
Connecticut College
Digital Commons @ Connecticut College

Biology Honors Papers Biology Department

2015

Mercury Speciation, Retention, and Abundance of
Genes Involved with Mercury Methylation in
Fertilized Salt Marsh Sediments
Caroline Collins
Connecticut College, ccollin1@conncoll.edu

Follow this and additional works at: http://digitalcommons.conncoll.edu/biohp

Part of the Biology Commons, and the Environmental Health and Protection Commons

This Honors Paper is brought to you for free and open access by the Biology Department at Digital Commons @ Connecticut College. It has been
accepted for inclusion in Biology Honors Papers by an authorized administrator of Digital Commons @ Connecticut College. For more information,
please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Collins, Caroline, "Mercury Speciation, Retention, and Abundance of Genes Involved with Mercury Methylation in Fertilized Salt
Marsh Sediments" (2015). Biology Honors Papers. 20.
http://digitalcommons.conncoll.edu/biohp/20

http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fbiohp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/biohp?utm_source=digitalcommons.conncoll.edu%2Fbiohp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/biology?utm_source=digitalcommons.conncoll.edu%2Fbiohp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/biohp?utm_source=digitalcommons.conncoll.edu%2Fbiohp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.conncoll.edu%2Fbiohp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/172?utm_source=digitalcommons.conncoll.edu%2Fbiohp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/biohp/20?utm_source=digitalcommons.conncoll.edu%2Fbiohp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu


 

MERCURY SPECIATION, RETENTION AND ABUNDANCE OF GENES INVLOVED 

WITH MERCURY METHYLATION IN FERTILIZED SALT MARSH SEDIMENTS 

 

by  

 

Caroline Collins  

 

A thesis submitted for partial fulfillment of the requirements for the degree of  

 

 

Bachelors of Arts  

 

 

in Biological Sciences  

 

 

Connecticut College 

 

2015 

 

 

Thesis Committee:  

 Anne E. Bernhard, Ph.D., Advisor 

 Department of Biology, Connecticut College 

 

 Carl Lamborg, Ph.D. 

 Department of Ocean Sciences, University of California Santa Cruz  

 

 Stephen Loomis, Ph.D.  

 Department of Biology, Connecticut College 



 

  

 

                                                 TABLE OF CONTENTS 

Acknowledgements…………………………………………………….3 

Abstract……………………………………………………………….. 4 

Introduction…………………………………………………………….5 

 Mercury as a Global Pollutant………………………………....5 

 Salt Marsh Dynamics…………………………………………. 6 

 Nutrient Loading and Methyl Mercury Production……………7 

 Bacterial Transformation of Mercury………………………….8 

 Mercury Methylation and Sulfate Reduction…………………..9 

 Dissimialtory Sulfite Reductase………………………………..10  

Goals of Study………………………………………………………….11  

Methods………………………………………………………………...12  

Results………………………………………………………………….17  

Discussion……………………………………………………………...20 

 Impact of Fertilizer on Geochemical Processes…………..........20 

 Total Hg Percent Retention…………………………………….21 

 Microbial Responses to Fertilizer………………………………22 

 MerA Bioremediation..................................................................22  

 Conclusions..................................................................................23 

 Future Research…………………………………………………24 

References................................................................................................25 

Figures………………………………………………………………......28 

Appendix 1................................................................................................40 

 

   

   



 

                                               ACKNOWLEDGEMENTS  

 

I would like to thank my thesis advisor, Dr. Anne Bernhard for encouraging me to 

conduct an honor’s thesis. Thank you for your willingness and patience answering my countless 

questions. Your tremendous support, excitement, and advice made this project educational and 

truly rewarding. I learned a substantial amount about microbiology thanks to this thesis project 

and I feel incredibly grateful to have had the opportunity to work with you. I would also like to 

thank Dr. Carl Lamborg for initially supporting and guiding this project back in the fall of 2013 

when I first started researching mercury as a Semester in Environmental Science (SES) student. 

Dr. Lamborg laid the foundation for my interest in mercury contamination in salt marsh 

sediments. Thank you for always taking the time to share your knowledge on the biogeochemical 

cycling of mercury with me and for carefully explaining all the lab techniques that I used to 

generate my geochemical data. I also appreciate you welcoming me back into your lab in 

summer of 2014 to continue working on this project. I thoroughly enjoyed working in your lab. 

Also, I would like to thank my academic advisor; Dr. Stephen Loomis for supporting and 

encouraging my early desires to be a biology major. Thank you for always meeting with me and 

answering my career questions. Furthermore, thank you for believing in my academic abilities 

and reminding me that I could be successful in tough science courses. Additionally, I would like 

to thank Dr. Julie Huber for providing great insight on the molecular portion of this project back 

when I was an SES student.  

Thank you to Roberta Sheffer, Dr. Priya Ganguli, and Emily Reddington for always 

answering my experimental questions and showing me how to be a meticulous and thoughtful 

researcher. Thank you to my family and my friends for providing me with a tremendous amount 

of moral support. This project was funded by the Connecticut College Department of Biology, 

the Marine Biological Laboratory’s Semester in Environmental Science program, and the Woods 

Hole Oceanographic Institution’s Coastal Ocean Institute.  

 

 

  



 

                                ABSTRACT 

Mercury (Hg) is a global pollutant which exists in both aquatic and terrestrial systems in 

three main forms including elemental Hg, ionic mercury, and methyl mercury, (MeHg), and Hg 

cycling plays an important role in ecosystems. Great Sippewisset Marsh, (GSM) in Falmouth 

MA has been chronically treated with fertilizer that contains heavy metals such as Hg in varying 

concentrations since the early 1970s and provides for an excellent location to study Hg 

contamination. The overall goal of this study is to analyze the key geochemical and microbial 

conditions that lead to MeHg production in the presence of the applied fertilizer. Sediment cores 

were taken in three experimental plots, control, high, and extra high fertilization. Mercury 

concentrations were determined using cold vapor atomic fluorescence spectroscopy and direct 

mercury analysis. Total sulfur was determined and quantitative polymerase chain reaction 

(qPCR) data was generated for the bacterial 16S gene, and dissimilatory sulfite reductase (dsrA), 

as most sulfate reducing bacteria methylate Hg. Total Hg was higher in the fertilized plots, while 

total sulfur decreased with increasing fertilization. The average concentration of MeHg was 

highest in the high fertilized plot while the ratio of MeHg to total Hg was highest in the control 

plot despite the fact that this plot is only receiving mercury through atmospheric deposition. 

