
Connecticut College Connecticut College 

Digital Commons @ Connecticut College Digital Commons @ Connecticut College 

Computer Science Honors Papers Computer Science Department 

2023 

A Computational Analysis of Hybrid Genome Assembly Strategies A Computational Analysis of Hybrid Genome Assembly Strategies 

Joseph Walewski 
Connecticut College, josephwalewski27@gmail.com 

Follow this and additional works at: https://digitalcommons.conncoll.edu/comscihp 

 Part of the Computational Biology Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Walewski, Joseph, "A Computational Analysis of Hybrid Genome Assembly Strategies" (2023). Computer 
Science Honors Papers. 14. 
https://digitalcommons.conncoll.edu/comscihp/14 

This Honors Paper is brought to you for free and open access by the Computer Science Department at Digital 
Commons @ Connecticut College. It has been accepted for inclusion in Computer Science Honors Papers by an 
authorized administrator of Digital Commons @ Connecticut College. For more information, please contact 
bpancier@conncoll.edu. 
The views expressed in this paper are solely those of the author. 

https://digitalcommons.conncoll.edu/
https://digitalcommons.conncoll.edu/comscihp
https://digitalcommons.conncoll.edu/mathcomsci
https://digitalcommons.conncoll.edu/comscihp?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/28?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.conncoll.edu/comscihp/14?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu


A Computational Analysis of Hybrid Genome Assembly
Strategies.

An honors thesis presented by
Joseph Walewski

And advised by
Professor Douglass (Computer Science, Biology)

Readers: Professor Izmirli (Computer Science), Dean Eastman (Biology)

To the Department of Computer Science
In partial fulfillment of the requirements for

Honors

Connecticut College
New London, Connecticut

May 3rd, 2023



Abstract

The central dogma of molecular biology states that DNA is transcribed to RNA and then

translated into proteins. Since DNA is the starting material for many of biology’s

macromolecules, it has been referred to as “nature’s instruction book.” The sum of all DNA in a

cell is referred to as the genome, and genome sequencing is how we interpret the DNA.

Due to limitations on currently available technology, it is not possible to retrieve the

entire genome in one contiguous set of data. Therefore, genome sequencing is a computer

science problem as sequencing “reads” must be stitched together to obtain the complete genome

sequence. There are two types of reads: short, accurate ones and long, inaccurate ones, and it is

currently unclear how to most efficiently combine them. This is especially true of large genomes,

where the cost of data acquisition is more expensive and the assembly step is harder. Therefore,

we were motivated to simulate the process of genome sequencing on various organisms and then

to reassemble their genomes based on varying levels of short and long read coverages.

Our results, while incomplete due to the nature of genomic data, show that approximately

25X short, accurate read coverage and 14X long, inaccurate read coverage are sufficient to

assemble most large (>100 Mbp) genomes. Critically, the amount of coverage required stays

relatively constant, even as genome size increases by over an order of magnitude.

This surprising find suggests that large genomes may be slightly easier to assemble than

previously thought. As the cost of sequencing continues to fall the bioinformatics community

should continue to heavily invest in the field of genomics, hopefully aided by our results to do

the most efficient work possible.
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Introduction

Biological Background
An Introduction to DNA

Your 23&me results come back: brown hair, likely lactose tolerant, cystic fibrosis carrier.

Between spitting in the tube and the information displayed online lies a complicated process of

DNA extraction, genome sequencing, and genome assembly. Each one of these three steps has

seen dramatic technical improvements in the past 20 years, which has led to an enormous

increase in both the scale and affordability of understanding the genome, the sum of all DNA

inside of any one cell. It is often referred to as “nature’s instruction book” for this reason. With

cutting edge technology it is becoming possible to tackle the most complicated genomes in the

tree of life, which may provide significant insights into human health and medicine.

Salamanders, for example, are famous for their exceptional regenerative abilities, and hope

remains high that one day human therapies may be derived from them.1 However, their genomes

are ten times the size of our own, so understanding them is currently very challenging. Biological

data are massive, and to solve future problems in medicine comprehensive backgrounds in both

biochemistry and computer science will be essential.

One of the most essential properties of biological matter is that it has heritable material.

Heritable material allows life to operate on a day to day basis and can be passed down to future

generations. In all living organisms(therefore excluding viruses and prions) the heritable material

is stored as deoxyribonucleic acid (DNA). DNA is a macromolecule, made up of repeating units

of molecular fragments called nucleotides. The nucleotide is the smallest discrete unit of the

genetic code and therefore is a key starting point for understanding molecular genetics.

1 Joven, Alberto, et al. “Model Systems for Regeneration: Salamanders.”
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Figure 1. The chemical structure of a nucleotide. The lines indicate covalent bonds,

double lines indicate double covalent bonds, H represents hydrogen, N represents nitrogen, O

represents oxygen, and P represents phosphorus. Line junctions without labels indicate a carbon

atom at their intersection. 2

Each nucleotide in turn has three components, the first of these being the nitrogenous

bases Adenine (“A”), Thymine (“T”), Cytosine (“C”), and Guanine (“G”) which actually encode

the heritable information. Adenine and Guanine are purines, nitrogenous bases with two rings,

while cytosine and thymine are pyrimidines as they feature one ring. The primary implication of

this relevant to genome sequencing is that Adenine and Guanine are significantly larger than

Cytosine and Thymine. Since DNA must be a fixed width, purine-purine bonds are prohibited

(too wide) as are pyrimidine-pyrimidine bonds (too narrow). Covalent bonding is the primary

2 Hbf878. “File:Damp Chemical Structure.svg.”
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method in which atoms in molecules share electrons, and the end of a covalent bonding network

is what delineates individual molecules from one another. However, there is another type of

bond: the hydrogen bond.

Hydrogen bonds exist when a hydrogen on one molecule is bonded to a very

electronegative atom (either nitrogen or oxygen) on the same molecule, pulling away the

hydrogen’s electron and rendering the proton very exposed. This leaves a strong positive charge

on the outside of the molecule, which an electronegative atom (again nitrogen or oxygen, but

additionally fluorine as well) on the exterior of another molecule can be attracted to. This bond is

not as strong as a covalent bond, but it is key for holding DNA together and is the only type of

bond holding nitrogenous base pairs together. The concept of the base pair as the fundamental

unit of genetic information is so ubiquitous that “base pair” (bp) is one of the terms commonly

used to measure genome size. Additionally, a key advantage of having hydrogen bonds holding

the base pairs together is that, while individually weak, the sheer number of bases in DNA

renders the collective base pair bonding incredibly strong. This dual behavior of being locally

weak but globally strong allows DNA to open in a very controlled fashion. This is ideal for

targeted gene regulation and replication, both essential to life itself.

Adenine and Thymine each have two hydrogen bonding sites, while Cytosine and

Guanine each have three. This is another constraint on how the base pairs bond - while size

prohibits Adenine from bonding with itself or guanine, the difference in the number of hydrogen

bonds between it and Cytosine also renders it an invalid partner. Thus, the only base which

Adenie can bind to is Thymine. Therefore, A and T are considered complementary, as are C and

G. Therefore, the genetic code is very, very precise as each base read conveys very specific

information.
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Figure 2. The nitrogenous bases present in DNA. Note that, due to the combination of

being either a purine or pyrimidine, and due to either having two or three hydrogen bonding sites

(indicated by dotted lines), each nitrogenous base can be paired with exactly one other.3

3 “Base Pairing in DNA.” Base-Pairs.html 16_08dnabasepairing_l.Jpg,
http://bio1152.nicerweb.com/Locked/media/ch16/base-pairs.html.
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The genetic code itself is read three letters at a time - such a grouping is referred to as a

codon. According to the central dogma of molecular biology, these codons are then transcribed

into Ribonucleic acid (RNA). RNA is a similar but less stable version of DNA that features

Uracil (“U”) instead of T, and then the RNA is translated into proteins. These proteins then carry

out most of the operations of the cell and provide most of the structural support required for the

organism to live. Proteins are made of up their own building blocks called amino acids, of which

20 are found across all life and represented in the genetic code.4 This is why a codon is 3

nucleotides long - if a codon were only two nucleotides long, there would only be 16

representations available for amino acids (four in the first position multiplied by four in the

second position). Three nucleotides, however, allows for 64 unique signals - since this is

significantly more than the 20 needed, there is a great deal of redundancy. Critically, however,

the genetic code is unambiguous as one codon always codes for exactly one amino acid. An

additional advantage of having extra signals is that it allows for the use of stop codons that do

not actually code an amino acid - this way, a protein can end with any amino acid. As the twenty

amino acids vary widely in terms of reactivity, solubility, and many other chemical properties,

having a variety of options allows for greater protein diversity. This is especially important near

the end of the protein sequence, which is likely to be exposed and somewhat mobile after protein

folding. Curiously, however, the singular start codon AUG additionally codes for methionine,

one of the 20 amino acids. Yet another advantage of the redundant genetic code is that certain

codons that code for the same amino acid are more ideally suited for different environments - A

and T are considered “weakly bonded” due to their two hydrogen bonds between them; C and G

are “strongly bonded” as they have three. Therefore, in conditions that favor bond breaking, such

as high temperatures, C and G are favored to keep DNA intact when it is not being replicated or

