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Abstract— This work involves learning the use schedule of an 
academic building in order to intelligently control various 
aspects of the environment. Motion sensors are used to monitor 
and record the activity of each of the rooms in the building. 
After a basic preprocessing of the data, a Cyclic Genetic 
Algorithm (CGA) is used to pick out the patterns of use of the 
rooms. The CGA is seen as ideal for such a problem because of 
its ability to find repetitive cyclic patterns in the data. Our 
results show that a CGA has the ability to pick out such 
patterns and construct a schedule of use for a room. 

Keywords: evolutionary computation; smart houses; 
behavioral modeling; ambient intelligence; genetic algorithm 

I.  INTRODUCTION  
In this digital age, our homes are full of devices designed 

to make our lives easier, ranging from simple things like an 
alarm clock, to more advanced items such as the remotely 
accessible espresso machine in the kitchen and the 
automated TV recorder in the living room.  Smart home 
technology is designed to link these individual items so that 
they can be used in combination to increase their usefulness. 
Current work in the field focuses on the automation of these 
features and making the home a dynamic object that can 
better the comfort of its inhabitants. 

An important aspect of these intelligent environments is 
the sensors which are installed in them. There are many 
sensors currently in our homes that benefit our daily lives. 
They range from simple items like a motion sensor on a 
garage light or a thermostat in a heating unit to a more 
complicated security system with a combination of motion 
sensors, temperature sensors, window or door sensors, and 
possibly a camera. As the technology advances, sensors have 
become more readily available and can be installed in a 
home more easily for less cost. These sensors have a lot of 
potential uses and a method to harness their power could be 
very beneficial.  

Although the number of sensors in an average home and 
their uses in automation of simple tasks is increasing, there is 
a limit to what these sensors can do individually. Linking 
these sensors into a sensor network will allow them to work 
together and will create more possibilities for the automation 
of more complex tasks. For example the motion sensor of a 
security system is only used when it is armed and otherwise 

idle. If the motion sensor were connected to the thermostat in 
a heater, the motion detected during its idle periods could be 
used to determine whether a room is not occupied, and based 
on that information, turn down the heat to save energy.  

Yet, simply connecting a bunch of sensors together will 
not lead to this kind of advanced behavior. They must be 
connected to a central computer “brain” which collects the 
data, interprets it, makes decisions, and finally takes actions 
based on it. The combination of a sensor network and a 
central “brain” will extend the potential of individual sensors 
and allow them to be more useful in a living environment.  

Finally, in order to automate the control of the 
environment in a truly effective way, the computer must be 
equipped with an Artificial Intelligence (AI) system which 
will make decisions based on the sensor data, allowing the 
system to run in the background without constant human 
supervision. An AI system is the most fit for this task 
because it has the ability to learn patterned behavior. The 
events in a living environment tend to exhibit patterns, as 
humans are creatures of habit. Through the generalization of 
repeated observations, AI systems are able to learn such 
patterns from abstract data like those collected from the 
sensor network.  

Another important aspect of an AI system is its ability to 
adapt to various situations as well as changes in the 
environment. As all living spaces and occupants are unique, 
it is impossible to design one ideal system which will work 
in any given setting. Thus its adaptability will allow an AI-
based system to adjust to its unique environment and 
establish control patterns that are adapted to its situation.  

Research on such intelligent environments, with various 
sensors connected up to a computer employing an AI system, 
has been conducted at various academic institutions around 
the world. Yet this is still a new area of study and there is a 
lot to be discovered. AI itself is also a rapidly developing 
field in computer science, and many new techniques have 
not yet been applied to this problem domain. 

II. RELATED WORKS 
In a brief overview of advances in these technologies, 

Cook and Das [1] describe the use of artificial intelligence to 
automate homes, which they refer to as smart environments. 



They argue for the idea that a sensor network will comprise a 
necessary backbone to these environments, and will in turn 
be connected to a centralized intelligence, which makes 
decisions based on information collected from the sensor 
network and sends commands to its controlled devices in the 
home accordingly. They provide several examples of such 
systems, one of which is based on X-10 technology. X-10 
systems control devices using power line communication 
(PLC) by sending small disturbances along the electrical 
wiring, a potential advantage over other technologies, since 
such lines are already present in most all homes. This kind of 
system allows for easy setup of simple smart home 
environments. Using the built-in sensor network and 
artificial intelligence capabilities, such a system can be 
designed to learn the inhabitants’ way of life and adjust the 
devices in its control to better suit their needs. 