Bacterial 16S copy number per ng DNA extracted was lowest in the control and fluctuated with 

depth for control, low, and high fertilized conditions. Higher nitrate concentrations within 

fertilized treatment plots may play a role in decreasing MeHg production, but more research is 

needed to determine why MeHg concentrations are decreasing with increased fertilization and to 

develop a greater sense of the response of the bacterial communities to the applied fertilizer.  

 

                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

INTRODUCTION 

 

 

Mercury as a Global Pollutant 

 

Mercury (Hg) is a global pollutant that has the capacity to travel over long distances and 

its concentration has increased in the biosphere post the Industrial Revolution (Parks et al. 2013). 

Hg is a toxic trace metal that is present in different forms in both aquatic and terrestrial systems. 

The three main forms include elemental mercury, which is highly volatile, ionic mercury, and 

MeHg. This toxic metal enters ecosystems in its inorganic form, where it can be methylated due 

to microbial activity forming MeHg, a potent neurotoxin that poses significant risks during 

prenatal neurological development and when consumed in high quantities during adulthood 

(Myers et. al 1998; Parks et al. 2013). Exposure to this neurotoxin occurs primarily through the 

consumption of seafood, as MeHg accumulates in organismal tissue, and biomagnifies up food 

chains (Figure 1). For there to be substantial biomagnification within a particular trophic 

structure, MeHg must be taken up efficiently by the bacteria at the bottom of the food chain, 

retained in these organisms, and passed on to their predators (Morel et al. 1998).  

Salt marshes are critical areas of Hg methylation due to geochemical cycling and certain 

physical parameters within marsh sediments (Chen et al. 2009).  It is important to understand 

MeHg production and cycling within coastal sediments such as salt marshes as the MeHg 

produced in these environments has the capacity to be transported to deeper waters where it can 

accumulate in the tissue of top predatory marine organisms, such as swordfish and tuna, popular 

consumer fish.  

 

Salt Marsh Dynamics 

Salt marshes represent one of the world’s major ecosystems and provide many benefits to 

human society. Due to the structure of salt marshes, they have the capacity to trap and collect 

both nutrients and pollutants from the open ocean while serving as a buffer between the land and 

sea, protecting coastal areas during intense storms (Booman et. al 1999). The vertical portion of 

the front of the salt marsh can dissipate the high wave energy experienced during storm events 

(Booman et. al 1999). Also, these habitats provide spawning sites and nursery areas for many 

fish species of fishery value (Booman et. al1999). The high production of vascular plant detritus 

and protection from predation offered by shallow, spatially complex habitats benefit fish during 

early developmental stages (Boesch et. al 1984). Salt marshes additionally provide feeding, 



 

roosting, and nesting areas for a wide range of bird species (Booman et. al 1999).  These systems 

have been viewed as dynamic and capable of recovering from human and natural disturbances 

quickly, however with increasing global temperature and threats of substantial sea level rise, the 

health of these systems is at stake, and the notion of marshes as being resilient to ecological and 

anthropogenic disturbances is declining (Gedan et al. 2011). 

Human disturbances represent a major source of influence on the overall health of salt 

marshes. Human impacts are concentrated in coastal ecosystems due to proximity of near shore 

human activities, significant number of human settlements along coastlines, and subsequent 

terrestrial inputs to adjacent watersheds (Gedan et al. 2011). Eutrophication (nutrient loading) is 

correlated with population density and is driven by sewage inputs into groundwater, which enters 

marsh systems most often in the form of runoff water (Gedan et al. 2011). Anthropogenic 

nutrient loading can dramatically alter community structure and function of marshes (Gedan et 

al. 2011). Nitrogen is a principal constituent of sewage wastes and often limits plant growth in 

coastal ecosystems. Nitrogen serves a critical role in determining the structure and function of 

salt marsh ecosystems as standing crops of salt marsh plants respond to nitrogen enrichment 

(Valiela et. al 1975). Nitrogen enters systems through rainfall, groundwater flow and fixation, 

while nitrogen losses are mainly through tidal exchanges and dentrification. These exchanges 

influence the overall above and belowground vegetation (Valiela and Teal, 1979). It is important 

to develop an understanding of how nitrogen can influence vegetation structure in a salt marsh 

system as salt marsh plants can act as natural sinks for trace metals such as Hg (Válega et. al 

2008). The extent and uptake of how metals are distributed within plants can have important 

effects on the residence time of metals in plants in wetlands, as well as their release to the 

adjacent environment (Válega et. al 2008).   

Nutrient Loading and Methyl Mercury Production 

 

There is a pressing need to develop a greater understanding of how long-term nutrient 

loading will affect overall wetland ecological processes as nitrogen supplies have more than 

doubled over the last century since the invention of artificial fertilizer (Bertness et al. 2001). 

Great Sippewisset Marsh, (GSM) has been chronically treated with fertilizer since 1971 and 

serves as an experimental research location to observe how nutrient loading impacts New 

England salt marshes (Vailela et al. 1975).  The applied fertilizer is in the form of sewage sludge 

from Milwaukee (Milorganite) (Vailela et al. 1975).  Sewage sludge rather than effluent was used 

due to the ease of application, fewer health concerns, and also because the sludge contains heavy 



 

metals, chlorinated hydrocarbons, and other pollutants, which would be of focus throughout the 

long-term ecological study (Vailela et al. 1975). The fertilizer is sprayed on the marsh in various 

loadings (see methods for details) twice a month during the growing season (April-October) 

(Vailela et al. 1975).  The fertilizer has the capacity to influence geochemical processes within 

this habitat thus impacting the overall health and functioning of GSM. Turner et. al 2009 

demonstrated that nutrient loading works to reduce organic matter belowground, that may result 

in significant loss in marsh elevation (Turner et. al 2009).  Many studies have utilized GSM as a 

location to study the impacts of long-term nutrient loading.  

The sewage sludge fertilizer contains heavy metals such as cadmium, copper, zinc, and 

Hg. All of these metals have the potential to negatively influence human health, but Hg is of 

particular significance because of its tendency to biomagnify up food chains and accumulate in 

organismal tissue. A recent study by Driscoll et al. (2012) has suggested that increased nutrient 

loading has the potential to impact Hg transformation by decreasing the bioavailability of 

mercury thus decreasing biomagnification in food webs. Nutrient loading can decrease 

bioavailability as ionic mercury has a high affinity for organic content and certain chemical 

intermediates such as sulfides. The Driscoll hypothesis assumes that changes in sulfide 

concentrations as a result of eutrophication can influence the production of MeHg, as most 

sulfate reducing bacteria (SRB) methylate mercury in anoxic sediments (Shao 2012). In pure 

cultures in the absence of sulfate, no MeHg was generated from available inorganic Hg (Shao et 

al. 2012). Thus, it can be assumed that Hg methylation is linked to sulfate reduction catalyzed by 

SRB (Shao et al. 2012). Studies of how Hg cycling will be altered due to chronic nutrient loading 

in GSM are important because monomethyl mercury (MeHg) concentrations are a significant 

public health concern.  