4 Niu, C.-H., et al. “The Code within the Codons.”
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read; when conditions favor bond integrity A and T are favored so that the DNA can be opened

at all.5 This has important implications for genome sequencing - since the reactions that copy and

read DNA to be analyzed have been optimized to work at a specific temperature, they reflect the

average GC content across species. Therefore, it is slightly easier to sequence the genomes of

species with lower GC content (and therefore more As and Ts), and within a genome reads are

biased towards areas that have proportionally lower GC content.6

The second component present in DNA is phosphate, an anion (negatively charged

molecule) that along with deoxyribose forms the “backbone” of DNA. The phosphate anion has

a very negative charge for its size (-3 elementary charges with a molecular weight of 94.971

atomic mass units), yielding an anion with a great deal of potential energy. This energy is used

by the cell to allow the process of DNA synthesis to be favorable, especially since three

phosphate anions are attached to an incoming nucleotide (but only one remains on the DNA

strand when synthesis is complete).

Figure 3. The phosphate anion. All oxygens with a single line to the central phosphate are

singly bonded and therefore have an extra electron, resulting in a negative charge on each atom.7

7 “Phosphate Ion.” National Center for Biotechnology Information.
6 Ibid

5 Benjamini, Yuval, and Terence P Speed. “Summarizing and Correcting the GC Content Bias in High-Throughput
Sequencing.”

6



The final component is Deoxyribose, more precisely D-2-deoxyribose, is a five-carbon

sugar ring that forms an essential part of the backbone of DNA. With ribose as a precursor, the

removal of the oxygen at the second carbon allows for greater flexibility. This is required for

DNA to form the classic “double helix” shape, each helix with its own sugar-phosphate

backbone and nucleotides. This shape, in turn, offers greater stability than a planar molecule and

additionally allows for extensive compaction at larger scales.8 When deoxyribose is incorporated

into DNA the 5’ hydroxy (OH) group is replaced with the tri phosphate group mentioned earlier.

Figure 4. The structure of 2-D-deoxyribose, with the 5’ carbon circled in green.9

However, the structure of deoxyribose’s covalent bond with Phosphate yields an

interesting property: DNA polymerization (extension of the molecule, required for replicating it

and thus reproduction of all life) can only occur in one direction (from the 5’ carbon to the 3’

9 “Beta-D-2-Deoxyribose.” National Center for Biotechnology Information. PubChem Compound Database, U.S.
National Library of Medicine,
The image was modified to include a green circle on the 5-carbon for clarity.

8 Gruenwedel, D W. “Nucleic Acids: Properties and Determination.”
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carbon in deoxyribose). Due to this, the two strands of DNA wrap around in an antiparallel

fashion (the directions each strand can add in point in the opposite direction). This way, one

strand can serve as the template for the other during the replication process. Consider what

would happen if the strands were oriented the same way: an extending DNA molecule would

have no “backup” to copy off of as both strands would be extending in the same direction

simultaneously. If this was the case, DNA would not be able to preserve the information in the

previously existing molecule and inheriting information from the previous generation would be

impossible. The method of DNA replication that exists in nature is referred to as

semiconservative replication, shown in the figure below.

Figure 5. A diagram of semiconservative replication. Each strand of DNA consists of one

strand used in the previous generation that exists as a template for the newly synthesized strand.10

One of the most important implications of semiconservative replication is that genes may

appear on either strand of DNA. This complicates the process of inferring codons, genes, and

other sequences of interest (promoters, enhancers, splice sites, etc) during genome sequencing as

either the original sequence or its reverse complement (the exact opposite sequence in reverse

10 Cornell, Brent. “Semi-Conservative DNA Replication.”

8



order) may appear. Therefore, computer algorithms attempting to identify, align, or assemble

reads must account for this scrambling of information.

Chromosomes and Gene Expression

Other problems exist for sequencing machines as well due to the multitude of layers of

DNA compaction present in cells. DNA is compacted very tightly as the total length of all DNA

in a human cell would be over two meters long if stretched end to end. The first layer of

compaction is done by histone proteins: each one can store 147 nucleotides in a coil around it,

and histones can be linked and grouped together, significantly compacting the DNA. Each

DNA-wrapped histone is referred to as a nucleosome. Once the H1 protein bonds to a

nucleosome it is then a chromatosome. Chromatsomes, in turn, wrap around each other to form

a 30 nanometer wide chromatin fiber. Chromatin fiber is the highest level of compaction that

exists at all times in the cell; even greater compaction exists during times of cell division.

9



Figure 6. The increasing scale of DNA compaction, from histones to chromosomes, and a

brief overview on the chromosomal structure. Note that the chromatosmes are referred to as

nucleosomes, although the difference is minor.11

11 Alberts, Bruce, et al. “Chapter 4, Figure 4.55.”Molecular Biology of the Cell, Fourth Edition.

10



Regions that are highly coiled by histones are referred to as heterochromatin, while

regions without much coiling are called euchromatin. Because the DNA in heterochromatin is

very tightly wrapped around histones it is harder for sequencing machines to access, resulting in

a read frequency bias towards regions of euchromatin.12 Other areas that are difficult to access

for sequencing technologies are the centromere and telomeres, regions of the chromosome that

are located at the center and ends of the chromosome respectively. These regions generally

contain a lot of heterochromatin and are very repetitive, suggesting that their main functions are

to stabilize the DNA cell replication as compared to storing meaningful information. The term

“chromosome” refers to contiguous DNA fragments within a cell. Some bacteria only feature

one chromosome (which is circular), while one species of protist has a whopping 16,000

chromosomes, hinting that the ways in which DNA is stored is just as diverse as life itself.13

Many commonly known organisms (some plants, nearly all animals, and most fungi) are

considered diploid (also referred to as n=2) as they have two copies of each chromosome - that

is, every gene that exists can be found on nearly identical chromosomes in each cell.

13 Chen, Xiao. The Architecture of a Scrambled Genome Reveals Massive Levels of …”

12 Benjamini, Yuval, and Terence P Speed. “Summarizing and Correcting the GC Content Bias in High-Throughput
Sequencing.”
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Figure 7. An example of two levels of ploidy: haploid (n) and diploid (2n).14

The differences in chromosomal copies are due to the fact that one chromosome is

inherited from each parent and, since each individual is genetically distinct, there will be

extremely slight differences along with extremely infrequent de novo (new) mutations that may

have affected only one of the two chromosomes. Other ploidy numbers exist: n=1 is considered

haploid, these organisms have only one parent. On the other hand, many plants are polyploid -

that is, they have more than two copies of each chromosome, and sometimes many more.

Strawberries, for instance, can have up to nine copies of each chromosome in the wild (this is

referred to as nonaploidy, n=9).15 The varying levels of ploidy offer a tradeoff from the lens of

genome sequencing: the more copies of a gene there are, the more likely one is to have obtained

a read from it, but it becomes harder to resolve exactly which copy of the chromosome that read

belongs to. An additional possibility is that it actually belongs to both copies.

15 T;, Hummer KE;Nathewet P;Yanagi. “Decaploidy in Fragaria Iturupensis (Rosaceae).”

14 Hamburg, E. “File:Haploid vs Diploid.svg.”Wikimedia Commons, 10 May 2010.
The image was modified for page length such that, instead of being above or below one another, the two examples
of ploidy appear side by side.
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While a codon may be the most basic unit through which information from DNA is

relayed to RNA and proteins, the larger scale term “gene” is also very useful to know. Genes are

regions of DNA that code for an RNA, which may or may not be translated to protein.16

Previously it was thought protein was the only catalytic (biologically active) macromolecule in

the central dogma of molecular biology, however many catalytic RNAs have been recently

discovered. All genes share several key features, such as the promoter, the region where RNA

polymerase binds and begins transcription to RNA. Since promoter sequences are remarkably

similar throughout life, these are easy for genome assembly and analysis programs to recognize

and flag as points of interest. Additionally, genes have stop codons, indicating the end of the

region that is transcribed to RNA. Again these stop codons are easy for computers to recognize

as only three exist (UGA, UAA, and UGA when represented as RNA), and they must occur in a

predictable fashion along the DNA sequence. Two primary conditions exist: first, the stop codon

must exist more than 300 but less than 3 million bases (3 Mbp) “downstream” of the promoter

(towards the 3’ direction).17 Second, the stop codon must be available to read in the frame given

by the promoter. The stop codon is available when it is in frame 1, and all nucleotides are being

read in groups of three. If one or two extra nucleotides are needed to group the stop codon

together, then it is in frame two or three and is considered a “closed” reading frame. A promoter

followed by a stop codon in an appropriate window is referred to as an open reading frame.18

18 Shchelochkov, Oleg. “Open Reading Frame.” Genome.gov

17 RG;, Tennyson CN;Klamut HJ;Worton. “The Human Dystrophin Gene Requires 16 Hours to Be Transcribed and
Is Cotranscriptionally Spliced.”

