
Connecticut College
Digital Commons @ Connecticut College

Computer Science Faculty Publications Computer Science Department

6-2011

Quadruped Gait Learning Using Cyclic Genetic
Algorithms
Gary Parker
Connecticut College, parker@conncoll.edu

William T. Tarimo

Michael Cantor

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscifacpub

Part of the Computer Engineering Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut
College. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of Digital Commons @
Connecticut College. For more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Parker, G.B.; Tarimo, W.T.; Cantor, M., "Quadruped gait learning using cyclic genetic algorithms," Evolutionary Computation (CEC),
2011 IEEE Congress on , vol., no., pp.1529,1534, 5-8 June 2011 doi: 10.1109/CEC.2011.5949797

http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu

Quadruped Gait Learning Using Cyclic Genetic Algorithms

Keywords
Genetic; Cyclic Control; Quadruped; Gait; Evolutionary Robotics; Learning Control; Genetic Algorithm

Comments
©2011 IEEE

DOI:10.1109/CEC.2011.5949797

This conference proceeding is available at Digital Commons @ Connecticut College: http://digitalcommons.conncoll.edu/
comscifacpub/20

http://dx.doi.org/10.1109/CEC.2011.5949797
http://digitalcommons.conncoll.edu/comscifacpub/20?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/20?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages

Quadruped Gait Learning Using
Cyclic Genetic Algorithms

Gary B. Parker, William T. Tarimo, and Michael Cantor
Department of Computer Science

Connecticut College
New London, CT, USA

parker@conncoll.edu, wtarimo@conncoll.edu, michael.cantor@gmail.com

Abstract— Generating walking gaits for legged robots is a
challenging task. Gait generation with proper leg coordination
involves a series of actions that are continually repeated to create
sustained movement. In this paper we present the use of a Cyclic
Genetic Algorithm (CGA) to learn gaits for a quadruped servo-
robot with three degrees of movement per leg. An actual robot
was used to generate a simulation model of the movement and
states of the robot. The CGA used the robot’s unique features
and capabilities to develop gaits specific for that particular robot.
Tests done in simulation show the success of the CGA in evolving
a reasonable control program and preliminary tests on the robot
show that the resultant control program produces a suitable gait.

Keywords-Genetic; Cyclic Control; Quadruped; Gait;
Evolutionary Robotics; Learning Control; Genetic Algorithm

I. INTRODUCTION
The development of walking gaits is an important part in

the designing and studies of legged robots. While multiple legs
and multiple degrees of freedom can give the robot increased
capabilities, the task of coordinating many separate movements
into a stable gait can make learning gaits difficult. The
quadruped servo-robot with three degrees of movement per leg
poses a stability challenge. In order for a quadruped robot to
achieve and maintain forward movement, it is necessary for
each leg to repeat a series of movements in synchronization
with the other legs. In this paper we used a Cyclic Genetic
Algorithm (CGA) operating on a model of an actual robot to
generate gaits.

Evolutionary computation techniques and in particular,
Genetic Algorithms, have previously been used to develop
gaits for legged (primarily hexapod) robots with two degrees of
movement per leg. In a recent review article, Daoxiong Gong,
Jie Yan, and Guoyu Zuo presented, in much detail, the
suitability of evolutionary computation techniques in gait
optimization for mobile legged robots [1]. Graham Spencer
used genetic programs in his work to learn gaits for a virtual
robot using only minimal knowledge of the mechanisms of
walking [2]. Sonia Chernova and Manuela Veloso used
evolutionary computation to learn gaits for four-legged robots
emphasizing gait optimization [3]. Susanne Still et al. presented
how a chip can be used to control the leg movements of a four-
legged robot by driving motors with time varying voltages
from a small network of coupled oscillators [4].

In a previous work Parker made use of cyclic genetic
algorithms to develop walking gaits for a hexapod robot [5].
Each of the six legs of this hexapod robot could only move
vertically and horizontally and the number of legs made it
possible to produce statically stable gaits. One of the main
differences of the CGA in comparison to other evolutionary
computation methods is that the CGA learns the actual
sequence of activations needed to be continually repeated to
produce a gait. It is, in a sense, an automated code generator of
machine level or assembly language code that can be directly
loaded into the control chip.

