
Connecticut College
Digital Commons @ Connecticut College

Computer Science Faculty Publications Computer Science Department

10-2012

Automation Techniques for Intelligent
Environments - Prediction of Building Activity
Patterns Using a Cyclic Genetic Algorithm
Gary Parker
Connecticut College, parker@conncoll.edu

David T. Alpert
Connecticut College, tatsuroalpert@gmail.com

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscifacpub

Part of the Computer Engineering Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut
College. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of Digital Commons @
Connecticut College. For more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Parker, G.B.; Alpert, D.T., "Automation techniques for intelligent environments," Systems, Man, and Cybernetics (SMC), 2012 IEEE
International Conference on , vol., no., pp.202,207, 14-17 Oct. 2012 doi: 10.1109/ICSMC.2012.6377700

http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu

Automation Techniques for Intelligent Environments - Prediction of
Building Activity Patterns Using a Cyclic Genetic Algorithm

Keywords
evolutionary computation; smart houses; behavioral modeling; ambient intelligence; genetic algorithm

Comments
© 2012 IEEE

DOI10.1109/ICSMC.2012.6377700

This conference proceeding is available at Digital Commons @ Connecticut College: http://digitalcommons.conncoll.edu/
comscifacpub/15

http://dx.doi.org/10.1109/ICSMC.2012.6377700
http://digitalcommons.conncoll.edu/comscifacpub/15?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/15?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages

Automation Techniques for Intelligent Environments
Prediction of Building Activity Patterns Using a Cyclic Genetic Algorithm

Gary B. Parker and David T. Alpert
Department of Computer Science

Connecticut College
New London, CT, USA

parker@conncoll.edu, tatsuroalpert@gmail.com

Abstract— This work involves learning the use schedule of an
academic building in order to intelligently control various
aspects of the environment. Motion sensors are used to monitor
and record the activity of each of the rooms in the building.
After a basic preprocessing of the data, a Cyclic Genetic
Algorithm (CGA) is used to pick out the patterns of use of the
rooms. The CGA is seen as ideal for such a problem because of
its ability to find repetitive cyclic patterns in the data. Our
results show that a CGA has the ability to pick out such
patterns and construct a schedule of use for a room.

Keywords: evolutionary computation; smart houses;
behavioral modeling; ambient intelligence; genetic algorithm

I. INTRODUCTION
In this digital age, our homes are full of devices designed

to make our lives easier, ranging from simple things like an
alarm clock, to more advanced items such as the remotely
accessible espresso machine in the kitchen and the
automated TV recorder in the living room. Smart home
technology is designed to link these individual items so that
they can be used in combination to increase their usefulness.
Current work in the field focuses on the automation of these
features and making the home a dynamic object that can
better the comfort of its inhabitants.

An important aspect of these intelligent environments is
the sensors which are installed in them. There are many
sensors currently in our homes that benefit our daily lives.
They range from simple items like a motion sensor on a
garage light or a thermostat in a heating unit to a more
complicated security system with a combination of motion
sensors, temperature sensors, window or door sensors, and
possibly a camera. As the technology advances, sensors have
become more readily available and can be installed in a
home more easily for less cost. These sensors have a lot of
potential uses and a method to harness their power could be
very beneficial.

Although the number of sensors in an average home and
their uses in automation of simple tasks is increasing, there is
a limit to what these sensors can do individually. Linking
these sensors into a sensor network will allow them to work
together and will create more possibilities for the automation
of more complex tasks. For example the motion sensor of a
security system is only used when it is armed and otherwise

idle. If the motion sensor were connected to the thermostat in
a heater, the motion detected during its idle periods could be
used to determine whether a room is not occupied, and based
on that information, turn down the heat to save energy.

Yet, simply connecting a bunch of sensors together will
not lead to this kind of advanced behavior. They must be
connected to a central computer “brain” which collects the
data, interprets it, makes decisions, and finally takes actions
based on it. The combination of a sensor network and a
central “brain” will extend the potential of individual sensors
and allow them to be more useful in a living environment.

Finally, in order to automate the control of the
environment in a truly effective way, the computer must be
equipped with an Artificial Intelligence (AI) system which
will make decisions based on the sensor data, allowing the
system to run in the background without constant human
supervision. An AI system is the most fit for this task
because it has the ability to learn patterned behavior. The
events in a living environment tend to exhibit patterns, as
humans are creatures of habit. Through the generalization of
repeated observations, AI systems are able to learn such
patterns from abstract data like those collected from the
sensor network.