16 Epp, Christopher D. “Definition of a Gene.”
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Figure 8. An open reading frame and two closed reading frames. Note that the sequence

being given is the “sense” strand of DNA, so the codons are equivalent to the RNA ones

previously mentioned other than T substituting for U.19

However, not all open reading frames are transcribed, complicating the process of true

gene identification for genome assembly programs. Open reading frames that do not code for

RNA are referred to as “pseudogenes” and are likely remnants of previously used genes. One

subtle way to distinguish most pseudogenes from proper genes is that pseudogenes usually have

somewhat degenerated promoters as they are no longer under selection pressure to be efficient at

guiding transcription. However, due to the slight natural variation in working genes’ promoters,

this is not always a clear diagnostic of a pseudogene. Promoter variation is one of the modalities

used to alter gene expression (transcription and translation). Certain promoter sequences favor

transcription by favoring binding of RNA polymerase, the molecule that actually transcribes

DNA into RNA, more favorably than others. Other methods of altering transcription levels

include DNA methylation, where Cytosine has a methyl group attached to its 5-carbon.

Methylated DNA is read less frequently than “normal” DNA and therefore this is a method of

19 Cornell, Brent. “Gene Identification.” BioNinja
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down regulation, one of the two types of gene regulation present. The other, predictably, is up

regulation, and an example of it is histone acetylation. Since DNA as a whole carries a negative

charge (due to its phosphate groups), histone proteins carry a positive charge so that DNA will

stay coiled around them. Acetyl groups, however, carry a negative charge, and acetylating

histones neutralizes the positive charge they carry. Without the electrical attraction, DNA is more

loosely coiled around the histone, and more accessible to RNA polymerase. This is why

acetylation is a form of upregulation. Other forms of regulation include enhancers, sites where

other proteins can bind to DNA and aid transcription, and inhibitors, other sequences where

proteins can bind and inhibit RNA from transcribing the given gene. Since enhancers and

inhibitors are DNA sequences, they are a part of the genome and many genome analysis tools

attempt to predict their location and exactly which genes they regulate. Due to the extreme level

of compaction in chromosomes, sequences that are very far apart on a linear model of DNA may

physically be adjacent in the cell. Therefore, this process can be quite complex and may require

an understanding of similar enhancers in other species. Inhibitors, conversely, are usually located

near their target genes, simplifying their identification process for computer algorithms. Gene

regulation is the mechanism through which an eye cell and a bone cell differ drastically in shape

and function despite having the same genome. Additionally, it is responsible for some of the

differences between individuals, although other factors influence this variation more.

15



An Introduction to Genomics

Since every living thing has a distinct genetic code, each and every lifeform on this planet

has its own genome that encodes exactly which RNA and proteins it expresses. However, for

practicality, most experiments in molecular biology only require one “reference” genome per

species from which the cellular and metabolic characteristics of any member of that species can

be inferred and manipulated with. This relative similarity between individuals in a species is one

the genome’s key advantages over the transcriptome and the proteome. The transcriptome is the

total sum of all RNA expressed. The proteome, meanwhile, is the sum of all of the proteins

present in an organism or species. While the transcriptome and proteome are also of interest to

molecular biologists, only the genome is constant throughout an organism’s life. This has

multiple benefits: first, it is the only one of the three representative of the information passed

down between generations. Additionally, it is also simpler to study as the transcriptome and

proteome can change rapidly, and not all of the organism’s possible RNA and protein is present

in any one cell and at any one time. Therefore, to obtain a transcriptome or proteome, multiple

rounds of sample extraction have to occur, as compared to once to obtain the genome. Lastly,

DNA's larger size and double helix (as compared to RNA, which only has a single helix) render

it more resilient while doing lab work.

With the genome being an attractive candidate to understand lifeforms it should come as

no surprise that many techniques have been developed in the past 50 years to attempt to retrieve

a reference genome for every species with the highest possible levels of completion and

accuracy. To this end, the vertebrate genomes project has an ambitious goal: sequence the

genome of every vertebrate.20 Several key metrics have been developed to assess the quality of

genome assembly, with most involving either completion or accuracy given their importance to

20 Springer Nature Limited. “The Vertebrate Genomes Project.”
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any sequencing project. For genomes where a reference previously exists, it is possible to

measure completeness as a fraction of the genome recovered in the new assembly. However, the

first time a species’ genome is sequenced, this is not possible. Thus, a de novo genome assembly

is required. In this case it is not possible to measure completeness as a fraction of the genome

size as the true size is not known. While sometimes it is possible to have an estimate on the full

genome size either due to inference from a closely related species or from physically obtaining

the mass of the DNA per cell in a sample, usually a different statistic is used: N50.21 To obtain a

genome’s N50, the largest contigs (reads that have contiguously been attached together) must be

added together until they sum to at least 50% of the reported genome assembly length. After this

size is achieved, report the length of the most recently added contig.

Figure 9. An abstract representation of a genome, with its contigs sorted by size. Since

the genome’s length is 400, the size needed to achieve 50% of it is 200. The read that takes us

over 200 is of length 60, so the genome’s N50 is 60.22

N50 is a very valuable metric even when a genome assembly has a currently existing

reference - this is because it also gives information about how fragmented the newly assembled

genome is. Reducing fragmentation is critical as it allows molecular biologists to determine

where genes are located in relation to each other. If the genome assembly is contiguous enough,

22 Videvall, Elin. “What's N50?”
21 Heslop-Harrison, J S. “Crop Improvement: Plant Genomes.”
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it may be possible to understand which chromosome each gene lies on. If the position of genes

on chromosomes are known, then it is possible to create a linkage map which displays this

information. Since chromosomes are the basic unit passed down between generations, this can

have very important implications for understanding heritability patterns of certain traits.23 N50 is

highly dependent on “coverage.” Coverage can be calculated by taking the length of all

sequencing reads obtained and dividing it by the length of the genome. For a de novo assembly,

the reported genome size is used, even though it is understood to be incomplete.24 High levels of

coverage are recommended as, although reads are semi randomly distributed along the genome,

gaps are likely to be present at low coverages. This is both due to randomly missing regions and

bias away from areas with high GC content and/or high levels of heterochromatin. However, the

exact levels of coverage needed are not currently known, and this was one of the aims of our

study.

Additionally, coverage can affect accuracy. The more reads obtained to represent a single

base in the original genome sequence, the more likely it is that any sequencing error present on a

single read will be corrected by other reads. Since the twenty amino acids are very diverse in

their structure and function, a single error can have profound implications for the interpretation

of a genome. Errors fall into two main categories: substitution errors, where a certain number of

bases are swapped out for an equal number, or “indels”, where the number reported is different

from the number that actually exists. Reflecting this, the term indel is an abbreviation of

“insert/delete.” Because indels shift reading frames, and many genome analysis programs rely on

open reading frames to identify gene sequences, a single indel can have potentially steep

consequences on the quality of the contig affected. However, genomes are massive. The smallest

24 Zimin, Aleksey. “Sequencing and Assembly of the 22-Gb Loblolly Pine Genome.”

23 Vidal, Adrien, et al. “SESAM: Software for Automatic Construction of Order-Robust Linkage Maps - BMC
Bioinformatics.”
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genomes belong to viruses and can be as small as a few thousand bases, while the largest

genomes approach a terabase (1 trillion bases).25 Due to this, indels are inevitable, and must be

dealt with as much as possible.