Biogeochemical cycling plays a role in determining Hg toxicity as Hg is primarily 

deposited in the environment as inorganic Hg, a form that is readily available to be methylated 

(Chadhain et al. 2006).   Studies have focused on examining prominent zones of Hg methylation 

and have determined that these zones are mostly anoxic sediments inhabited by sulfate and iron 

reducing bacteria (Parks et al. 2013). Hg methylation by SRB is of significance because studies 

have found that mercury methylation occurs most readily in zones of microbial sulfate reduction 

(King 2011).  Salt marsh sediments provide the geochemical components required for 

methylation. These sediments are anoxic near the surface and decomposition of organic matter 

occurs primarily through reduction pathways, such as the reduction of sulfate to hydrogen sulfide 

(Hines et al. 1989).  



 

Bacterial Transformation of Mercury  

Biogeochemical cycling plays a role in determining Hg toxicity as Hg is primarily 

deposited in the environment as inorganic Hg, a form that is readily available to be methylated 

(Chadhain et al. 2006).  Many studies have focused on examining prominent zones of Hg 

methylation and have determined that these zones are mostly anoxic sediments inhabited by 

sulfate and iron reducing bacteria (Parks et al. 2013). Hg methylation by SRB is of significant 

focus as studies have found that mercury methylation occurs most readily in zones of microbial 

sulfate reduction (King 2011).  Salt marsh sediments provide the geochemical components 

required for methylation. These sediments are anoxic near the surface and decomposition of 

organic matter occurs primarily through reduction pathways, such as the reduction of sulfate to 

hydrogen sulfide (Hines et al. 1989).  

There are different experimental techniques used to measure MeHg concentration and 

cycling within ecosystems (Parks et al. 2013) including the use of stable isotopes. However 

methods are limited (Parks et al. 2013). A recent study  (Parks et al. 2013 demonstrated that two 

genes are required for bacterial MeHg production. These genes include hgcA, which encodes for 

a corrinoid protein and hgcB, which encodes a ferredoxin protein). The study demonstrated that 

the C terminus portion of the hgcA protein is membrane embedded, potentially aiding in the 

export of MeHg across the cell wall (Parks et al. 2013). The adaptive significance of why iron 

and sulfur reducing bacteria methylate mercury is not clearly understood. It has been suggested 

that methylation may serve as a detoxification process. Studies have also shown that there is a 

tight coupling between Hg methylation and MeHg export from the cell; demonstrating that 

inorganic Hg intake and methylation may work to avoid build up of toxic Hg concentrations 

within the cell (Schaefer et al. 2011).  

In addition to bacterial processes involved with methylation of inorganic Hg, there are 

also processes responsible for the reduction of inorganic Hg. The reduction of inorganic mercury 

(Hg
II
)
 
leads to the formation of elemental Hg (Hg

0
), a less toxic, more volatile form of Hg. 

Microbes reduce ionic mercury to elemental mercury by the mercuric reductase, MerA enzyme  

(Chadhain et al. 2006). These microbes have been deemed mercury resistant because they 

convert ionic mercury to elemental mercury, a form that is less likely to be methylated. Bacterial 

mercury resistance is mediated by the mer operons, a set of genes that encode for enzymes that 

facilitate the uptake and transport of ionic mercury and organo-mercury compounds to the 

cytosol for degradation and reduction to elemental mercury (Johs et al. 2004; Chadhain et. al 

2006). Transcriptional regulation of the mer operon is controlled by merR, a novel metal-



 

responsive regulator, that represses mer gene activation in the absence of inorganic mercury and 

activates transcription of mer genes in the presence of inorganic mercury (Nazaret et al. 

1994;Barkay et al. 2003). In vitro and in vivo experiments have shown that nanomolar 

concentrations of inorganic mercury are sufficient to induce substantial amounts of mer 

expression (Nazaret et al. 1994).  

MerA has the potential to impact microbial methylators by competing for ionic mercury 

(Chadhain et. al 2006).  The activity of MerA in anaerobic sediments has not been studied in 

great detail, despite the fact that in these environments the function of this gene can have the 

most significant impact, as MeHg is mostly produced in anoxic conditions (Chadhain et. al 

2006).  The conversion of ionic mercury to its elemental form has positive impacts on the 

environment, as elemental mercury is less likely to be methylated (Barkay 2006). Subsequently, 

microorganisms have the potential to provide a major role in ecosystem decontamination 

(Nascimento et al. 2003). The bacterial resistance systems for mercurials and organomercurials 

are of interest since they are a natural strategy for the detoxification of mercury-contaminated 

environments (Nascimento et al. 2003).  

 

Mercury Methylation and Sulfate Reduction 

To develop an understanding of how nutrient loading has impacted Hg cycling in GSM, 

the relationship between sulfate reduction by SRB and MeHg concentrations were examined in 

order to see if nutrient loading works to reduce MeHg production and if this is coupled with a 

decrease in SRB abundance. This question stems from a study by Driscoll et. al (2012) that 

examines the relationship between nutrient loading and Hg concentrations. Driscoll hypothesizes 

that eutrophication leads to increased organic matter and subsequent sulfate reduction, resulting 

in increased production of sulfide concentrations within sediments (Driscoll et. al 2012). 

Increased sulfide concentrations change the speciation of ionic mercury and may decrease its 

bioavailability to microorganisms.  MeHg is produced predominantly by SRB, which reduce 

sulfate and release sulfide as a byproduct of their metabolism (Benoit et. al 1999).  Substantial 

sulfide concentrations can inhibit MeHg production as ionic mercury can bind to sulfide forming 

mercury (II) sulfide, which thus impacts microbial uptake and methylation (Benoit et al. 1999).  

 

 



 

Dissimilatory Sulfite Reductase  

It is easy to detect the presence of gaseous hydrogen sulfide produced by SRB as it 

produces a rotten egg smell that is often associated with salt marshes. Identification and 

characterization of SRB has been facilitated by the use of dissimilatory sulfite reductase (DSR) 

as a target for phylogenetic analysis (Cook et. al 2008). The enzyme DSR catalyzes the six-

electron reduction of sulfite to sulfide, which is a fundamental step in sulfate respiration and is 

therefore a highly conserved gene among sulfate reducers (Cook et. al 2008;Wagner et. al 1998).  