In order for a system to understand a person’s needs, it 
must first construct a model of his/her living style and 
patterns. This is done through the recording and analysis of 
various forms of data collected by the sensor network. 
Youngblood et al. [2] describe a system called MavHome 
(Manage Adaptive Versatile environments), which attempts 
to model everyday human activities in a home environment, 
and determine which activity is taking place based on sensor 
data. This allows the environment to adapt to the specific 
needs of the occupants. They employ a Hierarchical Hidden 
Markov Model (HHMM) to learn and predict the activities 
taking place. This approach is based on the idea that humans 
are creatures of habit whose actions will show a certain 
degree of periodicity, thus allowing the HHMM to pick up 
on the pattern of events leading to a particular activity.   

Once a reliable model for an inhabitant is developed, it 
can be used to make decisions and predictions about the 
inhabitant’s lifestyle. The applications for such a model are 
numerous, ranging from medical and environmental to 
recreational. One use, described by Helal et al. [3], involves 
health monitoring for the elderly. Once a baseline for 
ordinary behaviour and lifestyle is established, the system 
can detect deviations and report them to a medical facility, 
allowing elderly people to live independently and providing 
peace of mind for their family members. It has been 
discovered that in some situations, similar systems were able 
to detect slight deviations which were the symptoms of 
diseases, such as Alzheimer’s in its early stages. 

Environmental issues and natural resources are also 
topics of great interest. In his overview, Hagras [4] discusses 
the use of computational intelligence (CI) techniques in 
living environments to reduce energy consumption. He 
divides CI into the three predominant areas of fuzzy systems, 
neural networks (NN), and genetic algorithms (GA), and 
provides various examples where each is utilized.  

CI models have also been used to predict energy 
consumption of larger environments such as office and 
academic buildings. Bailey and Curtiss [5] describe the use 
of a NN to adjust heating and air-conditioning to run 
efficiently and save energy. Other examples focus more on 
smaller personal living environments. One such system at the 

University of Colorado as described by Mozer [6] uses a NN 
to adaptively control environmental parameters such as 
lighting and room and water temperatures. These systems are 
designed to reduce energy consumption while maintaining 
the inhabitant’s comfort level. 

Another possible application for a behaviour model is to 
use it as a basis to control different aspects of a living 
environment in an effort to conserve energy. If an 
inhabitant’s schedule can be determined, the environment 
can learn to take actions which reduce the waste of energy. If 
for instance, on a typical week day, the environment 
determines that the occupant is not home between the hours 
of 8AM and 6PM, energy consuming appliances such as the 
water heater or the air conditioning can be turned off until 
shortly before his/her arrival home.  

Before these decisions can take place, the system needs 
to construct a reliable model which can be used to accurately 
predict the behaviour of the inhabitant. Thus methods for 
determining this model or schedule of activities are of great 
interest.  

The goal of the work presented in this paper is to learn a 
schedule of use for a particular room so that it can be used as 
a basis for making a prediction as to when the room is going 
to be in use. If a system can make such a prediction, it can 
make better decisions on how to control various aspects of 
the environment. In some cases, say lighting control, 
knowing the use of a room in advance is not necessary. 
Simple systems linking a motion sensor to a light switch 
already exist, and are very effective because lights can be 
turned on or off almost instantaneously. Advance knowledge 
of use becomes more important when the aspect being 
controlled takes time to reach its desired state. Heating 
control is one such environmental variable. Because heating 
a room to a desired temperature takes time, the ability to 
predict the use of a room in advance can be extremely 
beneficial. Conversely, if it can be predicted how long a 
person will be occupying a room, the heat can be shut off 
and the room can begin to cool without causing much 
discomfort to the occupant. 

While this sort of system would be extremely effective in 
an ideal situation, human beings do not often stick to a 
precise schedule and tend to act somewhat unpredictably. 
Thus it is important for a system to include a reactive 
component, which can make real-time decisions which can 
override previous decisions. While this work does not 
include a real-time component, it attempts to develop a 
system which can create a schedule for a reliable prediction 
which a system could use to bias its decisions. It will focus 
on the use of Cyclic Genetic Algorithms to help construct 
this model for prediction. 

