
Connecticut College
Digital Commons @ Connecticut College

Computer Science Faculty Publications Computer Science Department

6-2011

Quadruped Gait Learning Using Cyclic Genetic
Algorithms
Gary Parker
Connecticut College, parker@conncoll.edu

William T. Tarimo

Michael Cantor

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscifacpub

Part of the Computer Engineering Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut
College. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of Digital Commons @
Connecticut College. For more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Parker, G.B.; Tarimo, W.T.; Cantor, M., "Quadruped gait learning using cyclic genetic algorithms," Evolutionary Computation (CEC),
2011 IEEE Congress on , vol., no., pp.1529,1534, 5-8 June 2011 doi: 10.1109/CEC.2011.5949797

http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu


Quadruped Gait Learning Using Cyclic Genetic Algorithms

Keywords
Genetic; Cyclic Control; Quadruped; Gait; Evolutionary Robotics; Learning Control; Genetic Algorithm

Comments
©2011 IEEE

DOI:10.1109/CEC.2011.5949797

This conference proceeding is available at Digital Commons @ Connecticut College: http://digitalcommons.conncoll.edu/
comscifacpub/20

http://dx.doi.org/10.1109/CEC.2011.5949797
http://digitalcommons.conncoll.edu/comscifacpub/20?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/20?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages


Quadruped Gait Learning Using  
Cyclic Genetic Algorithms 

Gary B. Parker, William T. Tarimo, and Michael Cantor 
Department of Computer Science 

Connecticut College 
New London, CT, USA 

parker@conncoll.edu, wtarimo@conncoll.edu, michael.cantor@gmail.com 
 
 

Abstract— Generating walking gaits for legged robots is a 
challenging task. Gait generation with proper leg coordination 
involves a series of actions that are continually repeated to create 
sustained movement. In this paper we present the use of a Cyclic 
Genetic Algorithm (CGA) to learn gaits for a quadruped servo-
robot with three degrees of movement per leg. An actual robot 
was used to generate a simulation model of the movement and 
states of the robot. The CGA used the robot’s unique features 
and capabilities to develop gaits specific for that particular robot. 
Tests done in simulation show the success of the CGA in evolving 
a reasonable control program and preliminary tests on the robot 
show that the resultant control program produces a suitable gait. 

Keywords-Genetic; Cyclic Control; Quadruped; Gait; 
Evolutionary Robotics; Learning Control; Genetic Algorithm 

I. INTRODUCTION 
The development of walking gaits is an important part in 

the designing and studies of legged robots. While multiple legs 
and multiple degrees of freedom can give the robot increased 
capabilities, the task of coordinating many separate movements 
into a stable gait can make learning gaits difficult. The 
quadruped servo-robot with three degrees of movement per leg 
poses a stability challenge. In order for a quadruped robot to 
achieve and maintain forward movement, it is necessary for 
each leg to repeat a series of movements in synchronization 
with the other legs. In this paper we used a Cyclic Genetic 
Algorithm (CGA) operating on a model of an actual robot to 
generate gaits.  

Evolutionary computation techniques and in particular, 
Genetic Algorithms, have previously been used to develop 
gaits for legged (primarily hexapod) robots with two degrees of 
movement per leg. In a recent review article, Daoxiong Gong, 
Jie Yan, and Guoyu Zuo presented, in much detail, the 
suitability of evolutionary computation techniques in gait 
optimization for mobile legged robots [1]. Graham Spencer 
used genetic programs in his work to learn gaits for a virtual 
robot using only minimal knowledge of the mechanisms of 
walking [2]. Sonia Chernova and Manuela Veloso used 
evolutionary computation to learn gaits for four-legged robots 
emphasizing gait optimization [3]. Susanne Still et al. presented 
how a chip can be used to control the leg movements of a four-
legged robot by driving motors with time varying voltages 
from a small network of coupled oscillators [4]. 