The myriad of genome sequencing technologies that have been developed have tried to

maximize completion of and minimize accuracy, although, tradeoffs always exist. The very first

method of genome sequencing used, Sanger sequencing, was developed in 1977 by Frederick

Sanger.26 Sanger sequencing involved extracting DNA, breaking the double helix, and then

extending new strands by adding a small portion of dideoxy nucleotides to the reaction mixture,

in addition to the naturally occurring 2-D-deoxyribose. Since these dideoxy nucleotides do not

have the hydroxyl group required for the addition of the next incoming nucleotide, each strand

that has a dideoxy nucleotide attached terminates. Since this happens at random lengths along the

DNA, and each of the four nucleotides is added in a repeated fashion, it then becomes possible to

determine which nucleotide is added at each position along the read. This makes it possible to

determine the read sequences, and slowly assemble contigs. While cumbersome, it was a starting

point for the field of genome sequencing and had read lengths of 900bp and an error rate of

.001%, metrics that would not be improved upon for quite some time.27,28

Sanger Sequencing, however, was prohibitively expensive for all but a few select

genomes. The first genome ever sequenced was the bacteriophage (virus) fx174, with a genome

of only 5,368bp.29 After this initial effort many of the next organisms chosen were the “model”

organisms, species which for one reason or another have particular scientific utility. Some

commonly known model organisms are Rattus norvegicus (the lab rat) and Drosophila

29 “Genome Sequencing: A History.”

28 Cheng, Chu, and Pengfeng Xiao. “Evaluation of the Correctable Decoding Sequencing as a New Powerful
Strategy for DNA Sequencing.”

27 Ibid
26 “Timeline: History of Genomics.” Your Genome
25 Karami, Ali. “Largest and Smallest Genome in the World - Researchgate.”
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melanogaster (the fruit fly), while lesser known ones include Saccharomyces cerevisiae (a

species of fungus) and Caenorhabditis elegans (a nematode).30 Given its extreme relevance, the

first draft of the human genome was published in 2001 after a decade and $300 million were

spent on the effort. Currently, however, sequencing a patient’s individual genome has become a

common practice given its relatively low cost. As of April 2023, it costs under $1,000 to fully

sequence a human genome.31 This, however is rare now as the human genome has been fully

sequenced many times, so reference sequencing is commonplace instead as it is even more cost

effective. Regardless, the cost of de novo sequencing has fallen low enough that stories exist of

undergraduate labs and even individuals sequencing a species of personal interest. What has

allowed this drastic shift in cost?

Figure 10. Cost of sequencing per megabase of genome. For reference, the human

genome is 3 gigabases.32

32 Ibid
31 Wetterstrand, Kris A. “DNA Sequencing Costs: Data.”
30 “Model Organism Sharing Policy.” National Institutes of Health

20



Throughout the end of the 20th century, Sanger sequencing gradually became more

efficient, but the first significant leap came in 2005 when “next-generation” sequence reads were

released by Illumina, a biotech company.33 This new technology works by instead using

fluorescent dideoxynucleotides in the DNA addition step and photographing between each

addition, resulting in a drastic contraction of the space and resources required to generate each

read. Instead of each read taking up hundreds of lanes on a polyacrylamide gel with each lane

being a few centimeters long, 40 million wells each with 1000 copies of a specific read fit on a

“flow cell” (sequencing chip) that could fit in the palm of one’s hand. This increased sequencing

output by many orders of magnitude, and resultantly cost fell five orders of magnitude.34

Illumina reads, however, left a lot to be desired: while their error rate was low, it was higher than

that of Sanger reads (~.1% vs .001%). This however, was easily overcome by the increase in

coverage, but the issue of read length could not be overcome so easily. In contrast to Sanger

reads almost reaching a kilobase (kbp), the first Illumina reads were only 35 nucleotides long.

While this is sufficient in most gene coding portions of DNA, repetitive elements (where a short

pattern, such as ATATAT… repeats) elsewhere in the genome put a serious cap on the N50

achievable as it became impossible to determine the exact position in the genome those sequence

reads originated.

To this end, yet another technology arrived in the mid 2010s: continuous long reads

(CLRs) by Pacific Biosciences (Pacbio). Instead of using flow cells and wells, CLRs operate by

taking advantage of the molecules behind natural DNA replication (primarily DNA polymerase)

to add the dideoxynucleotides. This allowed for reads over 15kbp long, however, the error rate

34 Cheng, Chu, and Pengfeng Xiao. “Evaluation of the Correctable Decoding Sequencing as a New Powerful
Strategy for DNA Sequencing.”

33 Morozova, Olena, and Marco A Marra. “Applications of next-Generation Sequencing Technologies in Functional
Genomics.”
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suffered even more: CLRs have an error rate of up to 13%. Even worse, while Illumina reads

have primarily substitution errors, Pacbio reads primarily have indels.35 A frame shift once in

every eight nucleotides is extremely challenging to operate with, and as such, the technology

needed significant refinement before becoming truly viable. Pacbio then released High-Fidelity

(HiFi) reads to overcome the error rate of CLRS by taking advantage of their circular nature. By

having slightly shorter sequences, it becomes possible to ensure that DNA polymerase makes

multiple trips around the circle. This ensures that every sequenced spot has high “coverage”

(although this is slightly different from the technical use of the word). Although each subread

(pass around the circle) still has up to a 13% error rate, the other subreads correct most of these.

Therefore, Hifi reads have an approximately 1% error rate.36 In October 2022, PacBio announced

the Revio sequencing machine, which has made HiFi reads 15 times cheaper. While they were

previously cost prohibitive for medium to large size eukaryotic genomes, HiFi reads are rapidly

becoming the standard for genome assembly.

As Pacbio was making significant improvements, an Oxford University startup (Oxford

Nanopore Technologies) released a new read type in 2014: nanopore reads. Nanopore reads are

unique as, unlike every sequencing strategy discussed so far, they do not involve

dideoxynucleotides- instead, they operate by running a strand of DNA through a protein on an

artificial membrane. As the DNA passes through this membrane is it possible to record the

difference in charge. Since each nucleotide’s molecular formula is slightly different, they affect

the charge differently, and it is possible to determine the read sequence. Nanopore reads are

currently a top notch technology, with read lengths reaching into the megabases. At this scale,

they can easily resolve even the longest repetitive regions, and can even be used to cross

36 Ibid
35 Logsdon, Glennis A, et al. “Long-Read Human Genome Sequencing and Its Applications.”
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significant portions of some chromosomes.37 However, their error rates are as high as 13%,

similar to Pacbio’s CLRs.

Therefore, cutting edge genome assembly techniques combine both HiFi and Nanopore

reads, taking advantage of the former’s accuracy and the latter’s length.38 The process of

combining multiple read types is referred to as hybrid assembly, and with these read types it is

currently unclear how to maximize information gained per dollar spent. Therefore, we were

motivated to investigate this question, especially as it pertains to large genomes. The only

relevant studies have benchmarked this work in bacteria, which have orders of magnitude

smaller genomes than the ones on the frontier of genome science.39 This work becomes very

computational after putting the tissue sample through the sequencing machine, highlighting the

interdisciplinary nature of the field.

Computational Methods

Understanding Algorithms and Runtime.

While the average person may think of computer science either as hackers sitting alone

behind a screen, or a bunch of tech billionaires, at its core computer science is all about

automation: understanding a problem well enough such that its solution can be enumerated

through a series of independently reproducible steps. However, at times, it can be proven that no

such series of steps exist due to the very nature of the problem itself - these are referred to as the

“undecidable” problems. Understanding which problems are undecidable is just as important as

39 Wick, Ryan R., et al. “Assembling the Perfect Bacterial Genome Using Oxford Nanopore and Illumina
Sequencing.”

38 `Wang, Jeremy R. “Polishing De Novo Nanopore Assemblies of Bacteria and Eukaryotes With FMLRC2 .”

37 Warburton, Peter E, et al. “Analysis of the Largest Tandemly Repeated DNA Families in the Human Genome -
BMC Genomics.”
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knowing how to code, as one may accidentally try to write an algorithm that is impossible to

finish. Additionally, speed is a critical consideration as a solution is worthless if it takes 5,000

years to get the answer to today’s problems. In a field such as bioinformatics, where cutting edge

technology becomes obsolete in 5 years, and with such massive datasets, speed is an absolutely

critical consideration when programming.

The core of any program is the algorithm. An algorithm is a series of discrete, repeatable

steps taken to reach a solution. Algorithms typically have input, abstractly referred to as a

“string”. Strings are sequences of characters such as “Hello world!” and “Nice weather today,

isn’t it?”. Sometimes it is convenient to limit the set of allowable characters in a string. When we

do this, that set of characters is referred to as its alphabet. If the computer is attempting to parse

English text, then the alphabet is the English alphabet, plus the punctuation symbols. The

alphabet DNA operates over, from a computational perspective, are the four nitrogenous bases.

Data in computers is fundamentally stored in binary logic represented by the presence or absence

of a charge on a piece of electronic hardware. The two characters in the binary alphabet are “0”

(false) and “1” (true). While seemingly very minimal, it is possible to prove that this alphabet

can represent any other.