III. THE ENVIRONMENT AND DATA 
 The environment of interest is Strider House, an 

academic building on the Connecticut College campus used 
by the Computer Science Department. It houses two 
computer labs and three office spaces. Strider house is an 



ideal domain for modeling as its use is somewhat consistent 
and predictable, such as weekly scheduled labs and classes. 
At the same time its use has enough variation from students 
coming in to do work or other unscheduled uses, to warrant 
an adaptive system. Each of the rooms was configured to be 
monitored by a motion sensor (Figure 1) that records any 
activity taking place. The sensors are strategically placed to 
capture as much of the motion in the room as possible.  

 

Figure 1.  X-10 motion sensor 

 The motion sensors are part of an X-10 system, as 
described previously, and communicate with a base station 
by radio frequency. Data from these motion sensors are 
recorded on a computer linked to the base station in a format 
as seen in Table 1. Each sensor event is labeled with a date 
and time stamp, signal type, and sensor ID. The sensor ID is 
unique for every sensor and signifies which room the data 
was received from.  

TABLE I.  SAMPLE DATA 

Date Time Signal Type Sensor ID

11/12/2010 09:30:00:359 RFC b2 

11/12/2010 09:30:49:734 RFC b1 

11/12/2010 09:30:50:000 RFC b1 

11/12/2010 09:30:57:562 RFC b2 

 

As discussed by Galushka et al. [7], raw data collected 
from a sensor is often too complex or abstract to perform any 
sort of data mining. Thus some form of preprocessing is 
necessary to convert it into a form which can be useful. For 
this work, the timing and frequency of the sensor events 
during the hour of interest were used to determine whether a 
room could be considered “in use” during that hour. This use 
status was recorded in an easily accessible table. 

IV. LEARNING METHOD 
The learning method employed in this work is a form of 

Genetic Algorithm (GA) known as a Cyclic Genetic 
Algorithm (CGA). The traditional GA, introduced by 
Holland [8], is a learning algorithm based on the concepts of 
heredity and the survival of the fittest. It consists of a 

population of possible solutions to a problem referred to as 
chromosomes. These chromosomes are often binary strings 
of fixed length that represent the solution in some way. Each 
one is assigned “fitness” as to how well it solves the 
problem. Based on this fitness, they undergo the three 
genetic operators selection, crossover, and mutation to create 
a new generation of chromosomes which theoretically are 
better solutions. Through this process an optimal, or near 
optimal solution is learned. 

The CGA, as discussed by Parker [9], is unique in that it 
incorporates time as a factor where the chromosome 
represents a sequential solution that is to be carried out 
linearly in a given span of time. In addition, the solution, or 
part of it, can be looped so that a cycle is created. This cycle 
can represent patterns in the problem that are repeated 
multiple times. In his work, Parker uses these CGAs to 
generate an ideal walking gate for hexapod robots. The 
cyclic portion of the chromosome is ideal for the repetitive 
nature of this problem. While the robot is walking, the 
control sequence of the legs must loop the same commands 
repeatedly. The cyclic portion of the chromosome learns to 
represent this pattern, which during execution can be 
repeated the necessary number of times. 

In our work, we use the CGA to pick out the cycles in the 
use patterns of a room over an extended period of time. The 
type of environment we work with has a tendency to be used 
with regularity, thus creating a pattern which can be 
detected. For instance a computer lab may be used for a class 
on Wednesday afternoon every week, while an office space 
is used in the morning twice a week on Tuesday and 
Thursday. This kind of periodicity in the use allows for the 
CGA to pick a cycle length equal to a week. Although in this 
particular environment we know that the length of the cycle 
of use is a week, the CGA has the ability to pick out a cycle 
of other lengths such as a two or three day cycle. Its ability to 
pick out the cycle with minimal a priori knowledge is what 
makes the CGA a powerful tool. 