In a previous work Parker made use of cyclic genetic 
algorithms to develop walking gaits for a hexapod robot [5]. 
Each of the six legs of this hexapod robot could only move 
vertically and horizontally and the number of legs made it 
possible to produce statically stable gaits. One of the main 
differences of the CGA in comparison to other evolutionary 
computation methods is that the CGA learns the actual 
sequence of activations needed to be continually repeated to 
produce a gait.  It is, in a sense, an automated code generator of 
machine level or assembly language code that can be directly 
loaded into the control chip.   

In this paper the ability of a CGA to evolve effective 
walking gaits for a robot with more complex legs is tested. The 
servo-robot used has four legs, each of which has three degrees 
of freedom, in/out, up/down, and forward/back. Compared to 
hexapods, quadrupeds have more stability challenges since it is 
easier for quadrupeds to fall out of balance. In addition, 
although control for the same number of servos was being 
learned as in the hexapod, the three degrees of freedom legs 
posed additional complexity since the in/out movement 
required the simulation to deal with radial, in addition to linear 
movement, plus there were more alternatives in attaining the 
same general movement.  Nevertheless, the CGA produced 
gaits that kept the robot stable with sustained forward 
movement. 

II. QUADRUPED SERVO-ROBOT 
The approach was to develop a simulation model of an 

actual robot with data from its physical features and 
movement capabilities. This model, with information for each 
leg, would present all the movement states of the robot at any 
instance in time. The cyclic genetic algorithm was used to 
train this model to walk, emphasizing forward movement and 
the stability of the robot. 

The robot used in creating the model was a quadruped 
servo-robot (Figure 1) developed by Michael Cantor in the 
Connecticut College robotics laboratory. The robot body and 
legs are made of masonite.   It has standard hobby servomotors 
for actuators and uses a Basic Stamp II (from Parallax, Inc) for 
control. 



 
  
Figure 1.  Photograph of the quadruped servo-robot used. 

 

The robot has three degrees of movement per leg; in/out, 
up/down and forward/back movements. These movements are 
controlled by a control program running in the Basic Stamp. 
The program is made up of movement signals that are sent to 
all the servomotors. These signals are sent in parallel and tell 
each of the legs to move in one direction or the other. There is 
no command to stop movement so this only happens when the 
leg goes full throw. The movement signals or activations 
(Table I) are sent to the legs every 20 milliseconds.  

TABLE I.  INTERPRETATION OF THE 12-BIT ACTIVATION, WHICH IS MADE UP 
OF THE CONTROL SIGNALS THAT ARE SIMULTANEOUSLY TRANSMITTED TO 
EACH OF THE 12 SERVOS. LEG 0 IS THE RIGHT FRONT, 1 IS THE LEFT FRONT, 2 IS 
THE RIGHT REAR, AND 3 IS THE LEFT REAR. 

Bit 
Index 

Affected leg Command  
when 0 

Command 
when 1 

0 3 Down Up 
1 3 In Out 
2 2 In Out 
3 2 Down up 
4 1 Down Up 
5 0 Down Up 
6 2 Forward Back 
7 1 Forward Back 
8 0 Forward Back 
9 3 Forward Back 
10 1 In Out 
11 0 In Out 

Activations are the signal sequence sent to the 12 servo-
motors. Each activation signal is a 12-bit binary number, with 
3 bits dedicated to each leg, one bit for each of the in/out, 
up/down, and forward/back movements. Since each bit can 
either be a 0 or a 1, one bit is sufficient to represent the two 
states of any movement. A signal of 0 on any of the 
movements is interpreted as a command to send the legs 
down, in, or forward. A signal of 1 would command any of the 
legs to go up, out, or back. Table II below shows the 
interpretation of all the 12 bits. 

A sequence of these activations is needed to have 
continuous movement of the legs and a proper cycle of 

activations is required for the control program to produce a 
proper gait. The coordination of the concurrent movement of 
all of the actuators along with the requirement for the previous 
steps to end in the proper position to start the next step is what 
makes this problem so challenging.  