The ability to use sulfate as a terminal electron acceptor is characteristic of several bacterial 

lineages and one genus of Archaea (Wagner et. al 1998). The DSR gene consists of alpha and 

beta subunits, that most likely arose from an early gene duplication event (Oliveira et. al 2008). 

DSR belongs to a family of proteins that also includes assimilatory sulfite reductase and nitrite 

reductases (Oliveira et. al 2008). The genes encoding the two subunits are found adjacent to each 

other in their respective genomes and most likely arose from an early gene duplication event 

(Klein et al. 2001; Oliveira et. Al 2008).  

 

 

 

 

 

 

 

 

 

 

 



 

Goals of this Study 

The major goal of this study is to determine the effects of nutrient loading via fertilizer 

application on Hg transformation and concentrations in GSM. By correlating MeHg 

concentrations to dsrA copy number, a gene that codes for subunit A of DSR and total sulfur 

data we can see if there is a relationship among these three parameters. Additionally, we can 

determine how MeHg concentrations, dsrA copy number, and total sulfur data relate to varying 

levels of fertilizer concentration within each treatment plot. This study will provide greater 

insight into the Driscoll et. al (2012) hypothesis, that suggests that increased nutrient loading has 

the potential to impact Hg transformation by decreasing MeHg bioavailability. By comparing the 

gene abundances to the geochemical data patterns within each experimental plot we can develop 

a greater sense of how Hg cycling has changed as a result of fertilization and the overall response 

of GSM to long-term nutrient loading.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                         

 

 

 



 

                                             

                                                 METHODS 

 

This study includes methods and data presented in this project, but also data from a larger 

study that was conducted from summer 2013-present in the lab of Dr. Carl Lamborg (University 

of California, Santa Cruz). This larger data set is represented as unpublished data and is not 

included in this version of the thesis project. Data from Dr. Lamborg’s lab contains sediment 

cores that were sectioned in 3 cm intervals to a depth of 24 cm. These cores were from both high 

and low marsh settings, while the data I present is only from high marsh settings. I only present 

data on high marsh settings because of time and financial constraints and due to the fact that 

theoretically there should be greater Hg retention as there is less tidal fluctuation and inundation 

in this setting. The geochemical measurements in this larger data set include Total Hg, MeHg, 

percent MeHg, Loss of Ignition, and Total Hg inventories 

 

Site Description: This study was performed in Great Sippewisset Salt Marsh (41° 35’ 3.1” N, 

70° 38’ 17.0”W), which is located along the lower eastern Buzzards Bay shoreline in Falmouth, 

Massachusetts (Figure 2). Circular plots (10 m diameter) have been fertilized every two weeks 

during the growing season since the early 1970s (Valiela et al. 1975 ). The plots are set up in 

duplicate with three different levels of NPK fertilizer. Control, no fertilizer, low: 0.85, high: 

2.52, and extra high 7.56 g N m
-2

 wk
-1 

(Kinney and Valiela, 2013). The fertilizer is a 

commercially available sewage sludge fertilizer (10% N, 6% P, 4% K by weight) (Valiela et. al 

1975). Two additional plots were not fertilized and served as controls. These plots were only 

receiving heavy metals through atmospheric deposition. The plots are located within an area of 

10 hectares (Valiela et al. 1975). 

 

Sample Collection: Sediment cores (1 inch in diameter) were collected from the control (C) 

(plot 3 and 7), extra high (XF) (plot 8 and 6), and high fertilization (HF) (plot 9 and 2) for a total 

of 12 cores. The recovered cores were wrapped in tin foil and transported back to the lab. The 

wet cores were weighed and sectioned at 5 cm resolution to a depth of 10 cm. The geochemical 

data presented in this study is derived from cores that were collected in fall of 2013, the 

molecular results pertain to cores that were collected in summer of 2013 by members of the 

Lamborg lab.  

 

 



 

 

 

Molecular Methods:  

 

DNA Extraction and Quantification: After sectioning, cores used for genetic material were stored 

at -80°C. Subsamples (approximately 10 g) were taken from each of the depth intervals from all 

of the 10 cores for a total of 80 environmental DNA extracts. DNA extraction was performed 

using PowerMax DNA Isolation Kit (MoBio, Carlsbad CA) according to manufacture’s 

guidelines. Extracted DNA was further concentrated using 30 kDa centrifugal filters (Amicon 

Ultra, Billerica MA) following manufacture’s guidelines. Extracted DNA was quantified 

spectrophotometrically pre and post centrifugal concentrating using Nanodrop (Thermo 

Scientific, Waltham MA). Only concentrated DNA was used for later downstream applications. 

Post extraction, DNA was stored at -80 ° C.  

 

Conventional PCR: PCR reactions on dsrAB were performed using BioRad MyCycler 

Thermal Cycler (BioRad, Hercules CA) to assess the amplificability of DNA template and to 

determine optimal DNA template dilutions. Commercial enzyme AmpliTaq Gold 360 

polymerase with AmpliTaq Gold 360 GC enhancer (Life Technologies, Grand Island NY) was 

used to generate PCR amplicons. dsrAB was amplified under the following conditions: 3 

minutes of initial denaturation at 95 ° C, followed by 35 cycles of 95° C for 30 seconds, 54 ° C 

for 30 seconds, 72 ° C for 2 minutes, and a final extension for 10 minutes at 72 ° C. 

Observation of clean and distinct bands were used to ensure specificity and quality prior to 

later quantification measurements (qPCR). All PCR reactions were assessed by gel 

electrophoresis (1% agarose) with 5 microliters of GelRed and recorded digitally with 

Quantity One (Chemi Doc gel imaging system, Bio-Rad Laboratories, Hercules CA).  

 

DSR Clone Libraries and Development of qPCR standards: Dissimilatory sulfite reductase 

(dsrAB) was amplified using dsrF (0.5 µM) and dsrR (Table 1) (0.5 µM) with 1:10 and 1:100 

dilution factors of environmental samples. A positive control aliquot  of dsrAB genomic DNA 

was used to ensure success of the PCR reaction. The 20 microliter reaction contained 4 µL 

Ultra-Pure DEPC-treated water, 10 µL 2X buffer, 1 µL (0.5 µM), dsrF1 µL, (0.5 µM) 1 µL 

dsrR, AmpliTaq Gold 360 enhancer with 3 µL template DNA. The average of the DNA 

template concentrations were 75 ng/ µL. Table 1 contains primer sequences. dsrAB was 



 

amplified under the following conditions: 3 minutes of initial denaturation at 95 ° C, followed 

by 35 cycles of 95° C for 30 seconds, 56° C for 30 seconds, 72 ° C for 2 minutes, and a final 

extension for 10 minutes at 72 ° C.  Four 1900 bp fragments were excised out of the agarose 

gel and amplicons were purified using QIAquick Gel Extraction Kit (Qiagen, Venlo Limburg). 