Therefore, most abstract models of computation describe machines that operate over the

binary alphabet. Since this is the case, the input string “w” is a sequence of 0s and 1s that

abstract models of computation operate on. These abstract models are referred to as “Turing

Machines” (TM) after their inventor Alan Turing, who theorized their existence in 1930. These

machines operate on any given string w by either accepting or rejecting it. The Church-Turing

thesis showed this very simple decision can be representative of any operation of any
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deterministic system. Since computers are deterministic, any computer on earth can be

represented as a TM.

With the great diversity in computer programs that exist, ranging from Google search to

stock market modeling programs to genome assemblers, it seems natural to attempt to classify

certain problems by their difficulty. For example, is solving a game of sudoku or chess harder?

Luckily, there is an objective way to answer this question with our abstract model of

computation. We can convert any program input into a binary string w of length n (so w has n

characters). Every text, mouseclick, key typed, image given, and more can ultimately be

represented as a string of 0s and 1s of a certain length.

We can then run the algorithm we are considering on w and see how many steps the

program takes to decide whether to accept or reject it. Since an algorithm has discrete steps, this

will be a specific number. Since any reasonable computer program has more than one valid input

w (there are multiple options for google search, likewise an assembler should work on any

genome given), we can then express the number of steps taken as a function of n (the length of

any particular input w). This function is referred to as the algorithm’s runtime.

To express runtime, we use Big O notation in terms of n. Since we care about runtime

most on the largest input strings (since they take the most amount of time to run), we care about

how this function behaves as n approaches infinity. Therefore, we take the mathematical limit of

our runtime function and attempt to find another function that is asymptotically bound to it. In

other words, we find the function that most closely represents our function as n approaches

infinity. If no perfect approximation is possible, we pick the worst case possible for our

algorithm (the maximum number of steps it takes on any input) and we pick a function that

grows at a faster rate than the runtime function. This way, we are ensured our algorithm will
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decide on any string w in no more steps than the amount given by the runtime function. When

creating the runtime function for our algorithm, we look at how long each step takes in terms of

n and add the steps together. As we do this, we drop any constants and lower growing terms (for

example, drop n if n2 has already been seen). This is to make the runtime function simpler, as

O(n3) is much more easily understood than O(8n3+2n2+31n+3). Additionally, it allows us to

classify problems of similar difficulty together into “complexity classes.” The jumps in difficulty

between complexity classes are much, much larger than any differences in difficulty inside of a

complexity class.

Figure 11. A graph with examples of common runtimes for computer programs, along

with the prohibitive exponential runtime of O(2n) and even worse factorial runtime O(n!).40

The most important complexity class to understand is “P.” P refers to the polynomial time

problems, or the problems which can be solved by a computer in a polynomial number of steps

40 R, varun N. “Big O Cheatsheet - Data Structures and Algorithms with Thier Complexities .”
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relative to the input size (or faster, such as a logarithmic or constant number of steps).

Polynomial runtime can be expressed as O(nk), where k is any integer. Problems in P are

typically referred to as “easy” for computers to solve, as they require relatively few steps per

character in w. Some examples include searching through a list to find an item of interest,

arithmetic, and (important for bioinformatics) sequence alignment. This can be used to compare

two sequences of nucleotides, allowing for information to be obtained about genomes. The level

of similarity seen can show if one has any mutations relative to another. This can hint at how

closely related the two samples are, or if one is likely to have any genetic diseases.

Because the raw data for genome assembly is a collection of sequencing reads, it is a

sequence matching problem as well. However, it is not as easy as aligning sequences of DNA.

This is because, instead of comparing two genome (or individual gene) sequences, there are a

variable amount of reads that must all be compared with each other in an attempt to piece

together the newly assembled genome. The naïve approach to solve this problem can be given

with the following algorithm R: start with a sequencing read A and compare every remaining

read in the input file to it. If they match, line up the overlap and “concatenate” them (add them

together). Otherwise, do nothing and move onto the next read. However, R will run an

exponential number of times in terms of n. Every read added requires more and more decisions

than the one previously added, and as a result, this approach is prohibitive for computers. In

theoretical notation, O(2n) > O(nk), and as a result, this problem is not in P. However, there are

many programs that assemble genomes. How is this possible?
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Dynamic Programming

The exponential nature of our algorithm derives from the fact that, after each pair of reads

(A,B) that do not match, R discards the result. Since this preserves no information about the lack

of a match between A and a non matching read B, any concatenations AC that occur will attempt

again to find a partial match between A and B (as AC will be paired with B). This is inefficient as

the A portion of AC will certainly not align with B. Regardless, R still checks if it will. Therefore,

if we could store the negative result, an algorithm R’ could be exponentially faster and therefore

could solve problems easily for computers. This is possible via the technique of dynamic

programming.

Dynamic programming requires an algorithm to store results in memory as it operates.

While this has the advantage of an exponential increase in speed, the only drawback is that

computers optimized for genome assembly require enormous amounts of RAM (computer

memory). This is especially true for large genomes, and rapid advances in computer hardware

have allowed for genome assembly to become more accessible as of late.

To actually implement the fast algorithm R’ one must select a “data structure” to

represent the reads along with information about how they match, if at all. This is frequently

done with a “graph.” Despite the name, these are not related to graphs in other disciplines (they

feature no axes). Graphs in computer science instead have nodes and edges, each of which can be

labeled individually. Nodes can only be attached to edges, and likewise edges can only connect

to nodes. While there is no limit on the number of edges a node can be connected to, each edge

must connect to exactly two nodes. Additionally, graphs can be “directed.” A directed graph

features edges with directionality where one node functions as a starting node and one node

functions as a destination node.
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Figure 12. An example graph G, with nodes A, B, C, D, and edges i, ii, iii, iv, v. Note that

iv and v are directed edges. Figure generated by the author.

In genome assembly, de Bruijn graphs are used, named after their creator Nicolaas de

Bruijn.41 In a de Bruijn graph, each edge is labeled with a “k-mer” (a sequence read of length k).

The nodes, meanwhile, are labeled with k-n-mers (k minus n mers), where n is an integer. In any

particular de Bruijn graph, n is constant, but it may change from graph to graph. Therefore, each

node is labeled with a read “substring” (portion of the read). For example, with a sequence read

“ATGATC” and n = 2, the nodes would be labeled “ATGA” and “GATC”, and the edge in

41 Compeau, Phillip E C. “How to Apply De Bruijn Graphs to Genome Assembly - Eaton-Lab.org.”
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between would be “ATGATC.” Additionally, the edge would be directed, with the first portion of

the read functioning as the start node and the second portion being the destination node.

To store information on how reads overlap, we check again if reads A and B match. First,

we create two nodes (again, k-n-mers) for each. One node in each stores the first k-n-mer, and a

directed edge runs from this node to the second node, which stores the latter k-n-mer. Then, we

check if the first node in B matches either the first node in A or the second node. If it matches,

“merge” the nodes by deleting one and moving the edge that started from the deleted one onto

the preserved one. After observing this, one may notice that n can be at most half the length of

the k-mer, rounded down, while still overlapping with the other node. If the nodes did not

overlap, then the nucleotides in the middle would never be represented in a node, and their

information would be lost when trying to “match” nodes and assemble the genome.
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Figure 13. An example of merging nodes in a de Bruijn graph. Figure generated by the

author.

If the reads do not match at all, we preserve all of the nodes. This way, a third read C can

be compared against both A and B. This time, however, we know and have recorded that A and B

do not match, so if A and C match C will simply be concatenated (merged) with A where

appropriate. No further test of AC against B is needed, showing the efficiency of this approach.

While this is the core of a genome assembler, other minor algorithmic components are needed.
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First, due to the antiparallel strands of DNA, one must convert a read into its reverse

complement and also check if that sequence is a valid match. Second, there must be some level

of error tolerance as each read is extremely likely to have at least one sequencing error (and

likely many). If there was zero error tolerance,

“...TGCATCATGCTAGCTACGTATTCGTCATCGAT” would not match with

“TGCATCATGCTAGCTACGTGTTCGTCATCGAT…” due to their 1 base pair difference.

However, it is extremely likely that these reads are matching, as the chance of randomly having

31 identical bases is 1/431, or approximately one in five quintillion. This is approximately the

same odds as picking a perfect March Madness bracket, or three million times less likely than

randomly picking a tree anywhere on earth and having another person guess which tree correctly

on the first try.42 Another consideration involves ploidy as the genome in question may have

multiple copies of the same chromosome. If this is the case, both sequences may actually be

correct. So, most genome assemblers have to account for slight differences in overlapping

sequences, and the level of fault tolerance is usually up to the user. Additionally, most have

options to treat substitution errors differently from indels.