The model of the quadruped servo-robot was created by 
taking accurate movements of its capabilities and storing the 
information in a lookup table. The information stored included 
separate measurements taken from each leg as shown in Table 
II. Distances are measured in millimeters and angles in 
radians. 

TABLE II.  INFORMATION STORED IN THE SIMULATION MODEL OF THE ROBOT. 

Name Description 
current-up The current vertical height of the leg 
max-up & max-
down 

The highest and lowest positions that 
the leg could reach 

rate-up & rate-down The rates of up/down movements per 
control pulse 

on-ground Indicates which legs are on ground, 
using a 0 or 1 

current-back The current horizontal position of the 
leg from the back most position. 

max-back The back most position a leg can go. 
current-in The current in/out distance of the foot 

from the side of the robot body. 
max-in & min-in The in most and out most distances the 

foot could reach. 
rate-in & rate-out The rates of in/out movements per 

control pulse 
current-theta The angle relative to the line 

perpendicular to the heading of the 
robot 

max-back-theta & 
max-fwd-theta 

The back most and forward most 
angles of the leg 

rate-back-theta & 
rate-fwd-theta 

The rates at which the angle changes 
per control pulse when the leg moves 
horizontally. 

temp1, temp2 & 
temp2 

Temporary variables if a need arises. 

 
Since the legs of the quadruped can move in/out while 

moving back/forward, the resulting movements are not linear 
but radial. It was necessary to find an appropriate way to 
determine the horizontal position of a leg as a function of both 
the current angle of the leg relative to the line perpendicular to 
the heading of the robot and the in/out distance from the base 
of the leg to the foot. The resulting formula is shown in 
Equation 1, where Ø is the angle, i is the current in/out 
distance of the leg, and d is the relative horizontal position of 
the leg. 

d = i sin Ø                                     (1) 
 



III. CYCLIC GENETIC ALGORITHM 
The Cyclic Genetic Algorithm is a type of Genetic 

Algorithm [6] that can be used to learn cyclic control 
programs [7]. It was developed to be a more suitable method 
for learning gaits for legged robots. The CGA differs from the 
standard GA mainly in the makeup of the chromosome. In a 
CGA the genes of the chromosome do not represent traits of 
the solution but represent tasks to be completed in a set 
amount of time. This, in effect, makes the CGA a method for 
directly evolving control programs. The chromosome of the 
original CGA had genes that represent three sets of tasks 
depending on location in the chromosome. A start section, a 
cyclic section, and a tail section are shown in Figure 2. 

 

 
Figure 2. A CGA chromosome with start section, cyclic section, and tail 
section. 
 

In the context of this research, the start section should set 
up the robot to move into a continuous cycle (the cyclic 
section) where sustained fluid motion can take place. The tail 
section can optionally be added to provide a smooth 
translation back to the at-rest stance of the robot. The genetic 
operations of the CGA are typically the same as that of the GA 
except that crossover in the cyclic section is done at two points 
since it is, in effect, swapping a section of the cycle. 
 

IV. CGA QUADRUPED GAIT PRODUCTION 

A. Chromosome Structure 
The fixed length chromosome for this problem was made 

up of 4 parts: coordinator, inhibitor, start section, and cyclic 
section. The chromosome structure is shown in Figure 3, with 
an example chromosome written in the programming language 
Scheme shown in Figure 4. 
 
[C I {(R A)} {(R A)1 (R A)2 (R A)3 … (R A)11 (R A)12}] 
         --------   --------------------------------------------------       start section                       cyclic section 
 
Figure 3. A CGA chromosome structure with coordinator (C), inhibitor (I), 
and the start and cyclic sections which are made up of genes with repetitions 
(R) and activations (A) in each. 
 