These four bands were selected over the others in the reaction as they were clean, bright, and 

distinct. The brightest, most distinct band was cloned using StrataClone PCR cloning kit 

(StratClone PCR Cloning Kit ) as per manufacture’s instructions along with a portion of the 

dsr positive control aliquot. This step was performed to see whether the positive control or the 

environmental sample produced more accurate qPCR standards. Two DNA libraries of 96 

clones each were generated; one for the dsr positive control and one for environmental sample. 

Six clones were prepared for sequencing from each for a total of 12 overall samples to be 

sequenced. Two and a half microliters of EXOSAP-IT (USB) and 7.5 microliters of PCR 

product were added to each well and the reactions incubated for 15 minutes at 37°C, followed 

by 15 minutes at 80° C.  The 12 clones were sequenced at Harvard Medical School (Dept. 

BCMP, C1-214, 240 Longwood Avenue, Boston MA 02115).  Plasmid DNA was purified 

using QIAprep Spin Miniprep Kit (Qiagen, Venlo Limburg) following manufacturer’s 

guidelines. Purified plasmid DNA concentrations were measured spectrophotometrically using 

NanodropLITE (Thermo Scientific, Waltham MA).  

 

Sequence Analyses: Sequences were analyzed using FinchTV software and compared to 

known DSR sequences from the NCBI database using BLAST. Percent identity compared to 

known sequences was recorded for all of the samples.  

 

 Quantitative PCR (qPCR): qPCR reactions were performed using the commercial enzyme IQ 

SYBR, SYBR Green Supermix (BioRad, Hercules, CA) according to manufacturer’s 

guidelines for both dsrA and bacterial 16S rRNA . For dsrA, the 20 microliter reaction 

contained 7 µL Ultra-Pure DEPC-treated water, 10 µL 2X buffer, 1 µL (0.5 µM) dsr1F+, 1 µL  

(0.5 µM) dsrR-R (Table 1), with 1 µL template DNA diluted 1:100. Reagents were adjusted for 

the number of reactions. Samples and associated assay standards were run using Bio-Rad CFX 

Manager 3.0 (BioRad, Hercules, CA). For bacterial 16S , the 20 microliter reaction contained 

7 µL Ultra-Pure DEPC-treated water, 10 µL 2X buffer, 1 µL (0.5 µM) GM3, 1 µL  (0.5 µM) 

EUB338R, with 1 µL template DNA diluted 1:10. Reagents were adjusted for the number of 

reactions. Samples and associated assay standards were run using Bio-Rad CFX Manager 3.0 



 

(BioRad, Hercules, CA)..  

 

 qPCR standards were created using the plasmid DNA generated from environmental 

sample as described above. Ten fold dilution series of the standard was used to create a 

dilution curve for the qPCR standards for both dsrA and bacterial 16S. Standard quantities 

used in the generation of the curve ranged from 10 ng/ µL to 1 pg/ µL for dsrA. A bacterial 

16S standard was provided. Standard quantities used in the generation of the curve ranged 

from 1000 pg/ µL to 1 pg/ µL for bacterial 16S.  

 

Chemical Methods: 

 

Post sectioning, six cores were lyophilized for five days and ground 

into a fine powder for methyl mercury (MeHg), total mercury and total sulfur analysis. 

All glassware and tools used were acid washed with hydrochloric acid. MeHg was 

measured using cold vapor atomic fluorescence spectroscopy, (CVAFS). Approximately 

500 mg of ground sample was distilled in a Teflon vial to which 15 mL of distilled water, 

0.4 mL 9 M sulfuric acid, and 0.4 mL copper sulfate was added. The samples were heated 

at 250° C and sparged with nitrogen gas until 60-80% of the sample solution was 

collected in a similar Teflon vial held in an ice bath. Two samples were spiked with 1 

mL MeHg for comparison to unspiked sediments. After distillation, 25 µL abscorbic acid 

and 275 µL citrate buffer was added. pH was adjusted to 5.0 for each sample with 

potassium hydroxide. Sodium tetraethylborate was added to the final solution and 

allowed to react for 20 minutes prior to CVAFS detection. Five MeHg standards were 

used, standard 1: deionized water blank, standard 2: 0.1 mL 268 femtomoles MeHg/mL, 

standard 3: 0.5 mL 268 femtomoles MeHg/mL, standard 4: 0.5 mL 4.53 picomoles 

MeHg/mL, and standard 5: 1.0 mL 4.53 picomoles MeHg/mL. 

 

Total mercury was measured using oxygen combustion-gold amalgamation using direct 

mercury analyzer (DMA-80). 500 mg of dried sample was combusted and the concentrations 

were recorded. Known concentrations of Mess 3 (0.091 PPM Hg) and Pac 

2 (3.04 PPM Hg) were used as standards. Total sulfur was measured using a LECO SC-32 sulfur 

analyzer against commercial coal standards (Giblin, 1990). Approximately 50 mg of sample was 

combusted. 



 

 

Milorganite fertilizer contains heavy metals such as cadmium, copper, nickel, zinc, and mercury. 

It is difficult to measure Hg concentrations (due to lack of recording, highly voltatile) so zinc can 

be used to model Hg loading as zinc and Hg have similar physical properties (Figure A1).  

                      

 

 

 

The amount of total mercury loaded in 1970 through fertilization was compared to the 

measured total mercury concentrations determined in this study to calculate total mercury 

percent retention. A model was designed that considered accumulation and application rates and 

additional atmospheric deposition based Kinney and Valiela (2013). Bulk density for sectioned 

cores was used to determine total mercury concentration per sectioned slice and this was 

compared to predicted loaded total mercury. It was assumed that all mercury loaded in 1970 

remained in sediments of each of the studied plots. From loaded total mercury concentrations 

and measured total mercury concentrations, the percent retention for each plot was calculated. 

 

Statistical Methods: ANOVA Post Hoc Tests (Tukey HSD) and Univariate Analysis of Variance 

were performed in SPSS Statistics (IBM Corporation, Armonk New York). Data from duplicate 

cores in each plot were averaged prior to statistical analyses.  

 

 

 

 

          RESULTS  

Figure A1: Concentrations of heavy metals per date of fertilizer 

batch applied to GSM. 



