
Connecticut College
Digital Commons @ Connecticut College

Computer Science Faculty Publications Computer Science Department

6-2011

The Effects of Using a Greedy Factor in Hexapod
Gait Learning
Gary Parker
Connecticut College, parker@conncoll.edu

William T. Tarimo

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscifacpub

Part of the Computer Engineering Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut
College. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of Digital Commons @
Connecticut College. For more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Parker, G.B.; Tarimo, W.T., "The effects of using a greedy factor in hexapod gait learning," Evolutionary Computation (CEC), 2011
IEEE Congress on , vol., no., pp.1509,1514, 5-8 June 2011 DOI: 10.1109/CEC.2011.5949794

http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu

The Effects of Using a Greedy Factor in Hexapod Gait Learning

Keywords
Genetic Algorithm; Cyclic Control; Hexapod; Greedy Selection; Gait; Evolutionary Robotics; Learning
Control; Cyclic Genetic Algorithm

Comments
©2011 IEEE

DOI:10.1109/CEC.2011.5949794

This conference proceeding is available at Digital Commons @ Connecticut College: http://digitalcommons.conncoll.edu/
comscifacpub/19

http://dx.doi.org/10.1109/CEC.2011.5949794
http://digitalcommons.conncoll.edu/comscifacpub/19?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/19?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages

The Effects of Using a Greedy Factor in Hexapod
Gait Learning

Gary B. Parker and William T. Tarimo
Department of Computer Science

Connecticut College
New London, CT, USA

parker@conncoll.edu, wtarimo@conncoll.edu

Abstract— Various selection schemes have been described for use
in genetic algorithms. This paper investigates the effects of
adding greediness to the standard roulette-wheel selection. The
results of this study are tested on a Cyclic Genetic Algorithm
(CGA) used for learning gaits for a hexapod servo-robot. The
effectiveness of CGA in learning optimal gaits with selection
based on roulette-wheel selection with and without greediness is
compared. The results were analyzed based on fitness of the
individual gaits, convergence time of the evolution process, and
the fitness of the entire population evolved. Results demonstrate
that selection with too much greediness tends to prematurely
converge with a sub-optimal solution, which results in poorer
performance compared to the standard roulette-wheel selection.
On the other hand, roulette-wheel selection with very low
greediness evolves more diverse and fitter populations with
individuals that result in the desired optimal gaits.

Keywords- Genetic Algorithm; Cyclic Control; Hexapod;
Greedy Selection; Gait; Evolutionary Robotics; Learning Control;
Cyclic Genetic Algorithm

I. INTRODUCTION
 Gait generation was selected for testing the greedy factor
because it is a real problem that we are familiar with, and in
previous research, it was determined that some greedy aspects
to the search of the solution space could speed up learning.
Gait control for legged robots involves the repetition of unique
steps in the correct sequence with smooth transitions from one
step to the next. This problem increases in complexity when
more legs are involved with unique features and the goal is to
generate adaptive (near) optimal gaits. Many algorithms have
been developed to learn gaits including evolutionary
computation.

 Daoxing Gong et al [1], in a recent article, reviewed the
suitability of evolutionary computation techniques in gait
optimization for mobile legged robots. In a previous work [2],
Parker et al. used Cyclic Genetic Algorithms (CGAs) to
generate gaits for legged robots using minimal a priori
knowledge. Variations of these CGAs have been successfully
used in generating primitive gait instructions that have been
directly applied to actual quadruped and hexapod robots. In
this paper, we use CGA using roulette-wheel selection with
and without greediness in a study to compare their

effectiveness of a greedy factor in learning gaits for a hexapod
robot. Our analysis is based on the efficiency of the gaits
generated, the convergence time to the gaits learned, and the
overall performance of entire population.

 Selection is a significant part of genetic algorithms. During
production of new generations two individuals are selected to
parent one of the new individuals in the next generation. Even
though we used a CGA that learns gaits for a hexapod robot,
our study of greediness could as well be carried out with any
other evolutionary method provided that selection is used. The
first selection method used in this paper is the standard
proportionate reproduction (roulette wheel selection)
(Goldberg, 1989; Davis, 1991) where individuals are chosen
for parenting a new offspring according to their objective
fitness. Viewed as a wheel, in a roulette wheel each
chromosome is given a slice of a circular wheel with an area
proportional to its fitness ratio in the population. In this
scheme, more fit individuals have more chances of being
randomly picked out in the wheel for mating.

 In this paper, we developed a second selection method by
adding greediness to the roulette-wheel selection which can
further bias selection towards or away from the individuals
with best fitness in the population. In this selection method,
each individual’s fitness in a population is scaled with a
greedy factor. This approach is aimed at emphasizing the
individuals in a population according to their individual fitness
(both absolute and ranking) in such a way that the desired
traits in population are recognized and picked out in the
evolution process for faster convergence.

 Other conventional selection techniques have been
developed and are mainly biased toward individuals with
better fitness. Ranking selection [3], for instance, assigns to
every individual a numerical rank based on fitness and
selection is based on this ranking rather that the absolute
differences in fitness. The advantage of this approach is in
maintaining the population’s diversity by preventing very fit
individuals from gaining early dominance at the expense of
the less fit ones. This on the other hand poses disadvantages
by hindering and/or slowing the attempts to quickly reach the
acceptable solutions. Another popular scheme is Tournament
selection [3] where subgroups of individuals are randomly

created from the main population, and after the comparison of
fitness, winners from these subgroups are selected for
reproduction. Unlike roulette wheel and ranking selections,
tournament selection does not include all members of the
population. Other more greedy-like algorithms appear in a
work by Ravindra K. Ahuja et al[4] where they developed a
greedy genetic algorithm that incorporates many greedy
principles in its design, but not in selection. Breeder Genetic
Algorithm (BGA) developed by Heinz Muhlanbein and Dirk
Schlierkamp- Voosen [5] is based on artificial selection of best
parents for a model of the GA, which is a technique similar to
that used by human breeders. This is a form of greedy
selection, but excludes some members of the population. The
selection method that we present involves the entire
population, but gives even more priority to the fitter
individuals than in roulette wheel selection.