These techniques can assemble contigs well, and sometimes it is possible to group

contigs into “scaffolds.” Scaffolds are contigs that are known to be near each other, but it may be

impossible to understand exactly what lies in between them. This can happen either with “paired

end” reads, where one has information that two DNA sequences are nearby each other, but with

no data on the middle nucleotides, or if the de Bruijn graph is ambiguous. Ambiguity can arise

when the path from source nodes to destination nodes branches. These branches may or may not

rejoin, complicating interpretation of the original sequence while still indicating relative

42 NCAA.com, Daniel Wilco |. “The Absurd Odds of a Perfect NCAA Bracket.” NCAA.com, NCAA.com, 16 Mar.
2023
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proximity on the genome. The other source of ambiguity is with “cycles”: regions where a series

of nodes and directed edges repeat. While one may think that it could be possible to keep track of

the number of times edges that make up the cycle are seen, and then repeat the loop that many

times to estimate the length of the repetitive DNA, the issue with this approach is that coverage

is not universal across the genome. Thus, the cycle is likely to have more or fewer reads than the

actual DNA sequence. If this is the case, then the estimated size of the repetitive element is

incorrect. Therefore, the only option is to leave the cycle in the de Bruijn graph.

The previously described techniques are sufficient to assemble a genome when only one

read type is being considered. However, due to the accuracy of HiFi reads and the length of

nanopore reads, “hybrid” assembly using both read types is a very attractive option for achieving

very complete and accurate assemblies. At its core, a hybrid assembler must merge shorter

strings with a lower error rate with longer strings with a higher error rate.

Hybrid Genome Assembly

The intuitive approach to doing this is to use the HiFi reads to correct the nanopore reads.

This way, one has long, accurate reads, which are then ideal for use in the de Bruijn graph. Such

an approach is implemented by FMLRC2, an algorithm that uses a de Bruijn graph to map short

reads onto the long reads (FMLRC2 was originally intended to work with Illumina short reads

and CLR long reads). FMLRC2 is the second version of FMLRC, which was published by

Jeremy Wang, et al in 2018. The acronym stands for FM-index Long Read Correction. An

FM-index is a string index that allows for faster than linear, < O(n), queries (lookups) of

particular DNA sequences that are then mapped with two de Bruijn graphs to the long reads.

Once they are mapped, the long reads can be corrected, and a simple genome assembler can be
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used. Therefore, this algorithm is extremely efficient, faster by over an order of magnitude in

comparison to other read correction softwares.43

Figure 14. An outline of the FMLRC2 read correction workflow. The de Bruijn graphs

are referred to as implicit as they exist within the FM-index. The traversal with a smaller k value

allows for quick resolution of easy to infer sequences, such as gene coding regions, while long

K-mers allow for cycle resolution.44

Additionally, another possible approach is to assemble the “easy” portions of the genome

to the highest possible accuracy with the HiFi reads and save the nanopore reads for the merging

of contigs. This strategy is how LongStich assembles genomes. Longstitch was developed by

44 Ibid
43 `Wang, Jeremy R. “Polishing De Novo Nanopore Assemblies of Bacteria and Eukaryotes With FMLRC2 .”
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Lauren Coombe, et al in 2021, with the aim of producing high quality genomes from a mix of

short and long reads. One advantage of LongStitch’s method (as compared to FMLRC2) is that it

may avoid overcorrection bias. If only a few short reads are available to correct similar but

subtly different sequences present on long reads, it is possible for FMLRC2 to incorrectly infer

the deviations in the long reads as sequencing error. LongStitch, meanwhile, would preserve

these deviations as the short reads are assembled first.

Figure 15. An overview of the LongStitch pipeline. While ARKS-long is optional, we

included it in our study.45

45 Coombe, Lauren. “BCGSC/Longstitch: Correct and Scaffold Assemblies Using Long Reads.” GitHub, 2020,
https://github.com/bcgsc/LongStitch.
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Figure 16. A visual abstract of the core strategy behind FMLRC2 (left) and LongStitch

(right). Figure generated by the author.
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With both FMLRC2 and LongStitch as attractive options, we wished to compare them in

large genomes as there are no currently available studies that compare these two assemblers. The

most similar paper published was a review article from 2010, which at the time was concerned

with hybrid assembly techniques that used Sanger reads as the long reads.46 Additionally, the

problem is of greater importance in large genomes, where cost is a limiting factor in data

availability.

46 Schatz, Michael C, et al. “Assembly of Large Genomes Using Second-Generation Sequencing.”
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Experimental Methods

Selection of Model Organisms.

Arabidopsis thaliana, the thale-cress, was chosen as the smallest genome (135 Mbp) in

our dataset. Advantages of choosing this species include its small genome, especially by plant

standards, and its diploidy. Therefore, the genome has a notable lack of repetitive elements,

which often inflate genome size.47 As diploidy is less common among plants, its genome has

been extensively sequenced, resulting in a high quality genome. Additionally, the genome only

has five chromosomes, a comparatively small number. With fewer chromosomes there are fewer

centromeres and telomeres, once again hard regions for both sequences and assemblers. All of

these conditions combine to justify the inclusion of A. thaliana as a sufficiently “easy”

eukaryotic genome to assemble.

Danio rerio, the zebrafish (also known as the zebra danio), was chosen as another model

genome for our project. D.rerio features many advantages as a model system, including a high

regeneration potential. A high regeneration potential is a key feature of our target genome,

Notophthalmus viridescens (the eastern newt). Therefore, understanding how genomes of highly

regenerative species (with potentially complicated genes and gene expression elements) is of

great interest to us. Also, transgenic lines of D.rerio have been developed for many reasons, from

exploring its regenerative potential to the pet trade. For this reason, its genome has also been

sequenced many times, making it another strong choice as a model genome. Additionally, its

approximately 1.4 Gbp size is approximately an order of magnitude larger than that of

Arabidopsis.48 With 70% of human genes having at least one zebrafish orthologue and the

48 Howe, Kerstin, et al. “The Zebrafish Reference Genome Sequence and Its Relationship to the Human Genome.”
47 Saraswathy, Nachimuthu. “Genomes of Model Organisms.”
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genome having 25 chromosomes (2n=50), it also has some significant similarities to our own

genome.49,50 This renders it an excellent choice for transitioning to the larger genomes used in

this study.

The next genome selected was the human reference genome. The human genome is an

excellent candidate for inclusion into our genome assembler benchmarking study as it is of

exceptional quality due to the unparalleled interest in its sequencing. Since the ultimate goal of

most scientific research is to understand how biological phenomena affect human health, having

a clear understanding of how the human genome is structured and behaves is of extreme

importance and warrants significant study. Additionally, it is also fairly representative of the

average mammalian genome due to its size (approximately 3.1 Gbp). This is very close to mus

musculus (the mouse; 2.7Gbp) a frequent choice among mammalian model organisms This

additionally confers the advantage of understanding how the mouse genome may be best

assembled, which is also of great relevance due to the frequent genomic and genetic modification

studies that take place in mice.

Pluerodeles waltl (the Iberian newt) was the next organism considered for our study.

While not as widely used in studies as Arabidopsis or Danio, P.waltl is the only currently

available genome of the family Salamandridae, the same family that our target genome

Notophthalmus is in. The Salamandridae salamanders are of increasing interest due to their

exceptional regenerative abilities. Species of this family can regenerate a wide variety of organs

and body structures, including but not limited to entire limbs, the heart, and the central nervous

system. The regenerative abilities of Salamandridae even extend to the lens of the eye, a

structure that Ambystoma mexicanum (the axolotl, famous for its own regenerative abilities)

50 Freeman, Jennifer L, et al. “Definition of the Zebrafish Genome Using Flow Cytometry and Cytogenetic
Mapping.”

49 Ibid
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cannot regrow.51 While outside the genus Notophthalmus, the Iberian newt is an ideal candidate

for our analysis as it is estimated that the eastern newt has eleven chromosomes, close to the

twelve found in P.waltl. Additionally, the very large genome size (approximately 20 Gbp) is on

the cutting edge of accurate genome assembly, offering a challenge to both FMLRC2 and

LongStitch.

Figure 17. A diagram showing the regenerative abilities and genome sizes for humans

and several model organisms. Danio is located on the bottom, boxed in green; Notophthalmus is

boxed in red. The Iberian newt is located immediately above it. Figure taken from Reading and

editing the Pleuroedles waltl genome reveals novel features of tetrapod regeneration, with

cropping of an evolution chart and addition of boxes to identify organisms used in this study for

clarity.52

52 Ibid

51 Elewa, Ahmed, et al. “Reading and Editing the Pleurodeles Waltl Genome Reveals Novel Features of Tetrapod
Regeneration.” Nature News, Nature Publishing Group, 22 Dec. 2017,
https://www.nature.com/articles/s41467-017-01964-9/.
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As 20+ Gbp genomes are currently the target of accurate de novo assemblies, the P. waltl

genome currently available has some limitations. At the time of its publication (2017), HiFi

reads were prohibitively expensive and the concept of hybrid genome assembly was in its

infancy. Therefore, the assembly was done exclusively with Illumina reads, and after conducting

an N50 analysis the genome was found to be too fragmented to include in our work. This

highlights the importance of finding out the most efficient way to assemble large genomes, and

that the answer is likely to involve multiple read types. Therefore, we chose Pinus taeda

(Loblolly Pine) as our “large” and “difficult” genome, given its similar size to P.waltl (22 Gbp).