In this paper the ability of a CGA to evolve effective
walking gaits for a robot with more complex legs is tested. The
servo-robot used has four legs, each of which has three degrees
of freedom, in/out, up/down, and forward/back. Compared to
hexapods, quadrupeds have more stability challenges since it is
easier for quadrupeds to fall out of balance. In addition,
although control for the same number of servos was being
learned as in the hexapod, the three degrees of freedom legs
posed additional complexity since the in/out movement
required the simulation to deal with radial, in addition to linear
movement, plus there were more alternatives in attaining the
same general movement. Nevertheless, the CGA produced
gaits that kept the robot stable with sustained forward
movement.

II. QUADRUPED SERVO-ROBOT
The approach was to develop a simulation model of an

actual robot with data from its physical features and
movement capabilities. This model, with information for each
leg, would present all the movement states of the robot at any
instance in time. The cyclic genetic algorithm was used to
train this model to walk, emphasizing forward movement and
the stability of the robot.

The robot used in creating the model was a quadruped
servo-robot (Figure 1) developed by Michael Cantor in the
Connecticut College robotics laboratory. The robot body and
legs are made of masonite. It has standard hobby servomotors
for actuators and uses a Basic Stamp II (from Parallax, Inc) for
control.

Figure 1. Photograph of the quadruped servo-robot used.

The robot has three degrees of movement per leg; in/out,
up/down and forward/back movements. These movements are
controlled by a control program running in the Basic Stamp.
The program is made up of movement signals that are sent to
all the servomotors. These signals are sent in parallel and tell
each of the legs to move in one direction or the other. There is
no command to stop movement so this only happens when the
leg goes full throw. The movement signals or activations
(Table I) are sent to the legs every 20 milliseconds.

TABLE I. INTERPRETATION OF THE 12-BIT ACTIVATION, WHICH IS MADE UP
OF THE CONTROL SIGNALS THAT ARE SIMULTANEOUSLY TRANSMITTED TO
EACH OF THE 12 SERVOS. LEG 0 IS THE RIGHT FRONT, 1 IS THE LEFT FRONT, 2 IS
THE RIGHT REAR, AND 3 IS THE LEFT REAR.

Bit
Index

Affected leg Command
when 0

Command
when 1

0 3 Down Up
1 3 In Out
2 2 In Out
3 2 Down up
4 1 Down Up
5 0 Down Up
6 2 Forward Back
7 1 Forward Back
8 0 Forward Back
9 3 Forward Back
10 1 In Out
11 0 In Out

Activations are the signal sequence sent to the 12 servo-
motors. Each activation signal is a 12-bit binary number, with
3 bits dedicated to each leg, one bit for each of the in/out,
up/down, and forward/back movements. Since each bit can
either be a 0 or a 1, one bit is sufficient to represent the two
states of any movement. A signal of 0 on any of the
movements is interpreted as a command to send the legs
down, in, or forward. A signal of 1 would command any of the
legs to go up, out, or back. Table II below shows the
interpretation of all the 12 bits.

A sequence of these activations is needed to have
continuous movement of the legs and a proper cycle of

activations is required for the control program to produce a
proper gait. The coordination of the concurrent movement of
all of the actuators along with the requirement for the previous
steps to end in the proper position to start the next step is what
makes this problem so challenging.

The model of the quadruped servo-robot was created by
taking accurate movements of its capabilities and storing the
information in a lookup table. The information stored included
separate measurements taken from each leg as shown in Table
II. Distances are measured in millimeters and angles in
radians.

TABLE II. INFORMATION STORED IN THE SIMULATION MODEL OF THE ROBOT.

Name Description
current-up The current vertical height of the leg
max-up & max-
down

The highest and lowest positions that
the leg could reach

rate-up & rate-down The rates of up/down movements per
control pulse

on-ground Indicates which legs are on ground,
using a 0 or 1

current-back The current horizontal position of the
leg from the back most position.

max-back The back most position a leg can go.
current-in The current in/out distance of the foot

from the side of the robot body.
max-in & min-in The in most and out most distances the

foot could reach.
rate-in & rate-out The rates of in/out movements per

control pulse
current-theta The angle relative to the line

perpendicular to the heading of the
robot

max-back-theta &
max-fwd-theta

The back most and forward most
angles of the leg

rate-back-theta &
rate-fwd-theta

The rates at which the angle changes
per control pulse when the leg moves
horizontally.

temp1, temp2 &
temp2

Temporary variables if a need arises.