 
Figure 2.  Chromosome representation 

A. CGA Chromosomes 
Although a CGA can work with both fixed and variable 

length chromosomes, for the purposes of this work, we only 
use fixed length chromosomes. Each chromosome (Figure 
2) consists of a 4 bit inhibitor (as described in the next 
section) and 256 bits to represent the schedule. A 
chromosome of size 256 bits was chosen because it is long 
enough to represent 10 days worth of use. This allows the 



algorithm to pick out cycles of varying lengths ranging from 
a single day up to ten days. Each bit represents the use of a 
particular hour in the schedule, where a 1 stands for a period 
of use and a 0 for a period of non-use. The chromosome in 
Figure 2 represents a schedule of five inactive hours, 
followed by three active hours, followed by six inactive 
hours, and so on and so forth. The down side to this 
representation is that, representing cycles longer than a 
week, for instance a bi-weekly schedule, requires a large 
number of bits and can slow the computation greatly. While 
other methods which represent the hours of use in a reduced 
format were attempted, the full representation proved to be 
the most effective.  
 

B. Inhibitors 
The inhibitor portion of the chromosome is used to limit 

some aspect of its function to prevent it from developing in a 
particular way that does not suit the problem. In our work, 
we use the inhibitor to limit the length of the cyclic portion 
of the chromosome. While the 256 bit chromosome has the 
ability to represent a schedule just over 10 days long, and 
will have data for that full length, the algorithm must learn 
the correct cycle length, which is most often shorter than 10 
days. Thus, the value of the inhibitor represents the length of 
this cycle in days, allowing it to pick shorter cycles. It is a 4 
bit binary number, as seen in Figure 2, which is initialized as 
a random value and is learned over the generations by the 
algorithm.  

When calculating the fitness of a chromosome for 
selection (as described further in the next section), the value 
of the inhibitor, in days, is multiplied by 24 to convert it to 
hours. This value then determines the number of bits from 
the remaining part of the chromosome that will be used for 
the cyclic portion. For instance, if the inhibitor has a value of 
7 days, the length of the cyclic portion will be 168 bits, 
which is equal to the number of hours in 7 days. This 168 bit 
portion is then compared to the training data to evaluate its 
accuracy. This portion is repeated as many times as 
necessary to match the length of the data. If the cycle in the 
data is actually 7 days, it will match and return a high fitness 
value. If the cycle is different, it will be less and less accurate 
and return a poor fitness. 

We use days as a unit of cycle length based on the 
assumption that a cycle should not be shorter than a day. 
Making this limitation also allows the algorithm to pick out a 
schedule more effectively without getting confused by minor 
periodicities in the data.  

C. Genetic Operators 
The probability for selection was calculated based on 

fitness, which is a function of how well the proposed 
schedule matches the actual data. The cyclic portion of the 
chromosome is selected, as discuss in the previous section, 
and is then lined up with the training use schedule so that 
each hour is compared and evaluated. The scoring of correct 

and incorrect hours is determined by the reward scheme 
shown in Table 2. 

TABLE II.  FITNESS REWARDS 

Actual Learned Reward 
1 1 x 
1 0 -1 
0 1 -1 
0 0 0 

 

In observing the training data it was clear that the number 
of active hours is highly disproportionate to the number of 
inactive hours. This causes a problem because, in a simple 
scoring scheme, a schedule of always inactive scores very 
well. To counter this, the reward for a correct prediction was 
weighted to compensate, as denoted by the x in Table 2. This 
weighting was the proportion of inactive to active hours in 
the data, and was adjusted for every training set to match the 
proportion in that data. For instnace, if the ratio of unused 
hours to used hours in the data is 10:1, the reward x for a 
correct use prediction would be 10 points. This scheme, in 
combination with the -1 reward values for incorrect values, 
ensured that both the always inactive and always active 
solutions, on average, would score 0 points. 

Once fitness was calculated, the method known as elitism 
was used, where the highest scoring individual of a 
population carries directly on to the next, to ensure positive 
overall fitness growth. All other individuals of the new 
population are a result of a crossover between two mates 
stochastically selected where the probability of selection was 
proportional to the fitness. 