 

Chemical Results:  

 

For all of the physical parameters analyzed, the two depth intervals of 0-5cm and 5-10cm were 

not statistically different from one another. Since there was not a lot of variability due to 

increasing depth, the two depth intervals were averaged for the replicate plots. 

 

There was not substantial variation in loss of ignition among the treatment plots (Figure 1A). The 

loss of ignition versus depth profile for the control plot looked similar to the treatment plot 

receiving the greatest concentration of fertilizer. Additionally, loss of ignition was relatively 

uniform with increasing depth across all experimental conditions.  

 

Total Hg was greater in the fertilized plots compared to the control plot. The averaged control 

cores contained 0.00030 umol/g compared to 0.0043 umol/g for the averaged cores in the extra 

high plot (Figure 3). The control plot contained significantly less total Hg compared to the extra 

high fertilized plot (P=0.021). The high fertilized plot also contained significantly more total Hg 

than control plot (P=0.031).  The high fertilized and extra high fertilized plot were not 

statistically different from one another.  

 

Average percent sulfur was highest in the control plot compared to the two fertilized plots. The 

control plot contained more than twice as much sulfur as in the extra high plots. The extra high 

fertilization plot contained the least amount of total sulfur with an average of 0.77 % (Figure 4).  

None of the treatment conditions were statistically different from one another.  

 

Despite the fact that the high fertilization and extra fertilization plots have relatively similar 

values for total mercury, there was a greater amount of average methyl mercury in the high 

fertilization plot compared to the extra high treatment (Figure 5). The high fertilization plot 

contained significantly more MeHg compared to the control (P=0.013) and the extra high 

fertilization plot (P=0.038).  

 

Although total MeHg concentrations were lowest in the control plots, the relative percent of 

MeHg to total Hg was highest in control plots.  Percent MeHg is defined as the portion of MeHg 

compared to the concentration of total Hg. The control plot contained significantly more percent 

MeHg compared to the extra high fertilization plot (P=0.005). The high fertilization plot 

contained significantly more percent MeHg compared to the extra high as well (P=0.019). The 



 

control plot however, does not contain significantly more percent MeHg compared to the high 

fertilized treatment (Figure 6).  

  

The control plot had a substantially higher average percent total  Hg retention (189 

%) compared to less than 1 % for both the fertilized plots. The high and extra high fertilization 

plot had similar percent retentions, however the high plot was slightly higher with 0.26 % 

compared to 0.13 % (Figure 7).  

 

Molecular Results:  

 

The amount of DNA extracted in micrograms per gram of sediment from the environmental 

samples decreased with increasing depth among all treatment plots Generally across all treatment 

plots there was an increase in DNA concentration from 5-10 cm. The extra high fertilization plot 

contained the greatest fluctuation in DNA concentration (Figure 8).  

 

Furthermore, bacterial 16S copy number per nanogram of DNA was lowest in the control plot 

with a starting copy number value (0-3cm) around 1.00E+05. The high fertilization condition 

had the highest starting copy number value starting which was slightly greater than 1.00E+06. 

For all three treatment plots, copy number per nanogram of DNA fluctuated with depth. All plots 

had an increase in 16S abundance from the 5-10 cm depth interval followed by variation in 

abundance with increasing depth. Bacterial 16S copy number per nanogram of DNA for cores 

collected in the extra high fertilized treatments are not present due to technical problems in some 

of the qPCR runs leading to a lack of copy number data. Unfortunately, there was not enough 

time to re-run these samples. Due to time constraints, I also just looked at copy number data 

from high marsh cores as the geochemical data I generated comes from high marsh settings. 

 

dsrA copy number per nanogram DNA extracted is not included in this study as the values were 

orders of magnitude higher than expected values. Careful consideration was given to 

experimental technique, standard readings, machine technicalities, and copy number calculation 

errors, and we are fairly confident that this increase in dsrA abundance is due to an issue with the 

primer set that was used. More time is needed to re-run experiments with new primers or 

potentially design new primers as sequence data indicates that there is substantial variability 

within the samples. Despite the probable primer issue, it was interesting to see that the trend in 



 

dsrA copy number per nanogram DNA extracted was similar to the trends seen in bacterial 16s 

abundance. There was the highest starting concentration in the high fertilized treatment plot, 

however all plots were fairly similar in concentration to one another and fluctuated with depth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

          

 

 

          

 

 

          DISCUSSION 



 

Many studies have examined the impact of long-term fertilization on the aboveground 

health of GSM, but less research has been conducted on the effect of nutrient loading on MeHg 

production and the influence on the microbial communities involved with Hg methylation. 

Increased fertilizer application has the potential to influence many microbial and geochemical 

processes (Morris et. al 1991). Similar to trends seen in total Hg concentrations in this study, 

Bretler and Teal (1980) have shown that increased fertilization leads to greater amounts of total 

Hg within the treatment plots. Therefore, it is important to develop an understanding of how 

GSM will respond to nutrient loading and how this will impact bacterial populations.   

 

Impact of Fertilizer on Geochemical Processes  

It was expected that the applied fertilizer would lead to varying geochemical conditions 

within the different treatment plots. The addition of sewage sludge fertilizer has increased the 

amount of total Hg in the experimental conditions.  In 1970, the initial sewage sludge contained 

an increased amount of heavy metals compared to the more recently applied fertilizer, as 

industrial inputs were connected to the sewer system (Hamlett, 1986).  The control plots are only 

receiving Hg through atmospheric deposition and the values for total Hg are much lower than the 

fertilized plots. The fertilizer is adding much larger amounts of heavy metals than what would be 

received through atmospheric deposition.  

Since the plots are receiving increasing intervals of fertilizer, one would expect to see an 

increase in MeHg across the treatment plots, however a different pattern was observed. The high 

fertilized plot had the highest average MeHg concentration, rather than the extra high fertilized 

condition. Also, it was interesting to see that in the control, where there was the greatest amount 

of total sulfur, the ratio of MeHg to total Hg was also the highest. This indicates that the 

efficiency of Hg methylation is high considering that the control plot is only receiving Hg 

through atmospheric deposition. Total sulfur was highest in the control condition suggesting that 

SRB abundance might be influencing MeHg concentrations as studies have shown that SRB 

methylate mercury (King 2011).  