Since the legs of the quadruped can move in/out while

moving back/forward, the resulting movements are not linear
but radial. It was necessary to find an appropriate way to
determine the horizontal position of a leg as a function of both
the current angle of the leg relative to the line perpendicular to
the heading of the robot and the in/out distance from the base
of the leg to the foot. The resulting formula is shown in
Equation 1, where Ø is the angle, i is the current in/out
distance of the leg, and d is the relative horizontal position of
the leg.

d = i sin Ø (1)

III. CYCLIC GENETIC ALGORITHM
The Cyclic Genetic Algorithm is a type of Genetic

Algorithm [6] that can be used to learn cyclic control
programs [7]. It was developed to be a more suitable method
for learning gaits for legged robots. The CGA differs from the
standard GA mainly in the makeup of the chromosome. In a
CGA the genes of the chromosome do not represent traits of
the solution but represent tasks to be completed in a set
amount of time. This, in effect, makes the CGA a method for
directly evolving control programs. The chromosome of the
original CGA had genes that represent three sets of tasks
depending on location in the chromosome. A start section, a
cyclic section, and a tail section are shown in Figure 2.

Figure 2. A CGA chromosome with start section, cyclic section, and tail
section.

In the context of this research, the start section should set
up the robot to move into a continuous cycle (the cyclic
section) where sustained fluid motion can take place. The tail
section can optionally be added to provide a smooth
translation back to the at-rest stance of the robot. The genetic
operations of the CGA are typically the same as that of the GA
except that crossover in the cyclic section is done at two points
since it is, in effect, swapping a section of the cycle.

IV. CGA QUADRUPED GAIT PRODUCTION

A. Chromosome Structure
The fixed length chromosome for this problem was made

up of 4 parts: coordinator, inhibitor, start section, and cyclic
section. The chromosome structure is shown in Figure 3, with
an example chromosome written in the programming language
Scheme shown in Figure 4.

[C I {(R A)} {(R A)1 (R A)2 (R A)3 … (R A)11 (R A)12}]
 -------- -- start section cyclic section

Figure 3. A CGA chromosome structure with coordinator (C), inhibitor (I),
and the start and cyclic sections which are made up of genes with repetitions
(R) and activations (A) in each.

[3580 2882 {(40 1060)} {(43 1710) (4
1598) (20 1891) (19 259) (1 3097) (41
1052) (3 57) (0 3096) (0 1074) (0
1070) (0 1045) (0 17)}]

Figure 4. An example CGA chromosome structure written in Scheme with a
coordinator, inhibitor, and start and cyclic sections.

 Coordinators and Inhibitors are part of robot’s coordination
mechanism, which could evolve to increase gait control and
proper movement. These two numbers were initiated as
random numbers and were learned by the CGA. The
coordinators and inhibitors were applied to the activations of
the start and cyclic sections before the control program was
run in the robot (simulated or actual).

 C: Coordinators coordinated the three movements on each
leg. For example, one coordinator made sure that if a leg was
going back it was either already down or moving in that
direction. Another coordinator ensured that if a leg was going
up it was either already forward or moving in that direction.
The coordinator for all legs is a 12-bit binary.

 I: Inhibitors affected pairs or triples of legs. They prevented
certain legs from moving in the same direction at the same
time. For example, the inhibitor for legs 2&3 prevented both
legs 2 and 3 from going back or forward at the same time. It
allowed 2 to move back, but inhibited 3. The inhibitors for the
set of legs are represented as a 15-bit binary number.
Coordinators and inhibitors are applied equally to all genes
and they are listed at the start and cyclic sections of the
chromosome.

 The start section has one gene and the cyclic section has 12
genes. This setup was found to be sufficient to provide the
maximum number of required chromosome changes during
the evolution process. Each gene has two parts: repetitions
and activations.
 R: Repetitions represent the number of times to repeat the
activations which are concurrent signals sent to the servos.
 A: Twelve bit activation as described in Section II.