The loblolly pine genome was originally published in 2010, but has since been updated with long

reads; therefore, its N50 is sufficiently large enough to be included in our study.53 Additionally,

the P. taeda genome is diploid, a rarity amongst plant genomes of this size. Another similarity to

P.waltl is that both genomes have 12 chromosomes (2n = 24), rendering it an excellent candidate

amongst plants to substitute for an animal genome assembly.

The genomes for the four reference organisms were obtained as follows:

Scientific Name Refseq/GenBank number of reference genome

A. thaliana GCF_000001735.4

D.rerio GCF_000002035.6

H.sapiens GCF_000001405.40

P.taeda GCA_000404065.3

53 Zimin, Aleksey V, et al. “An Improved Assembly of the Loblolly Pine Mega-Genome Using Long-Read
Single-Molecule Sequencing.”
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Software Used.

Ubuntu was installed on a Windows 10 Pro custom - built computer (hardware

specifications can be found in the appendix). Miniconda3 and Bioconda were used as package

managers to install all future softwares (exceptions noted explicitly).

To simulate the generation of genomic reads PBSIM3 was used on default settings. For

simulated error generation, the error hidden markov model was used. This error was corrected

by Pacific Bioscience’s ccs to generate the simulated HiFi reads. For the oxford nanopore reads,

PBSIM3 was used on default settings with the quality score hidden markov model configuration.

To assemble genomes using the nanopore read correction via HiFi reads, FMLRC2 was used

with all default dependencies and with the default settings other than 16 threads and a k-mer

precompute cache size of 13 to correct reads. Then, minimap2 and miniasm were used with

default settings other than the mapping, which was switched to ava-ont to optimize for nanopore

reads. To assemble genomes by first creating a draft assembly with the HiFi reads, and then

using the nanopore reads to fill in any gaps, LongStitch was used in ARKS-long mode with all

default dependencies and settings other than 16 threads and nanopore longmapping.

To parse the newly generated genome assemblies three independent variables were

assessed. They were: 1) reference genome size (constant per species), simulated short read

coverage, and simulated long read coverage. These were used to assess seven dependent

variables. In order of analysis, there were: 1) size of newly generated genome assembly, 2) N50,

3) number of insertions, 4) average insertion size, 5) number of deletions, 6) average deletion

size, and 7) rate of substitution. Genome Assembly size and N50 were assessed with an in-house

C++ program, and figures were generated with BANDAGE.54 The variables associated with the

accuracy of the newly assembled genomes were quantitatively assessed by aligning them to their

54 Wick, Ryan R. “Bandage: Interactive Visualization of De Novo Genome Assemblies.”

5



respective species’ reference genome using GSAlign and then parsing its output files with an

in-house C++ program. GFA and VCF files were used for FMLRC2 assemblies, while MAF files

were used for LongStitch (LongStitch does not generate GFA files during its data generation,

therefore, VCF files are inappropriate to use).

Values for the seven dependent variables were stored in txt files and then uploaded to

Microsoft Excel for downstream statistical analysis and creation of figures.

Figure 18. The overall software pipeline to generate the data discussed in this paper. As

noted, programs written by the author for the completion of this study are underlined.
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Results

Completeness and Contiguity.

A.thaliana

We found that, for FMLRC2, the fraction of the original genome recovered was very

heavily correlated with the coverage of PacBio reads used.

Figure 19. The size of the A.thaliana genome assembled across replicates, grouped by

Illumina coverage and labeled by PacBio coverage. The left group of genome assemblies

represents 5X Illumina coverage, the middle group represents 15X Illumina coverage, and the

right group represents 25X Illumina coverage. Note that the maximum possible assembled

genome size would be 121 Mbp, just beneath the top value on the Y axis.
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Similar results were obtained for the N50, where the PacBio coverage was the primary

determinant of how fragmented the assembled genome was. Increasing Illumina coverage was

also slightly correlated with an increased N50 in Arabidopsis (figure 20).

Figure 20. A scatter plot of the N50 for the A.thaliana genomes assembled with varying

Illumina (5X on the left, 15X in the middle, and 25X on the right) and Pacbio coverages. A key

difference between the genome size assembled and N50 is that, while assembly size started to

reach a maximum value, the maximum N50 reached was still significantly beneath the

hypothetical maximum.

The LongStitch data, meanwhile, did not have as meaningful trends. There was very little

correlation between either Illumina coverage or PacBio coverage and N50 for A.thaliana genome
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assemblies generated with it. Due to this, LongStich was not considered further, and further

results are for FMLRC2 assemblies (except when noted).

D.rerio

The FMLRC2 data also behaved largely as expected in D.rerio:

Figure 21. Pacbio coverage and assembled genome size, D.rerio, FMLRC2. Note, again,

that assembled genome size is highly correlated with PacBio coverage and slightly correlated

with Illumina coverage (5X on the left, 15X in the middle group, and 25X in the right group).

Like the A.thaliana genomes, 14X coverage yielded nearly the entire reference genome (1.3

Gbp).
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Figure 22. Pacbio coverage and N50, D.rerio, FMLRC2. Once again, while the fraction

of the original genome recovered approached its theoretical maximum of 1, N50 could be

improved upon. Also of note was that N50 was slightly lower than that of A.thaliana, but that

difference is likely due to the more fragmented reference assembly (thereby lowering the

possible maximum for our simulated genome assemblies).

Larger genomes and LongStitch

Data for H.sapeins was more qualitative as its generation was somewhat hampered by the

available tools. FMLRC2 relies on miniasm to merge reads into contigs, and at the scale of the

human genome, the program broke due to the number of reads for the higher coverages (10X and

14X PacBio reads). A fix is currently in the works, but the currently available data is not

complete enough to warrant its own graphs. The data that has been generated so far mirrors both

A.thaliana and D.rerio, where at 2X coverage nearly none of the genome is recovered and at 6X
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coverage approximately a quarter of the genome is. Likewise, the generation of assemblies for

either P.taeda or P.waltl is prohibitive given the same algorithmic flaw. Thus, no completion,

contiguity, or accuracy statistics currently exist for these, although they are being pursued.

LongStitch data, meanwhile, exist for A.thaliana, although LongStitch had very little

correlation between read coverage and assembly size, other than a jump from 5X to 15X

Illumina coverage. However, at even 25X Illumina 14X PacBio coverage, the assembled genome

size was significantly under its theoretical maximum (1.35 E+8). Therefore, with an assembler

that could achieve that level of completeness at the given coverages, we did not pursue

LongStitch further.

Figure 23. PacBio coverage versus assembled genome size. Note the lack of meaningful

trend between PacBio read coverage and assembled genome size.
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Accuracy.

A.thaliana

A. thaliana assemblies had the highest number of substitutions when PacBio coverage

was at its highest (figure 24). However, this trend only exists due to the drastic increase in the

number of bases available for errors to occur on, and the highest coverage PacBio assemblies

began to hit the theoretical limit for Arabidopsis. Assemblies with more Illumina coverage had a

lower rate of error when corrected for differences in Pacbio coverage (figure 24, figure 25). On

this note, when controlling for PacBio coverage, as coverage increased to 25X, the number of

substitutions fell nearly 3 fold while genome size increased slightly (figure 25, figure 21). Also

of note was that, while the number of substitutions increased while PacBio coverage increased

from 2X to 10X, many 14X PacBio assemblies had fewer substitutions than 10X PacBio

assemblies. This is especially noteworthy as the assembled genome size slightly increased from

10X to 14X, hinting at parital long read self correction. Meanwhile, we also saw that Illumina

reads were correcting the mistakes present in PacBio reads (figure 26, figure 27).
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Figure 24. A scatter plot comparing the Illumina coverage used with the

frequency of substitutions. Note that, within each level of Illumina coverage, PacBio coverage

increases from 2X to 6X and eventually 14X. Therefore, the first set of 5X Illumina assemblies

should be compared only to the first set of 15X assemblies, and likewise with the other sets to

control for the differences in PacBio coverage. Additionally, note that there is nearly no

difference in mean error rate between 10X and 14X PacBio assemblies, although 14X assemblies
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feature greater variation in error rate (figure 25).