Nitrogen concentrations within the fertilized plots may also be playing a role in the 

decreased ratio of MeHg to total Hg in the fertilized plots, especially in the extra high-fertilized 

condition. Increased applied nitrogen through fertilization may result in an increase in nitrogen 

reducing bacteria and various intermediates associated with nitrification and dentrification 

resulting in changes in geochemical conditions and microbial processes. Hamersley et. al (2005) 

have reported that extra high fertilized treatment plots are receiving up to 11.2 mol organic N m-

2 yr-1 for the past 16 to 23 years. Increased nitrate concentrations could signal a disruption of 



 

nitrifiers, but also a change in the total composition of the microbial community (Philips et. al 

2002). Additionally, sulfate reducing and nitrogen reducing bacteria may potentially be 

competing with one another more intensely for organic carbon in the extra high fertilized plot, 

where there is a greater concentration of nitrogen and therefore, theoretically a greater abundance 

of nitrogen reducing bacteria. This competition might result in a decrease in MeHg production by 

the sulfate reducers. Nitrogen and sulfate reducers may be in close proximity with one another as 

sulfate reduction and components of nitrogen reduction occur in anaerobic conditions. In 

oxygen-depleted soils, sediments, and water, nitrite is reduced to gaseous products, which are 

released into the atmosphere (Cole and Brown 1979). However, Bowen et. al (2011) and Peng et. 

al (2012) have demonstrated minimal responses of nitrifiers and denitrifiers to long-term 

fertilization, which suggests that factors other than nutrients may be playing a role in the 

abundance of these microorganisms within the treated plots. More research is needed to look at 

other parameters, such as redox conditions, which may be limiting the abundance of certain types 

of bacteria (Peng et. al 2013).     

Ionic mercury partitioning is an explanation for why there might be less methyl mercury 

in the extra high fertilization plot, however loss of ignition tests show that organic content was 

fairly uniform across treatment plots. An increase in fertilization leads to greater vegetation and 

greater vegetation can lead to more organic content within sediments. Ionic mercury has the 

potential to bind with organic content and once it is bound, it less bioavailable to be methylated 

(Hammerschmidt et al. 2006; Breteler et. al 1980). Changes to nitrogen inputs into ecosystems 

has the potential to decrease bioavailability and mercury trophic transfer as ionic mercury has an 

affinity for organic content (Driscoll et al. 2012).  

Total Hg Percent Retention 

From total mercury inventories, I determined percent retention for each of the plots. 

Percent retention is the amount of Hg withheld in the sediment. Dr. Carl Lamborg and I designed 

a model based on data presented in Kinney and Valiela (2013) that enabled me to compare the 

amount of mercury loaded in 1970, assuming all mercury had remained in the sediment, to the 

measured total Hg concentrations I determined in this study. The control plot had a much larger 

percent retention compared to the two fertilized plots.  The decrease in percent retention in the 

high and extra high plot is due to the loading of fertilizer. Since the two fertilized plots are 

receiving fertilizer they might reach a maximum saturation point. More research is needed to 

determine the saturation kinetics of salt marshes and their ability to retain heavy metals over a 



 

long period of time. Additionally, the input of nutrients to these plots changes the sediment 

composition potentially influencing percent Hg retention as well (Gordon, 1980).  

 

Microbial Responses to Fertilizer 

Along with looking at the geochemical components of this study, it is also important to 

develop an understanding of the microbial responses to the applied fertilizer as microbial activity 

plays a critical role in production and cycling of MeHg (Gilmour et. al 1991).  Bacterial 16s 

abundance data demonstrates that fertilizer does not lead to substantial differences in the overall 

abundance of bacteria within the treatment plots. In the high fertilization plot there was a greater 

abundance of bacterial 16s at the surface (0-3cm) compared to the two other treatment plots, but 

all the conditions were fairly similar in their abundances and fluctuated with depth. More 

research is needed to look at the abundance of certain types of bacteria in order to develop an 

understanding of how fertilizer potentially impacts the abundance of bacteria involved with 

methylation. For example, analyzing dsrA copy number could be used as a proxy for observing 

the abundance of SRB. The issue with the primer set used in the qPCR runs for dsrA prevents a 

more detailed and complete understanding of SRB abundance within the treatment plots, but 

when looking at the general trends for dsrA generated in this experiment, it is evident that the 

abundance is fairly similar to the bacterial 16s further demonstrating that fertilizer does not 

substantially alter the abundance of bacterial communities. However, since total sulfur and the 

percent MeHg compared to total Hg was highest in the control plot, I would potentially expect to 

see a greater abundance of dsrA copy number in the control condition.  I was unable to 

successfully amplify HgcA, a gene required for MeHg production (Parks et. al 2013), however 

since sulfate reduction and mercury methylation are linked, and the rate of methylation in the 

control plot seems to be high considering this plot is only receiving Hg through atmospheric 

deposition, I would expect to see this gene in the control plot as well.  

 

MerA Bioremdiation 

Barkey et al. (2003) studied mer genes and their importance in bioremediation. 

Understanding merA activity could provide insight for decreasing the amount of toxic MeHg in 

ecosystems as this gene converts ionic mercury to elemental mercury (Chadhain et. al 2006). 

Additionally, Barkey et. al (2003) demonstrated that systems that are perpetually exposed to 

heavy metals select for microorganisms that are heavy metal resistant. Heavy metal ions such as 

Hg(II) are of nonbiological origin and are toxic to cells at high concentrations (Nies 2000). 

Microorganisms with merA activity are deemed heavy metal resistant as they convert ionic 



 

mercury to elemental mercury, an extremely volatile and less toxic form of Hg.  More 

researching is needed to develop an understanding of where merA is more abundant within the 

treatment plots and how the presence of this gene is related to MeHg production. It would be 

interesting to see if the extra high treatment plot, the condition that is receiving the greatest 

amount of nutrient loading and thus heavy metals, contained a greater abundance of the merA 

gene, and if the potential greater abundance provides an explanation for the decrease in MeHg in 

the extra high treatment plot as, merA codes for the reduction to elemental Hg, a form that is not 

readily available to be methylated (Chadhain et. al 2006).  

 

Conclusions 

Overall, nutrient loading alters geochemical conditions in GSM by increasing the amount 

of total Hg within treatment plots. Interesting trends were observed that showed an increase in 

MeHg concentration in the high fertilized plot and a greater ratio of MeHg to total Hg in the 

control plot. The microbial data generated in this study demonstrates that fertilizer does not 

substantially impact bacterial abundance. The increase in MeHg in the high fertilized plot might 

be explained by a increase in nitrogen levels in the extra high treatment resulting in competition 

between nitrogen reducing bacteria and SRB for organic carbon. The greater ratio of MeHg to 

total Hg in the control plot may be explained by the fact that there was more total sulfur within 

the control plot, however total sulfur concentrations are not statistically different from one 

another across the treatment plots so more research is needed to develop a greater understanding 

of why the methylation rate is high in the control condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Future Research 

 There are many more experimental steps that could be taken in order to determine how 

fertilizer has changed the overall health of GSM and also to provide greater insight into the 

Driscoll hypothesis which states that increased fertilization leads to a decrease in MeHg 

production. More time is needed to amplify and analyze dsrA, merA, and HgcA in order to 

compare the presence of the three genes of interest to one another in the treatment plots. 