The sequence of activations in this chromosome are put
directly into the Basic Stamp controller to generate a gait.

B. Gait Learning and Genetic Operations
 During the learning stage, populations of 64 individuals
were used. The initial population was created by randomly
assigning numbers to all the parts of the chromosomes. Five
separate tests were conducted with the CGA learning on
random starting populations. The CGA evaluated each
chromosome using the simulation model and assigned each a
fitness score.

 Fitness was calculated by executing 200 activations for
each individual and determining its forward movement in this
time. This number of activations assured that each individual
was tested in a long enough time to ensure at least more than
one whole step, meaning at least one cycle of the control

sequence was required. Fitness was computed by summing
the fitness of the individual activations. The activation fitness
equaled the forward motion produced by the gene's activation
signal, which is repeated the indicated number of repetitions.
This was done on the model by: taking the current state of
legs; applying the vertical movement; calculating the balance
and probable legs on the ground from the model’s current
vertical position of each leg; applying the horizontal
movement to alter the leg’s state, but only counting legs on the
ground in computation of the movement (fitness); deducting
fitness for lack of balance and/or asymmetry of movement;
and repeating the process using the next activation and the
new state. This was sequentially done from the start to the end
of the chromosome and then repeated as many times as
required in the cyclic section.

Due to the nature of servos under pressure, they do not
attain full movement when the activation is first applied. A
single activation would just result in a twitch since one signal
to a servo would produce minimal movement. It typically
takes a sequence of four or more signals before each produces
full movement. To simulate this, adjustments were required in
determining the back/forward and in/out movements when
direction changes were first applied. Each in/out and
forward/back movement in a new direction was set to produce
⅛ of the movement in the first pulse, ¼ in the second pulse, ½
in the third pulse, and full movement from the forth pulse and
after.

Subsequent generations of chromosomes were created by
performing a stochastic (roulette wheel) selection to select two
parent chromosomes, with the probability for selection based
on fitness.

Crossover was performed at randomly selected points in
the chromosome. The resultant offspring was subjected to
mutation where each bit was given a 1 out of 150 chance of
flipping from a 0 to a 1 or vice versa. After 64 children
chromosomes were created in this way, the generation was
complete. The process was repeated for a total evolution run
of 5,000 generations. The program stored copies of the
population every 10 generations from generation 0 up to
generation 100, every 20 generations up to generation 300,
every 50 generations up to generation 800, and every 100
generations for the remaining 4200 generations.

V. RESULTS
From the results stored from all the five CGA runs, we

calculated the average fitness per population for all the
populations collected. We then plotted these results in graph of
average fitness per population versus the appropriate
generation number. Figure 5 shows this graph for populations
collected throughout the 5000 generations. Figure 6 shows the
same graph focused on the pattern observed from the first
1500 generations.

Average Fitness vs. Generation

‐50

0

50

100

150

200

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Generation

A
ve
ra
ge

 F
it
ne

ss

Figure 5. A plot of average fitness per population from populations selected from generation throughout 5000 generations. The average of the
five trials is shown in bold.

Average Fitness vs. Generation

‐50

0

50

100

150

200

0 200 400 600 800 1000 1200 1400

Generation

A
ve
ra
ge

 F
it
ne

ss

Figure 6. A plot of average fitness against generation number focused on the first 1500 generations. The average of the five trials is
shown in bold.

As can be seen on these two graphs, the learning pattern of

the CGA can be observed. The evolution shows a rapid
increase in average fitness in the first generations which then
becomes steadier after about 500 generations. The CGA was
successive at evolving more fit gaits in successive generations,
and continued to slowly improve the control program until
somewhere in the 1500 to 2000 generation range.

The best solutions from the final populations were
downloaded to the Basic Stamp and allowed to control the
movement of the robot. Although all runs resulted in
reasonable gaits, there were two distinct walking methods that
developed. One was to maintain static stability (three legs on
the ground) as much as possible, with a slowdown in
locomotion whenever it was time to reposition for another
step. The other gait evolved was similar in nature to a slow
trot or 2 beat gait of a horse. This CGA produced gait can be
described as a diagonal-paired gait where a pair of diagonal
legs moves in directions opposite to the other pair. This gait is
shown in Figure 7.