Figure 25. A histogram of the frequency of substitutions present in each A.thaliana

genome assembled. Note that the genomes with 2X PacBio coverage recovered such a small

fraction of the genome that their inclusion is insignificant.
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Figure 26. The average rate of error for each Illumina coverage (aggregating all PacBio

coverages). Note that, for genomes with less Illumina coverage, indels were the primary source

of error. For genomes with more Illumina coverage, substitutions became the more common

source of error. Since Illumina reads have primarily substitution errors, and PacBio reads have

indel errors, this result implies that Illumina reads are correcting the indels seen in the PacBio

reads.
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Figure 27. The Ratio of Substitutions to Indels in A.thaliana using FMLRC2. As Illumina

coverage grew higher, substitutions were proportionally more frequent than indels.

D.rerio

The same trends existed in the D.rerio assemblies generated. Interestingly, the error rate

fell off more steeply than A.thaliana between 5X and 15X Illumina coverage (figure 28). As a

result, the error rate for D.rerio was actually lower than that for A.thaliana, despite an

approximately order of magnitude increase in genome size (figure 29).
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Figure 28. The level of Illumina coverage along with the average frequency of mistakes

in D.rerio. Note that for 15 and 25X, the error rate is less than 0.1%, indicating an extreme level

of accuracy and sufficient read correction.

Figure 29. Athaliana and D.rerio error rate side-by-side. Despite having a significantly

larger genome, D.rerio had significantly fewer errors at all levels of coverage.
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Composite Results.

One of the most insightful graphs generated in this study was obtained by mapping the

fraction of the original genome recovered to the error rate per base. By doing this, we can see

both how complete and accurate the genome assemblies returned are. On the graph shown in

figure 23 (FMLRC2 assemblies), the assemblies generated a “fan” shape where, as PacBio read

coverage increased, both the fraction of the assembled genome recovered and the error rate per

base increased. However, this increase could be somewhat mitigated in some assemblies by

increasing the level of Illumina Coverage. The same graph for A.thaliana assemblies generated

with LongStitch (figure 31), meanwhile, did not have clear trends. Most assemblies returned

around 75% of the genome with little correlation to either Illumina or PacBio coverage.

Figure 30. The fraction of the original genome recovered (X axis) compared to the error

rate per base (Y axis). Since a perfect genome assembly would be 100% complete and have no
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errors, the bottom right corner of the graph represents the ideal genome assembly. The closest

assemblies to this zone are the Danio assemblies with 25X Illumina read coverage and 14X

PacBio coverage.

Figure 31. The fraction of the A.thaliana genome assembly recovered and its error rate

when assembled with LongStitch. There is very little correlation between either PacBio or

Illumina read coverage and the fraction of the genome recovered. There was a slight correlation

between increasing PacBio coverage and increase in error rate, however, these assemblies were

also slightly more complete.

The results we observed for continuity (N50) largely mirrored the trends seen for

completeness. Again, assemblies with FMLRC2 were quite dependent on high levels of PacBio

coverage to obtain a high N50 (figure 32, figures 22 and 20).
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Figure 32. N50 (X axis) compared to error per base (Y axis). Ulike the fraction of the

original genome recovered, the bottom right corner is not perfect (although it is the most ideal),

as N50 does not reach a maximum within the tested coverages.
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Discussion

We found that, as expected, long reads are critical for continuity, and short reads greatly

improve accuracy. For this reason, hybrid genome assembly is the most efficient way to generate

both complete and accurate large genomes, as one would have to spend significantly more to

achieve the same level of accuracy by only using long reads. If only short reads are used it may

not be possible to achieve the same levels of completion and especially continuity. This is due to

repetitive elements that are longer than the length of the short reads, which make the beginning

and end of the sequence unreachable.

Given that the fraction of the genome recovered approaches 100% at 14X PacBio

coverage in A.thaliana and D.rerio (and preliminary results suggests this trend continues in

human), and that error rate stays within 1% for D.rerio at 25X Illumina coverage, it is likely that

these amounts are sufficient to assemble a genome that is both complete and accurate. N50,

meanwhile, continues to see improvements. Past a certain size, however, comes a significant

decision point for those interested in de novo assembly: is paying thousands of dollars more

worth a negligible increase in both completeness and accuracy, only to gain from understanding

where contigs are in relation to each other? The answer will depend on both the goals of the

assembly and the price of the technology at the time of assembly. Molecular biologists primarily

interested in gene function may think of understanding gene linkage as a lower priority task

compared to an evolutionary biologist. This is because, while enhancers can be tens to even

hundreds of thousands of base pairs away from the gene in question, regulatory elements for a

given gene are unlikely to be megabases away from the given sequence. Therefore, attaining an

N50 into the megabases is unlikely to resolve any extra information on gene expression. Such

work, however, could easily update linkage maps available for a species or change previously
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inferred inheritance patterns, resulting in a great deal of information important to an evolutionary

biologist.

One of the most surprising and important implications of our work is that it seems the

same levels of coverage generate both complete and accurate genome assemblies regardless of

genome size. While our work is incomplete, preliminary data suggest that the fraction of a

human genome that can be recovered given a PacBio read coverage amount is within one percent

of that of A.thaliana. This is surprising as the Arabidopsis genome is approximately 23 times

smaller than the human genome, and has considerably fewer repetitive elements. Seemingly,

assembling the human genome would be a much more difficult task, even when accounting for

the fact that coverage is measured relative to the sample genome size. Another implication of this

work is that, although less important, the scientific community may be spending too much

assembling smaller genomes. A 2013 study claims that 50X coverage is the optimal amount of

short read coverage to assemble a bacterial genome, however, our hybrid approach can assemble

much larger genomes with near perfect completion and accuracy with approximately 39X

coverage (25 Illumina + 14 PacBio = 39 total).55 One consideration, however, is that the standard

of completion is much, much higher for bacterial genomes. Due to their small and circular nature

of bacterial genomes, many groups now target obtaining the complete genome in one contiguous

scaffold. That level of resolution is not currently possible for eukaryotic genomes due to the

presence of centromeres, telomeres, and the sheer scale of the data. Regardless, it suggests that

the amount of coverage required to obtain a high fraction of the hypothetical total genome size is

relatively constant, as one of the genomes benchmarked was the E.coli genome. Since this

genome is 280 times smaller than even the D.rerio genome, it is likely that this trend will

55 Desai, Aarti, et al. “Identification of Optimum Sequencing Depth Especially for De Novo Genome Assembly of
Small Genomes Using Next Generation Sequencing Data.”
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continue into even the largest genomes. As our work continues, we will include the P.taeda data

and be able to test this claim. Additionally, the de novo sequencing and assembly of our target

genome, N.viridescens, will be the true test of our claim.
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Conclusion

Genome assembly is a very exciting field as it is rapidly evolving, interdisciplinary, and

has important implications for health, medicine, ecology, zoology, agriculture, climate change,

and countless other fields. We hope our work can provide insight into the most cost effective way

to sequence the most challenging genomes, which should hopefully aid study on organisms

which to this point has been hindered due to their genome size.

Our work is somewhat limited in scope as, only a few months ago, PacBio announced the

Revio sequencing machine. This has lowered the cost of HiFi reads 15 fold and now renders

them competitive at reasonable price points, even for the largest genomes. As a result, leading

edge hybrid assemblies should now be done with short reads that are 100 times larger than

Illumina reads, with nearly no sacrifice in accuracy. Therefore, the data presented is somewhat

obsolete, and “short” reads are likely to be more important than our data account for.

Future work that could build off our research would include a similar project involving

more species. This would mitigate bias from the organisms chosen. For example, a group

wishing to know the most effective way to sequence polyploid genomes should replicate this

work using a series of polyploid references. An important observation we made while collecting

data was that ensuring k-mer size was as large as possible was critical for avoiding cycles and

increasing N50 to the maximum value possible. An additional avenue for future work would be

to test a series of k-mer sizes while leaving other independent variables (most importantly

coverage) constant so that a trend between k-mer size and N50 could be quantitatively assessed.

Once again, I would like to thank Professor Dougalss, Professor Izmirli, Professor
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Eastman, and the departments of Biology, Chemistry, and Computer Science for the opportunity

to have done this work during my undergraduate years at Connecticut College.
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Appendix

Computer Hardware Specifications.

The custom built computer used for this study has a Ryzen 3950X processor, featuring 16

cores running at 4.5 GHz, 128 GB DDR4 RAM, and 3 Seagate 18TB SATA hard drives which

data was stored on. While these specifications were top of the line for a consumer PC at the time

of its construction (2021), genome assembly is a computationally difficult enough task that

some datasets were intractable due to the length of time it took to operate (weeks in the case of

simulating P. waltl and P. taeda reads). Hardware upgrades and/or algorithm improvements will

be needed to continue this work.
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