Additionally, nitrate concentrations and the concentration of the nitrite reductase genes (nirS) 

could be used to develop a greater understanding into whether nitrate levels and subsequent 

concentrations of nitrogen reducing bacteria are competing with sulfate reducers for organic 

carbon, resulting in less MeHg production within the extra high fertilization plot (Braker et. al 

1998).  Also, more research on the saturation kinetics of salt marsh sediments is needed in order 

to understand the sediments capacity to retain heavy metals over time and how this retention 

impacts the overall geochemical and microbial processes of the marsh.  
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              FIGURES 

Figure 1: Biomagnification of methylmercury in aquatic ecosystems.   

Figure 2: Map of study plots in Great Sippewisset Marsh, Falmouth MA.  

Figure 3: Average concentration of total mercury in micromoles per gram across study 

plots. 

Figure 4: Average percent total sulfur across study plots. 

Figure 5: Average concentration of methyl mercury in picomoles per gram across study 

plots. 

Figure 6: Average percent of methyl mercury compared to total mercury across study 

plots. 

Figure 7: Average percent retention of total mercury in sediment across study plots. 

Figure 8: DNA extracted from sediment cores in micrograms per gram versus depth for 

all experimental conditions.  

Figure 9: Bacterial 16S copy number per nanogram of DNA extracted versus depth in 

control, low, and high fertilized plots from sediment cores collected in high marsh 

settings.  

 

 

 

 

 

 

 

 

 



 

 

 

Figure 1: Biomagnification of methylmercury in aquatic ecosystems 

(Environmental Health) 

Mercury can be converted to MMHg, a potent neurotoxin through biogeochemical 

processes. MMHg enters the body and is absorbed much faster than inorganic Hg. 

MMHg has the capacity to be stored in tissues and thus can biomagnify up food chains.  

 

 

 



 

 
 

 

Figure 2: Map of study plots in Great Sippewisset Marsh, Falmouth MA (Peng 

2013). Study plot contains four treatment plots, control, low fertilization, high 

fertilization, and extra high fertilization located in both low and high marsh settings. 

Control plot is not receiving fertilizer; it only receives heavy metals through 

atmospheric deposition.   

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Figure 3: Average concentration of total mercury in micromoles per gram across 

study plots. Total mercury measurements include elemental, mono

dimethyl-mercury. Sediment core slices of 0

replicate plots. Greater variability in the fertilized plots is most likely due to the fact that 

these samples contain a greater amount of fibrous material leading to variability in 

sample preparation. These samples are harder to homogenize, which may result in 

variability in their Total Hg concentrations, as well as other physical parameters 

measured in this experiment. 
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Figure 3: Average concentration of total mercury in micromoles per gram across 

. Total mercury measurements include elemental, mono-methyl mercury, and 

mercury. Sediment core slices of 0-5cm and 5-10cm were averaged for the 

replicate plots. Greater variability in the fertilized plots is most likely due to the fact that 

samples contain a greater amount of fibrous material leading to variability in 

sample preparation. These samples are harder to homogenize, which may result in 

variability in their Total Hg concentrations, as well as other physical parameters 

his experiment.  

�HF �XF

Figure 3: Average concentration of total mercury in micromoles per gram across 

methyl mercury, and 

10cm were averaged for the 

replicate plots. Greater variability in the fertilized plots is most likely due to the fact that 

samples contain a greater amount of fibrous material leading to variability in 

sample preparation. These samples are harder to homogenize, which may result in 

variability in their Total Hg concentrations, as well as other physical parameters 



 

 

Figure 4: Average percent total sulfur across study plots

are composed of sulfate, sulfides, and sulfites within the plots. Sediment core slices of 0

5cm and 5-10cm were averaged for the replicate plots. 
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Figure 4: Average percent total sulfur across study plots. Percent total sulfur values 

are composed of sulfate, sulfides, and sulfites within the plots. Sediment core slices of 0

10cm were averaged for the replicate plots.  
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are composed of sulfate, sulfides, and sulfites within the plots. Sediment core slices of 0-



 

 

 

Figure 5: Average concentration of methyl mercury in picomoles per gram across 

study plots. MeHg concentrations were determined separately from total Hg 

concentrations through distillation and detection by CVAFS. Sediment core slices of 0

5cm and 5-10cm were averaged for the replicate plots. As stated above, variability may 

be related to the fibrous content of the high fertilized plot. 
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Figure 5: Average concentration of methyl mercury in picomoles per gram across 

MeHg concentrations were determined separately from total Hg 

concentrations through distillation and detection by CVAFS. Sediment core slices of 0

10cm were averaged for the replicate plots. As stated above, variability may 

be related to the fibrous content of the high fertilized plot.  
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Figure 6: Average percent of methyl mercury compared to total mercury across 

study plots.  Concentrations 

total mercury concentrations determi

percentage of methyl mercury. 

for the replicate plots.   
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Figure 8: Concentration of DNA extracted in micrograms per gram of sediment 

versus depth for all treatment plots. For all treatment plots, extracted DNA 

concentration decreased with increasing depth.  
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Figure 9: Bacterial 16S copy number per nanogram of DNA extracted (log scale) 

versus depth in control, low, and high fertilized plots from sediment cores collected 

in high marsh settings. Bacterial 16S copy number per nanogram of DNA extracted was 

determined for cores collected in high marsh settings. Bacterial 16S abundance is 

smallest in the control and abundance of the gene fluctuates with depth across all 

experimental conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 1: DSR genes targeted in PCR assays and their associated PCR Primers.  

Primer 

Target 

Primer 

Name 

Primer Sequence 

(5’-3’) 

Expected 

Amplicon 

Length 

Primer 

Design 

Source 

dsrAB DSR1F  

 

DSR4R 

ACSCACTGGAAGCACG 

 

GTGTAGCAGTTACCGCA 

1900bp Wagner et 

al. 1998 

dsrA  DSR1F+ 

 

DSR-R 

ACSCACTGGAAGCACGGCGG 

 

GTGGMRCCGTGCAKRTTGG 

221 Kondon et 

al. 2004 
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