Another important aspect of an AI system is its ability to
adapt to various situations as well as changes in the
environment. As all living spaces and occupants are unique,
it is impossible to design one ideal system which will work
in any given setting. Thus its adaptability will allow an AI-
based system to adjust to its unique environment and
establish control patterns that are adapted to its situation.

Research on such intelligent environments, with various
sensors connected up to a computer employing an AI system,
has been conducted at various academic institutions around
the world. Yet this is still a new area of study and there is a
lot to be discovered. AI itself is also a rapidly developing
field in computer science, and many new techniques have
not yet been applied to this problem domain.

II. RELATED WORKS
In a brief overview of advances in these technologies,

Cook and Das [1] describe the use of artificial intelligence to
automate homes, which they refer to as smart environments.

They argue for the idea that a sensor network will comprise a
necessary backbone to these environments, and will in turn
be connected to a centralized intelligence, which makes
decisions based on information collected from the sensor
network and sends commands to its controlled devices in the
home accordingly. They provide several examples of such
systems, one of which is based on X-10 technology. X-10
systems control devices using power line communication
(PLC) by sending small disturbances along the electrical
wiring, a potential advantage over other technologies, since
such lines are already present in most all homes. This kind of
system allows for easy setup of simple smart home
environments. Using the built-in sensor network and
artificial intelligence capabilities, such a system can be
designed to learn the inhabitants’ way of life and adjust the
devices in its control to better suit their needs.

In order for a system to understand a person’s needs, it
must first construct a model of his/her living style and
patterns. This is done through the recording and analysis of
various forms of data collected by the sensor network.
Youngblood et al. [2] describe a system called MavHome
(Manage Adaptive Versatile environments), which attempts
to model everyday human activities in a home environment,
and determine which activity is taking place based on sensor
data. This allows the environment to adapt to the specific
needs of the occupants. They employ a Hierarchical Hidden
Markov Model (HHMM) to learn and predict the activities
taking place. This approach is based on the idea that humans
are creatures of habit whose actions will show a certain
degree of periodicity, thus allowing the HHMM to pick up
on the pattern of events leading to a particular activity.

Once a reliable model for an inhabitant is developed, it
can be used to make decisions and predictions about the
inhabitant’s lifestyle. The applications for such a model are
numerous, ranging from medical and environmental to
recreational. One use, described by Helal et al. [3], involves
health monitoring for the elderly. Once a baseline for
ordinary behaviour and lifestyle is established, the system
can detect deviations and report them to a medical facility,
allowing elderly people to live independently and providing
peace of mind for their family members. It has been
discovered that in some situations, similar systems were able
to detect slight deviations which were the symptoms of
diseases, such as Alzheimer’s in its early stages.

Environmental issues and natural resources are also
topics of great interest. In his overview, Hagras [4] discusses
the use of computational intelligence (CI) techniques in
living environments to reduce energy consumption. He
divides CI into the three predominant areas of fuzzy systems,
neural networks (NN), and genetic algorithms (GA), and
provides various examples where each is utilized.

CI models have also been used to predict energy
consumption of larger environments such as office and
academic buildings. Bailey and Curtiss [5] describe the use
of a NN to adjust heating and air-conditioning to run
efficiently and save energy. Other examples focus more on
smaller personal living environments. One such system at the

University of Colorado as described by Mozer [6] uses a NN
to adaptively control environmental parameters such as
lighting and room and water temperatures. These systems are
designed to reduce energy consumption while maintaining
the inhabitant’s comfort level.

Another possible application for a behaviour model is to
use it as a basis to control different aspects of a living
environment in an effort to conserve energy. If an
inhabitant’s schedule can be determined, the environment
can learn to take actions which reduce the waste of energy. If
for instance, on a typical week day, the environment
determines that the occupant is not home between the hours
of 8AM and 6PM, energy consuming appliances such as the
water heater or the air conditioning can be turned off until
shortly before his/her arrival home.

Before these decisions can take place, the system needs
to construct a reliable model which can be used to accurately
predict the behaviour of the inhabitant. Thus methods for
determining this model or schedule of activities are of great
interest.