With respect to up/down, forward/back and in/out; legs in
black are moving back and down (providing forward thrust);
legs in white are moving forward and up; and legs 2 and 3
move in when moving forward and out when moving back and
Legs 0 and 1 do the opposite. Half way through the full
movement of the legs in white, they start to move down as
they keep moving forward to reposition for the next step.

This evolved gait, which was more effective than the other
solution found by the CGA, made use of alternate pairs of legs
moving in a two-step cycle that involved reaching forwards
with two lifting legs while the two lowering legs moved back.
This gait is not statically stable. If the motion stopped the
robot would tip one way or the other. However, it is
dynamically stable and the force of the servos and resultant leg
movement is sufficient to produce enough forward momentum
that the robot has minimal rocking motion as it walks.

Figure 7. Movement of the robot based on the overall gait pattern learned by
the CGA.

 A B

Front

 Front

VI. CONCLUSIONS
The CGA can be used to learn gaits for the 4-legged robot

with 3 degrees of freedom per leg. Learning done on a model
of an actual robot produced a reasonable gait for that robot.
This is the first use of CGA to learn gaits for a quadruped
robot and the first time it has been used on robots with three
degrees of freedom per leg. The CGA is capable of directly
learning the control programs for multi-legged robot
locomotion.

Although successful in this initial attempt at using a CGA
to produce the quad gaits, further adjustments are needed so
that the resultant gaits are more consistently near-optimal. In
addition, future work will involve more extensive tests on the
actual robot, plus different terrain environments and how the
CGA can adapt to the changes in the capabilities of the robot
will be considered.

Future work will continue to investigate the viability of the
CGA for directly generating the control code for legged
locomotion. Work will include the application of the CGA to
learn gaits for six and eight legged robots with three degrees
of freedom legs and reconfiguring the robot to have a Basic
Stamp control each individual leg to allow for more
complicated gait patterns.

REFERENCES

[1] Daoxiong Gong, Jie Yan, and Guoyu Zuo (April 2010), “A Review of
Gait Optimization Based on Evolutionary Computation,” School of
Electronic Information and Control Engineering, Beijing University of
Technology, Beijing 100124, China.J. Clerk Maxwell, A Treatise on
Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892,
pp.68–73.

[2] Spencer, G. (1994), “Automatic Generation of Programs for Crawling
and Walking,” Advances in Genetic Programming. (pp. 335-353) K.
Kinnear, Jr. (ed.), Cambridge, MA: MIT.

[3] Sonia Chernova, Manuela Veloso (September 2004). “An Evolutionary
Approach To Gait Learning For Four-Legged Robots,”in Proceedings of
IROS’ 04, Sendai, Japan, September 2004.

[4] Susanne Still, Bernhard Schlkopt, Klaus Hepp, and Rodney J. Douglas,
(2000), “Four-legged Walking Gait Control Using a Neuromorphic Chip
Interfaced to a Support Vector Learning Algorithm,” NIPS2000.

[5] Parker, G., Braun, D., and Cyliax, I.(1997), “Evolving Hexapod Gaits
Using a Cyclic Genetic Algorithm,” in Proceedings of the IASTED
International Conference on Artificial Intelligence and Soft Computing
(ASC’97). (pp. 141-144).

[6] Holland, J., “Adaptation in Natural and Artificial Systems,” Ann Arbor,
MI: The University of Michigan Press, 1975

[7] Parker, G., and Rawlings, G. (1996), “Cyclic Genetic Algorithms for the
Locomotion of Hexapod Robots,” in Proceedings of the World
Automation Congress (WAC’96), Volume 3, Robotics and
Manufacturing Systems. (pp. 617-622).

	Connecticut College
	Digital Commons @ Connecticut College
	6-2011

	Quadruped Gait Learning Using Cyclic Genetic Algorithms
	Gary Parker
	William T. Tarimo
	Michael Cantor
	Recommended Citation

	Quadruped Gait Learning Using Cyclic Genetic Algorithms
	Keywords
	Comments

	Microsoft Word - Quadruped CGA - William Tarimo3.doc

