar dataset for autonomous driving,”

in 2022 IEEE 25th International Conference on Intelligent Transportation

Systems (ITSC), pp. 493–498, IEEE, 2022. 31

[39] D.-H. Paek, S.-H. Kong, and K. T. Wijaya, “K-radar: 4d radar object detec-

tion for autonomous driving in various weather conditions,” in Thirty-sixth

Conference on Neural Information Processing Systems Datasets and Bench-

marks Track, 2022. 31

[40] O. D. Team, “Openpcdet: An open-source toolbox for 3d object detection

from point clouds.” https://github.com/open-mmlab/OpenPCDet, 2020. 31

[41] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Point-

pillars: Fast encoders for object detection from point clouds,” in Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition,

pp. 12697–12705, 2019. 32

[42] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-

Fei, “Large-scale video classification with convolutional neural networks,”

in Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition, pp. 1725–1732, 2014. 47

[43] P. Li, J. Gu, J. Kuen, V. I. Morariu, H. Zhao, R. Jain, V. Manjunatha,

and H. Liu, “Selfdoc: Self-supervised document representation learning,” in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 5652–5660, 2021. 53

82

https://github.com/open-mmlab/OpenPCDet

REFERENCES

[44] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks,” Advances in neural infor-

mation processing systems, vol. 28, 2015. 53

[45] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring

mid-level image representations using convolutional neural networks,” in

Proceedings of the IEEE conference on computer vision and pattern recogni-

tion, pp. 1717–1724, 2014. 56

[46] “Robomop? pandemic boosts demand for cleaning robots in hong kong

malls,” Apr 2021. 65

[47] B. Rimé and L. Schiaratura, “Gesture and speech in fundamentals of non-

verbal behavior,” 01 1991.

[48] E. Coronado, J. Villalobos, B. Bruno, and F. Mastrogiovanni, “Gesture-

based Robot Control: Design Challenges and Evaluation with Humans,” 05

2017.

[49] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for

real-time object recognition,” in 2015 IEEE/RSJ international conference on

intelligent robots and systems (IROS), pp. 922–928, IEEE, 2015.

[50] B. Li, “3d fully convolutional network for vehicle detection in point cloud,” in

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 1513–1518, IEEE, 2017.

[51] G. Pang and U. Neumann, “3d point cloud object detection with multi-view

convolutional neural network,” in 2016 23rd International Conference on

Pattern Recognition (ICPR), pp. 585–590, IEEE, 2016.

83

REFERENCES

[52] B. Leibe, A. Leonardis, and B. Schiele, “Combined object categorization

and segmentation with an implicit shape model,” in Workshop on statistical

learning in computer vision, ECCV, vol. 2, p. 7, 2004.

[53] T. Yin, X. Zhou, and P. Krahenbuhl, “Center-based 3d object detection and

tracking,” in Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, pp. 11784–11793, 2021.

[54] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-rcnn:

Point-voxel feature set abstraction for 3d object detection,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 10529–10538, 2020.

[55] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international confer-

ence on computer vision, pp. 1440–1448, 2015.

[56] X. Pan, Z. Xia, S. Song, L. E. Li, and G. Huang, “3d object detection with

pointformer,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 7463–7472, 2021.

84

	A Study of Attention-Free and Attentional Methods for LiDAR and 4D Radar Object Detection in Self-Driving Applications
	1 Introduction
	1.1 Motivations
	1.2 Context of the Study
	1.2.1 4D Radar Sensor
	1.2.2 Classical approaches to LiDAR object detection
	1.2.3 Modern Approaches: Deep Learning
	1.2.4 Attention and Transformers

	1.3 Objectives and Contributions

	2 State of the Art
	2.1 Notable 3D object detection architectures
	2.1.1 Frustum PointNet
	2.1.2 VoteNet
	2.1.3 PointRCNN
	2.1.4 3DSSD
	2.1.5 IA-SSD

	2.2 Point Based Transformer Methods
	2.2.1 Point Cloud Transformer
	2.2.2 3DETR
	2.2.3 Pointformer

	3 Methodology
	3.1 Dataset
	3.1.1 Popular datasets
	3.1.2 Selected dataset

	3.2 Framework used
	3.2.1 Framework structure

	3.3 Evaluation Metrics
	3.3.1 Intersection over Union (IoU)
	3.3.2 Average Precision

	3.4 Baseline Models
	3.4.1 Transformer baseline
	3.4.2 IASSD baseline

	3.5 Attention Free Methods
	3.5.1 Point Cloud Concatenation
	3.5.2 Feature interpolation
	3.5.3 Feature fusion with MLP

	3.6 Attentional Methods
	3.6.1 Single Cross Attention Layer
	3.6.2 Cross Attention Block
	3.6.3 Cross Attention Variations

	3.7 Training details
	3.7.1 Baseline training
	3.7.2 Finetuning procedure

	4 Experimental Results
	4.1 Baseline Performance
	4.1.1 Transformer Baseline
	4.1.2 IASSD Baseline

	4.2 Attention-free methods
	4.2.1 Point Cloud Concatenation
	4.2.2 Feature interpolation
	4.2.3 Feature fusion with MLP

	4.3 Attentional methods
	4.4 Qualitative Results

	5 Conclusions
	References