 

 

 

 

Figure 3.  One point crossover 

Two types of crossover, single point and universal, were 
used with equal probability. Single point crossover involves 
picking a random point along the length of the chromosome 
and splitting it into two parts, as seen in Figure 3. The 
resulting chromosome will consist of the first part of one 
mate and the second part of the other. The order of the mates 
is selected randomly to prevent biasing towards one of the 
mates. Universal crossover is a much simpler process where 
every bit in the chromosome, including the bits in the 
inhibitor, has an equal chance of being selected for the new 
chromosome. Finally, the new chromosome that was created 
as a combination of its two parents undergoes a basic 
mutation scheme where every bit in the new chromosome 
has a 0.3% chance of being flipped. 



V. TESTS 
Training was conducted for 10,000 generations using 

populations of size 320. The initial population was seeded 
with randomly generated chromosomes. Training was 
conducted on both simulated and real data. Each test was 
repeated five times. 

Two different types of simulated data were used. The 
first, which will be referred to as Type I, was constructed by 
taking a single week of real data and repeating it 10 times to 
simulate 10 identical weeks of data. The second, Type II, 
was constructed by taking a single week of real data and 
modifying it to simulate a second week with some schedule 
changes. This modified week was then adjusted further to 
simulate a progression of change over three weeks. The 
reasoning behind this is that, if the algorithm can learn to 
develop a schedule which best fits the three weeks, it can 
then be used to predict a fourth week. As more data is 
collected, a system can continuously train the algorithm on 
the previous three weeks to make predictions for the current 
week. These three simulated weeks were then repeated three 
times to create 9 weeks worth of data to train the algorithm. 
This was done to increase the length of the training set. A 
longer training set increases the gap between the fitness of 
good and bad solutions. A poor solution with an incorrect 
cycle will score worse and worse as it is evaluated against 
more data. 

To test the flexibility of the algorithm on other cycle 
lengths, similar Type I and Type II data were also 
constructed to simulate a three day cycle.  

Finally, experiments were conducted on three 
consecutive weeks of real data. The data were formatted in a 
manner similar to the simulated Type II experiments where 
the three weeks of data were repeated three times to create a 
total of nine weeks of data. 

VI. RESULTS 
The results from the 7-day simulated Type I and Type II 

experiments show that the CGA is effective in learning a 7-
day schedule of use. Figure 4 shows the fitness growth at 
selected generations averaged over five trials for the 7 day 
cycle. The fitness values shown are averages over the five 
trials. The scale for fitness is shown on the y-axis on the 
right of the figure. The average fitness increases dramatically 
in the first 100 generations, and continues to grow until 
about 8000 generations. Note that the x-axis scale on the 
graph changes after the first 1000 generations. The standard 
deviation between the five trials is shown in the error bars. 
The y-axis on the left side of the figure shows the scale for 
these bars.  

In all five trials, the algorithm consistently determined 
the correct cycle length of 7 days for both the Type I and II 
tests. The use pattern is matched exactly in the Type I test, 
showing that the algorithm can learn a perfectly repetitive 
schedule. This occurred in all five trials by the 8,000th 
generation, as shown by the standard deviation bars. The 
deviation for the Type II tests also drops to zero by the 

10,000th generation, showing that the algorithm consistently 
produced the same result in all five trials. 
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Figure 4.  Fitness growth for simulated 7 day cycle 

Similar to the test on the 7 day cycle data, the algorithm 
is able to consistently determine a 3 day schedule for both 
Type I and Type II tests. These results are shown in Figure 5. 
Note that the scale for the x-axis scale in this Figure is differs 
to that of Figure 4. The CGA runs significantly faster on the 
data for a 3 day cycle and thus learns the pattern in under 
1000 generations. The greatest growth in fitness occurs in the 
first 200 generations, and thus the scale of the figure is 
adjusted to show this growth in more detail. The values for 
fitness shown in this graph are again an average of five trials. 
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Figure 5.  Fitness growth for simulated 3 day cycle 

In all five trials, the algorithm consistently determined 
the correct cycle length of 3 days for both the Type I and II 
tests. Like the previous tests on the 7 day cycles, the use 
pattern is matched exactly in the Type I test in all five trials 
by the 160th generation. The deviation for the Type II tests 
also drops to zero by the 200th generation. 