[3580 2882 {(40 1060)} {(43 1710) (4 
1598) (20 1891) (19 259) (1 3097) (41 
1052) (3 57) (0 3096) (0 1074) (0 
1070) (0 1045) (0 17)}] 
 
Figure 4. An example CGA chromosome structure written in Scheme with a 
coordinator, inhibitor, and start and cyclic sections. 
 
     Coordinators and Inhibitors are part of robot’s coordination 
mechanism, which could evolve to increase gait control and 
proper movement. These two numbers were initiated as 
random numbers and were learned by the CGA. The 
coordinators and inhibitors were applied to the activations of 
the start and cyclic sections before the control program was 
run in the robot (simulated or actual). 

     C: Coordinators coordinated the three movements on each 
leg.  For example, one coordinator made sure that if a leg was 
going back it was either already down or moving in that 
direction. Another coordinator ensured that if a leg was going 
up it was either already forward or moving in that direction. 
The coordinator for all legs is a 12-bit binary. 

     I: Inhibitors affected pairs or triples of legs. They prevented 
certain legs from moving in the same direction at the same 
time. For example, the inhibitor for legs 2&3 prevented both 
legs 2 and 3 from going back or forward at the same time. It 
allowed 2 to move back, but inhibited 3. The inhibitors for the 
set of legs are represented as a 15-bit binary number. 
Coordinators and inhibitors are applied equally to all genes 
and they are listed at the start and cyclic sections of the 
chromosome.  

     The start section has one gene and the cyclic section has 12 
genes. This setup was found to be sufficient to provide the 
maximum number of required chromosome changes during 
the evolution process.  Each gene has two parts: repetitions 
and activations.  
      R: Repetitions represent the number of times to repeat the 
activations which are concurrent signals sent to the servos. 
      A: Twelve bit activation as described in Section II.   

The sequence of activations in this chromosome are put 
directly into the Basic Stamp controller to generate a gait. 
 

B. Gait Learning and Genetic Operations 
     During the learning stage, populations of 64 individuals 
were used. The initial population was created by randomly 
assigning numbers to all the parts of the chromosomes.  Five 
separate tests were conducted with the CGA learning on 
random starting populations. The CGA evaluated each 
chromosome using the simulation model and assigned each a 
fitness score. 

     Fitness was calculated by executing 200 activations for 
each individual and determining its forward movement in this 
time.  This number of activations assured that each individual 
was tested in a long enough time to ensure at least more than 
one whole step, meaning at least one cycle of the control 



sequence was required.  Fitness was computed by summing 
the fitness of the individual activations. The activation fitness 
equaled the forward motion produced by the gene's activation 
signal, which is repeated the indicated number of repetitions. 
This was done on the model by: taking the current state of 
legs; applying the vertical movement; calculating the balance 
and probable legs on the ground from the model’s current 
vertical position of each leg; applying the horizontal 
movement to alter the leg’s state, but only counting legs on the 
ground in computation of the movement (fitness); deducting 
fitness for lack of balance and/or asymmetry of movement; 
and repeating the process using the next activation and the 
new state. This was sequentially done from the start to the end 
of the chromosome and then repeated as many times as 
required in the cyclic section.  

Due to the nature of servos under pressure, they do not 
attain full movement when the activation is first applied. A 
single activation would just result in a twitch since one signal 
to a servo would produce minimal movement.  It typically 
takes a sequence of four or more signals before each produces 
full movement.  To simulate this, adjustments were required in 
determining the back/forward and in/out movements when 
direction changes were first applied. Each in/out  and 
forward/back movement in a new direction was set to produce 
⅛ of the movement in the first pulse, ¼ in the second pulse, ½ 
in the third pulse, and full movement from the forth pulse and 
after. 

Subsequent generations of chromosomes were created by 
performing a stochastic (roulette wheel) selection to select two 
parent chromosomes, with the probability for selection based 
on fitness. 