The goal of the work presented in this paper is to learn a
schedule of use for a particular room so that it can be used as
a basis for making a prediction as to when the room is going
to be in use. If a system can make such a prediction, it can
make better decisions on how to control various aspects of
the environment. In some cases, say lighting control,
knowing the use of a room in advance is not necessary.
Simple systems linking a motion sensor to a light switch
already exist, and are very effective because lights can be
turned on or off almost instantaneously. Advance knowledge
of use becomes more important when the aspect being
controlled takes time to reach its desired state. Heating
control is one such environmental variable. Because heating
a room to a desired temperature takes time, the ability to
predict the use of a room in advance can be extremely
beneficial. Conversely, if it can be predicted how long a
person will be occupying a room, the heat can be shut off
and the room can begin to cool without causing much
discomfort to the occupant.

While this sort of system would be extremely effective in
an ideal situation, human beings do not often stick to a
precise schedule and tend to act somewhat unpredictably.
Thus it is important for a system to include a reactive
component, which can make real-time decisions which can
override previous decisions. While this work does not
include a real-time component, it attempts to develop a
system which can create a schedule for a reliable prediction
which a system could use to bias its decisions. It will focus
on the use of Cyclic Genetic Algorithms to help construct
this model for prediction.

III. THE ENVIRONMENT AND DATA
 The environment of interest is Strider House, an

academic building on the Connecticut College campus used
by the Computer Science Department. It houses two
computer labs and three office spaces. Strider house is an

ideal domain for modeling as its use is somewhat consistent
and predictable, such as weekly scheduled labs and classes.
At the same time its use has enough variation from students
coming in to do work or other unscheduled uses, to warrant
an adaptive system. Each of the rooms was configured to be
monitored by a motion sensor (Figure 1) that records any
activity taking place. The sensors are strategically placed to
capture as much of the motion in the room as possible.

Figure 1. X-10 motion sensor

 The motion sensors are part of an X-10 system, as
described previously, and communicate with a base station
by radio frequency. Data from these motion sensors are
recorded on a computer linked to the base station in a format
as seen in Table 1. Each sensor event is labeled with a date
and time stamp, signal type, and sensor ID. The sensor ID is
unique for every sensor and signifies which room the data
was received from.

TABLE I. SAMPLE DATA

Date Time Signal Type Sensor ID

11/12/2010 09:30:00:359 RFC b2

11/12/2010 09:30:49:734 RFC b1

11/12/2010 09:30:50:000 RFC b1

11/12/2010 09:30:57:562 RFC b2

As discussed by Galushka et al. [7], raw data collected
from a sensor is often too complex or abstract to perform any
sort of data mining. Thus some form of preprocessing is
necessary to convert it into a form which can be useful. For
this work, the timing and frequency of the sensor events
during the hour of interest were used to determine whether a
room could be considered “in use” during that hour. This use
status was recorded in an easily accessible table.

IV. LEARNING METHOD
The learning method employed in this work is a form of

Genetic Algorithm (GA) known as a Cyclic Genetic
Algorithm (CGA). The traditional GA, introduced by
Holland [8], is a learning algorithm based on the concepts of
heredity and the survival of the fittest. It consists of a

population of possible solutions to a problem referred to as
chromosomes. These chromosomes are often binary strings
of fixed length that represent the solution in some way. Each
one is assigned “fitness” as to how well it solves the
problem. Based on this fitness, they undergo the three
genetic operators selection, crossover, and mutation to create
a new generation of chromosomes which theoretically are
better solutions. Through this process an optimal, or near
optimal solution is learned.

The CGA, as discussed by Parker [9], is unique in that it
incorporates time as a factor where the chromosome
represents a sequential solution that is to be carried out
linearly in a given span of time. In addition, the solution, or
part of it, can be looped so that a cycle is created. This cycle
can represent patterns in the problem that are repeated
multiple times. In his work, Parker uses these CGAs to
generate an ideal walking gate for hexapod robots. The
cyclic portion of the chromosome is ideal for the repetitive
nature of this problem. While the robot is walking, the
control sequence of the legs must loop the same commands
repeatedly. The cyclic portion of the chromosome learns to
represent this pattern, which during execution can be
repeated the necessary number of times.

In our work, we use the CGA to pick out the cycles in the
use patterns of a room over an extended period of time. The
type of environment we work with has a tendency to be used
with regularity, thus creating a pattern which can be
detected. For instance a computer lab may be used for a class
on Wednesday afternoon every week, while an office space
is used in the morning twice a week on Tuesday and
Thursday. This kind of periodicity in the use allows for the
CGA to pick a cycle length equal to a week. Although in this
particular environment we know that the length of the cycle
of use is a week, the CGA has the ability to pick out a cycle
of other lengths such as a two or three day cycle. Its ability to
pick out the cycle with minimal a priori knowledge is what
makes the CGA a powerful tool.