These positive results on both the 7 day and 3 day 
schedules shows that the algorithm has the ability to pick out 
the correct length of the cyclic pattern with no a priori 
knowledge.  
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Figure 6.  Fitness growth for real data 

The experiments on real data show that the CGA can be 
effective in picking out the ideal schedule. Figure 6 shows 
the fitness growth across generations for real data averaged 
over 5 trials. Note again that the x-axis scale on the graph 
changes after the first 1000 generations. In three out of five 
trials, the algorithm correctly determined the cycle length of 
7 days and minimized the error.  

As the data here is three real weeks repeated, similar to 
Type II simulated data, the Type I data from Figure 4 is also 
included in Figure 6 as a point of comparison. Type I 
simulated data is one week of real data repeated and is thus 
also essentially real data.  

The inconsistency in determining the schedule arises 
from the fact that real data has significantly more variation 
from week to week, making the perfect schedule somewhat 
ambiguous.  More than one pattern of use could have been in 
play, which made even the cycle length in question.  
Nevertheless, the CGA produced seven day cycles that 
appeared to be reasonable fits for the actual data. 

VII. CONCLUSIONS AND FUTURE WORK 
Our work employs a Cyclic Genetic Algorithm to pick 

out patterns in the occupancy of a room, and construct a 
schedule which can be used to make future predictions of its 
use. The results show that this algorithm performs extremely 
well on two different types of simulated data. It also has the 
ability to pick out cycles of various lengths and thus does not 

require any a priori knowledge of the length of the patterns 
in the data.  

We also show that the algorithm performs well on data 
collected from a real environment. Although the accuracy of 
the determined schedule is highly dependent on the level of 
variation in the data, the algorithm does effectively discover 
a schedule which minimizes the error. 

Future work will further analyze the variation in the real 
data in order to adapt this method and design an algorithm 
which can prioritize recent data over old. We also hope to 
incorporate this work into a larger control system as a basis 
for planning as well as real-time decision making with an 
aim to control variables in a real environment. 

REFERENCES 
[1] D. Cook and S. Das, “How smart are our environments? An updated 

look at the state of the art,” Journal of Pervasive and Mobile 
Computing, 3(2), 2007, pp. 53–73. 

[2] G. M. Youngblood, D. J. Cook, and L. B. Holder, “Managing 
adaptive versatile environments,” Journal of Pervasive and Mobile 
Computing, 1(4), 2005, pp. 373-403. 

[3] S. Helal, B. Winkler, C. Lee, Y. Kaddourah, L. Ran, C. Giraldo, and 
W. Mann, “Enabling location-aware pervasive computing 
applications for the elderly,” Proc. 1st IEEE Pervasive Computing 
Conference, Fort Worth, TX, 2003, pp. 531–538. 

[4] H. Hagras, “Employing computational intelligence to generate more 
intelligent and energy efficient living spaces,” International Journal 
of Automation and Computing, 5(1), 2008, pp. 1–9. 

[5] M. Bailey and P. Curtiss, “Neural network modeling and control 
applications in building mechanical systems,” Proc. International 
Conference of Chartered Institution of Building Services Engineers 
and American Society of Heating Refrigeration and Air-conditioning 
Engineers, London, England, 2001. 

[6] M. C. Mozer, “The neural network house: An environment that 
adapts to its inhabitants,” Proc. American Association for Artificial 
Intelligence Spring Symposium on Intelligent Environments, Menlo 
Park, CA, 1998, pp. 110–114. 

[7] M. Galushka, D. Patterson, and N. Rooney, “Temporal Data Mining 
for Smart Homes,” Lecture Notes in Computer Science, 4008, 2006, 
pp. 85-108. 

[8] J. H. Holland, Adaptation in Natural and Artificial Systems, The 
University of Michigan Press, 1975. 

[9] G. B. Parker, “Generating Arachnid Robot Gaits with Cyclic Genetic 
Algorithms,” Proc. Third Annual Genetic Programming Conference, 
1998. 

 


	Connecticut College
	Digital Commons @ Connecticut College
	10-2012

	Automation Techniques for Intelligent Environments - Prediction of Building Activity Patterns Using a Cyclic Genetic Algorithm
	Gary Parker
	David T. Alpert
	Recommended Citation

	Automation Techniques for Intelligent Environments - Prediction of Building Activity Patterns Using a Cyclic Genetic Algorithm
	Keywords
	Comments


	Microsoft Word - SMC2012_ParkerAlpert.doc