Crossover was performed at randomly selected points in 
the chromosome. The resultant offspring was subjected to 
mutation where each bit was given a 1 out of 150 chance of 
flipping from a 0 to a 1 or vice versa. After 64 children 
chromosomes were created in this way, the generation was 
complete. The process was repeated for a total evolution run 
of 5,000 generations. The program stored copies of the 
population every 10 generations from generation 0 up to 
generation 100, every 20 generations up to generation 300, 
every 50 generations up to generation 800, and every 100 
generations for the remaining 4200 generations. 
 

V. RESULTS 
From the results stored from all the five CGA runs, we 

calculated the average fitness per population for all the 
populations collected. We then plotted these results in graph of 
average fitness per population versus the appropriate 
generation number. Figure 5 shows this graph for populations 
collected throughout the 5000 generations. Figure 6 shows the 
same graph focused on the pattern observed from the first 
1500 generations. 
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Figure 5. A plot of average fitness per population from populations selected from generation throughout 5000 generations. The average of the 
five trials is shown in bold.  
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Figure 6. A plot of average fitness against generation number focused on the first 1500 generations. The average of the five trials is 
shown in bold. 
 

 
As can be seen on these two graphs, the learning pattern of 

the CGA can be observed. The evolution shows a rapid 
increase in average fitness in the first generations which then 
becomes steadier after about 500 generations. The CGA was 
successive at evolving more fit gaits in successive generations, 
and continued to slowly improve the control program until 
somewhere in the 1500 to 2000 generation range. 

The best solutions from the final populations were 
downloaded to the Basic Stamp and allowed to control the 
movement of the robot. Although all runs resulted in 
reasonable gaits, there were two distinct walking methods that 
developed. One was to maintain static stability (three legs on 
the ground) as much as possible, with a slowdown in 
locomotion whenever it was time to reposition for another 
step. The other gait evolved was similar in nature to a slow 
trot or 2 beat gait of a horse.  This CGA produced gait can be 
described as a diagonal-paired gait where a pair of diagonal 
legs moves in directions opposite to the other pair. This gait is 
shown in Figure 7. 

With respect to up/down, forward/back and in/out; legs in 
black are moving back and down (providing forward thrust); 
legs in white are moving forward and up; and legs 2 and 3 
move in when moving forward and out when moving back and 
Legs 0 and 1 do the opposite. Half way through the full 
movement of the legs in white, they start to move down as 
they keep moving forward to reposition for the next step. 

This evolved gait, which was more effective than the other 
solution found by the CGA, made use of alternate pairs of legs 
moving in a two-step cycle that involved reaching forwards 
with two lifting legs while the two lowering legs moved back. 
This gait is not statically stable. If the motion stopped the 
robot would tip one way or the other. However, it is 
dynamically stable and the force of the servos and resultant leg 
movement is sufficient to produce enough forward momentum 
that the robot has minimal rocking motion as it walks. 
 

 
Figure 7. Movement of the robot based on the overall gait pattern learned by 
the CGA. 
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VI. CONCLUSIONS 
The CGA can be used to learn gaits for the 4-legged robot 

with 3 degrees of freedom per leg. Learning done on a model 
of an actual robot produced a reasonable gait for that robot. 
This is the first use of CGA to learn gaits for a quadruped 
robot and the first time it has been used on robots with three 
degrees of freedom per leg. The CGA is capable of directly 
learning the control programs for multi-legged robot 
locomotion.   

Although successful in this initial attempt at using a CGA 
to produce the quad gaits, further adjustments are needed so 
that the resultant gaits are more consistently near-optimal.  In 
addition, future work will involve more extensive tests on the 
actual robot, plus different terrain environments and how the 
CGA can adapt to the changes in the capabilities of the robot 
will be considered. 

Future work will continue to investigate the viability of the 
CGA for directly generating the control code for legged 
locomotion.  Work will include the application of the CGA to 
learn gaits for six and eight legged robots with three degrees 
of freedom legs and reconfiguring the robot to have a Basic 
Stamp control each individual leg to allow for more 
complicated gait patterns. 
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