Figure 2. Chromosome representation

A. CGA Chromosomes
Although a CGA can work with both fixed and variable

length chromosomes, for the purposes of this work, we only
use fixed length chromosomes. Each chromosome (Figure
2) consists of a 4 bit inhibitor (as described in the next
section) and 256 bits to represent the schedule. A
chromosome of size 256 bits was chosen because it is long
enough to represent 10 days worth of use. This allows the

algorithm to pick out cycles of varying lengths ranging from
a single day up to ten days. Each bit represents the use of a
particular hour in the schedule, where a 1 stands for a period
of use and a 0 for a period of non-use. The chromosome in
Figure 2 represents a schedule of five inactive hours,
followed by three active hours, followed by six inactive
hours, and so on and so forth. The down side to this
representation is that, representing cycles longer than a
week, for instance a bi-weekly schedule, requires a large
number of bits and can slow the computation greatly. While
other methods which represent the hours of use in a reduced
format were attempted, the full representation proved to be
the most effective.

B. Inhibitors
The inhibitor portion of the chromosome is used to limit

some aspect of its function to prevent it from developing in a
particular way that does not suit the problem. In our work,
we use the inhibitor to limit the length of the cyclic portion
of the chromosome. While the 256 bit chromosome has the
ability to represent a schedule just over 10 days long, and
will have data for that full length, the algorithm must learn
the correct cycle length, which is most often shorter than 10
days. Thus, the value of the inhibitor represents the length of
this cycle in days, allowing it to pick shorter cycles. It is a 4
bit binary number, as seen in Figure 2, which is initialized as
a random value and is learned over the generations by the
algorithm.

When calculating the fitness of a chromosome for
selection (as described further in the next section), the value
of the inhibitor, in days, is multiplied by 24 to convert it to
hours. This value then determines the number of bits from
the remaining part of the chromosome that will be used for
the cyclic portion. For instance, if the inhibitor has a value of
7 days, the length of the cyclic portion will be 168 bits,
which is equal to the number of hours in 7 days. This 168 bit
portion is then compared to the training data to evaluate its
accuracy. This portion is repeated as many times as
necessary to match the length of the data. If the cycle in the
data is actually 7 days, it will match and return a high fitness
value. If the cycle is different, it will be less and less accurate
and return a poor fitness.

We use days as a unit of cycle length based on the
assumption that a cycle should not be shorter than a day.
Making this limitation also allows the algorithm to pick out a
schedule more effectively without getting confused by minor
periodicities in the data.

C. Genetic Operators
The probability for selection was calculated based on

fitness, which is a function of how well the proposed
schedule matches the actual data. The cyclic portion of the
chromosome is selected, as discuss in the previous section,
and is then lined up with the training use schedule so that
each hour is compared and evaluated. The scoring of correct

and incorrect hours is determined by the reward scheme
shown in Table 2.

TABLE II. FITNESS REWARDS

Actual Learned Reward
1 1 x
1 0 -1
0 1 -1
0 0 0

In observing the training data it was clear that the number
of active hours is highly disproportionate to the number of
inactive hours. This causes a problem because, in a simple
scoring scheme, a schedule of always inactive scores very
well. To counter this, the reward for a correct prediction was
weighted to compensate, as denoted by the x in Table 2. This
weighting was the proportion of inactive to active hours in
the data, and was adjusted for every training set to match the
proportion in that data. For instnace, if the ratio of unused
hours to used hours in the data is 10:1, the reward x for a
correct use prediction would be 10 points. This scheme, in
combination with the -1 reward values for incorrect values,
ensured that both the always inactive and always active
solutions, on average, would score 0 points.

Once fitness was calculated, the method known as elitism
was used, where the highest scoring individual of a
population carries directly on to the next, to ensure positive
overall fitness growth. All other individuals of the new
population are a result of a crossover between two mates
stochastically selected where the probability of selection was
proportional to the fitness.

Figure 3. One point crossover

Two types of crossover, single point and universal, were
used with equal probability. Single point crossover involves
picking a random point along the length of the chromosome
and splitting it into two parts, as seen in Figure 3. The
resulting chromosome will consist of the first part of one
mate and the second part of the other. The order of the mates
is selected randomly to prevent biasing towards one of the
mates. Universal crossover is a much simpler process where
every bit in the chromosome, including the bits in the
inhibitor, has an equal chance of being selected for the new
chromosome. Finally, the new chromosome that was created
as a combination of its two parents undergoes a basic
mutation scheme where every bit in the new chromosome
has a 0.3% chance of being flipped.

V. TESTS
Training was conducted for 10,000 generations using

populations of size 320. The initial population was seeded
with randomly generated chromosomes. Training was
conducted on both simulated and real data. Each test was
repeated five times.

Two different types of simulated data were used. The
first, which will be referred to as Type I, was constructed by
taking a single week of real data and repeating it 10 times to
simulate 10 identical weeks of data. The second, Type II,
was constructed by taking a single week of real data and
modifying it to simulate a second week with some schedule
changes. This modified week was then adjusted further to
simulate a progression of change over three weeks. The
reasoning behind this is that, if the algorithm can learn to
develop a schedule which best fits the three weeks, it can
then be used to predict a fourth week. As more data is
collected, a system can continuously train the algorithm on
the previous three weeks to make predictions for the current
week. These three simulated weeks were then repeated three
times to create 9 weeks worth of data to train the algorithm.
This was done to increase the length of the training set. A
longer training set increases the gap between the fitness of
good and bad solutions. A poor solution with an incorrect
cycle will score worse and worse as it is evaluated against
more data.

To test the flexibility of the algorithm on other cycle
lengths, similar Type I and Type II data were also
constructed to simulate a three day cycle.

Finally, experiments were conducted on three
consecutive weeks of real data. The data were formatted in a
manner similar to the simulated Type II experiments where
the three weeks of data were repeated three times to create a
total of nine weeks of data.

VI. RESULTS
The results from the 7-day simulated Type I and Type II

experiments show that the CGA is effective in learning a 7-
day schedule of use. Figure 4 shows the fitness growth at
selected generations averaged over five trials for the 7 day
cycle. The fitness values shown are averages over the five
trials. The scale for fitness is shown on the y-axis on the
right of the figure. The average fitness increases dramatically
in the first 100 generations, and continues to grow until
about 8000 generations. Note that the x-axis scale on the
graph changes after the first 1000 generations. The standard
deviation between the five trials is shown in the error bars.
The y-axis on the left side of the figure shows the scale for
these bars.

In all five trials, the algorithm consistently determined
the correct cycle length of 7 days for both the Type I and II
tests. The use pattern is matched exactly in the Type I test,
showing that the algorithm can learn a perfectly repetitive
schedule. This occurred in all five trials by the 8,000th
generation, as shown by the standard deviation bars. The
deviation for the Type II tests also drops to zero by the

10,000th generation, showing that the algorithm consistently
produced the same result in all five trials.

0

10

20

30

40

50

60

70

80

90

100

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Generation

St
an

da
rd

 D
ev

ia
tio

n

0

200

400

600

800

1000

1200

1400

1600

Fi
tn

es
s

Deviation (Type I)
Deviation (Type II)
Fitness (Type I)
Fitness (Type II)

Figure 4. Fitness growth for simulated 7 day cycle

Similar to the test on the 7 day cycle data, the algorithm
is able to consistently determine a 3 day schedule for both
Type I and Type II tests. These results are shown in Figure 5.
Note that the scale for the x-axis scale in this Figure is differs
to that of Figure 4. The CGA runs significantly faster on the
data for a 3 day cycle and thus learns the pattern in under
1000 generations. The greatest growth in fitness occurs in the
first 200 generations, and thus the scale of the figure is
adjusted to show this growth in more detail. The values for
fitness shown in this graph are again an average of five trials.

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

30
0

40
0

50
0
10

00

Generation

St
an

da
rd

 D
ev

ia
tio

n

0

100

200

300

400

500

600

700

Fi
tn

es
s

Deviation (Type I)
Deviation (Type II)
Fitness (Type I)
Fitness (Type II)

Figure 5. Fitness growth for simulated 3 day cycle

In all five trials, the algorithm consistently determined
the correct cycle length of 3 days for both the Type I and II
tests. Like the previous tests on the 7 day cycles, the use
pattern is matched exactly in the Type I test in all five trials
by the 160th generation. The deviation for the Type II tests
also drops to zero by the 200th generation.

These positive results on both the 7 day and 3 day
schedules shows that the algorithm has the ability to pick out
the correct length of the cyclic pattern with no a priori
knowledge.

0

0.1

0.2

0.3

0.4

0.5

0.6

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Generation

St
an

da
rd

 D
ev

ia
tio

n

0

200

400

600

800

1000

1200

1400

1600

Fi
tn

es
s

Deviation (Type I)
Deviation (Real)
Fitness (Type I)
Fitness (Real)

Figure 6. Fitness growth for real data

The experiments on real data show that the CGA can be
effective in picking out the ideal schedule. Figure 6 shows
the fitness growth across generations for real data averaged
over 5 trials. Note again that the x-axis scale on the graph
changes after the first 1000 generations. In three out of five
trials, the algorithm correctly determined the cycle length of
7 days and minimized the error.

As the data here is three real weeks repeated, similar to
Type II simulated data, the Type I data from Figure 4 is also
included in Figure 6 as a point of comparison. Type I
simulated data is one week of real data repeated and is thus
also essentially real data.

The inconsistency in determining the schedule arises
from the fact that real data has significantly more variation
from week to week, making the perfect schedule somewhat
ambiguous. More than one pattern of use could have been in
play, which made even the cycle length in question.
Nevertheless, the CGA produced seven day cycles that
appeared to be reasonable fits for the actual data.

VII. CONCLUSIONS AND FUTURE WORK
Our work employs a Cyclic Genetic Algorithm to pick

out patterns in the occupancy of a room, and construct a
schedule which can be used to make future predictions of its
use. The results show that this algorithm performs extremely
well on two different types of simulated data. It also has the
ability to pick out cycles of various lengths and thus does not

require any a priori knowledge of the length of the patterns
in the data.

We also show that the algorithm performs well on data
collected from a real environment. Although the accuracy of
the determined schedule is highly dependent on the level of
variation in the data, the algorithm does effectively discover
a schedule which minimizes the error.

Future work will further analyze the variation in the real
data in order to adapt this method and design an algorithm
which can prioritize recent data over old. We also hope to
incorporate this work into a larger control system as a basis
for planning as well as real-time decision making with an
aim to control variables in a real environment.

REFERENCES
[1] D. Cook and S. Das, “How smart are our environments? An updated

look at the state of the art,” Journal of Pervasive and Mobile
Computing, 3(2), 2007, pp. 53–73.

[2] G. M. Youngblood, D. J. Cook, and L. B. Holder, “Managing
adaptive versatile environments,” Journal of Pervasive and Mobile
Computing, 1(4), 2005, pp. 373-403.

[3] S. Helal, B. Winkler, C. Lee, Y. Kaddourah, L. Ran, C. Giraldo, and
W. Mann, “Enabling location-aware pervasive computing
applications for the elderly,” Proc. 1st IEEE Pervasive Computing
Conference, Fort Worth, TX, 2003, pp. 531–538.

[4] H. Hagras, “Employing computational intelligence to generate more
intelligent and energy efficient living spaces,” International Journal
of Automation and Computing, 5(1), 2008, pp. 1–9.

[5] M. Bailey and P. Curtiss, “Neural network modeling and control
applications in building mechanical systems,” Proc. International
Conference of Chartered Institution of Building Services Engineers
and American Society of Heating Refrigeration and Air-conditioning
Engineers, London, England, 2001.

[6] M. C. Mozer, “The neural network house: An environment that
adapts to its inhabitants,” Proc. American Association for Artificial
Intelligence Spring Symposium on Intelligent Environments, Menlo
Park, CA, 1998, pp. 110–114.

[7] M. Galushka, D. Patterson, and N. Rooney, “Temporal Data Mining
for Smart Homes,” Lecture Notes in Computer Science, 4008, 2006,
pp. 85-108.

[8] J. H. Holland, Adaptation in Natural and Artificial Systems, The
University of Michigan Press, 1975.

[9] G. B. Parker, “Generating Arachnid Robot Gaits with Cyclic Genetic
Algorithms,” Proc. Third Annual Genetic Programming Conference,
1998.

	Connecticut College
	Digital Commons @ Connecticut College
	10-2012

	Automation Techniques for Intelligent Environments - Prediction of Building Activity Patterns Using a Cyclic Genetic Algorithm
	Gary Parker
	David T. Alpert
	Recommended Citation

	Automation Techniques for Intelligent Environments - Prediction of Building Activity Patterns Using a Cyclic Genetic Algorithm
	Keywords
	Comments

	Microsoft Word - SMC2012_ParkerAlpert.doc