 In this paper, we use the CGA to develop usable gaits for
an autonomous hexapod robot. This was accomplished by
creating a model with specific information taken from an
individual robot. The CGA used this model to develop gaits
that were specific to the robot's capabilities. Tests are done
using the two selection methods: standard proportional
(roulette wheel) selection and roulette wheel selection with
varying greediness.

II. THE HEXAPOD SERVO-ROBOT
This project was based on tests on a simulation model of an

actual hexapod robot; therefore the approach was to develop a
simulation model of the robot with data from its physical
features and movement capabilities. This model (Table I), with
information for each leg, represents the movement state of the
robot at any instance in time. The cyclic genetic algorithm
used this model to evolve a walk, emphasizing forward
movement produced and stability of the robot. The activations
(signal commands to the servo motors) learned by the CGA
were used with the movement capabilities in the model to
determine how much to change the movement state of the
robot in the model. Actual physical features were measured
and the movement rates were calculated by dividing the
maximum throw distance by the minimum number of
activations required to attain it.

TABLE I. INFORMATION USED IN THE MODEL OF THE ROBOT.
Fields specific for each leg:
*current up -- current vertical position of the leg.
*max up -- position off the ground when completely up.
*max down -- position off the ground when completely down.
*current back -- current horizontal position of the leg.
*max back -- posit relative to completely forward when completely
back.

Fields applicable to all legs:
*rate up/down -- rate of vertical movement when servo activated.
*rate back/forward -- rate of horizontal movement when servo
activated.

 The robot used was a six-legged servo-robot, which was
developed for legged robot experimentation in our robotics
lab. The hexapod robot has two degrees of freedom per leg;
each leg can move up/down and forward/back. Twelve servos,
two per leg, provide thrust and vertical movement. A learned
control sequence of primitive instructions can be transmitted
to the controller on robot and this learned gait will directly
control the movement of the robot.

 An input to the servo-robot, which we call an activation, is
a 12 bit number where each bit represents a servo. A signal of
1 moves the leg back if it is a horizontal servo and up if it is a
vertical servo. A signal of 0 moves it in the opposite direction.
Figure 1 shows an example of an activation and its result on
the robot. The activation can be thought of as 6 pairs of
actuations. Each pair is for a single leg with the first bit of the
pair being that leg's vertical activation and the second being
that leg's horizontal activation. The legs are numbered 0 to 5
with 0,2,4 being on the right from front to back and 1,3,5
being the left legs from front to back. The activation
100101101001 results, as shown in Figure 1, in one phase of
the classic tripod gait, which is considered to be the optimal
gait for speed in this simple rigid robot when all its actuators
are fully functioning.

Figure 1: Results of a Robot Activation

III. CYCLIC GENETIC ALGORITHM
The Cyclic Genetic Algorithm is a type of Genetic

Algorithm [3,6] that can be used to learn cyclic control
programs [7]. Like standard genetic algorithms, CGAs
consists of the three genetic operators (selection, crossover,
and mutation) that are used to evolve a randomly generated
initial population into more fit successive generations. The
CGA was developed to be a more suitable method for learning
gaits for legged robots by representation of a cycle of actions
in its chromosomes. The CGA differs from the standard GA
mainly in the makeup of the chromosome. In a CGA, the
genes of the chromosome do not represent traits of the solution
but represent tasks to be completed in a set amount of time
(Figure 2). For gait generation, these tasks are activations that
need to be sent to the servo-motors every 20ms. The CGA is,
in effect, a method for directly evolving machine/assembly
language control programs.

 The chromosome of the original CGA had genes that
represent three sets of tasks depending on location in the
chromosome. A start section, a cyclic section, and a tail
section. In the context of this research, the start section should
set up the robot to move into a continuous cycle (the cyclic

section) where sustained fluid motion can take place. The tail
section can optionally be added to provide a smooth
translation back to the at-rest stance of the robot. The genetic
operations of the CGA are typically the same as that of the GA
except that crossover in the cyclic section is done at two points
since it is, in effect, swapping a section of the cycle.

Figure 2: A comparison of chromosome structure between the classic

GA and CGA.

IV. CGA CHROMOSOME
 The chromosome (Figure 3) for this problem was made up
of 4 parts: coordinator, inhibitor, start section, and cyclic
section.

[C I {(R A)} {(R A)1 (R A)2 (R A)3 … (R A)11 (R A)12}]
 -------- --
 start section cyclic section

Figure 3: A CGA chromosome structure with coordinator (C),
inhibitor (I), and the start and cyclic sections which are made up of
genes with repetitions (R) and activations (A) in each.

 Coordinators and Inhibitors are part of robot’s
coordination mechanism, which evolves to increase gait
control and proper movement. These two numbers were
initiated as random numbers and were learned by the CGA.
The coordinators and inhibitors were applied to the activations
of the start and the cyclic section before the control program
was run in the robot (simulated or actual). Coordinators
coordinate the three movements on each leg. For example,
one coordinator makes sure that if a leg is going back it is
either already down or moving in that direction. Another
coordinator ensures that if a leg is going up it is either already
forward or moving in that direction. The coordinator for all
legs is a 12-bit binary. Inhibitors affect pairs or triples of legs.
They prevent certain legs from moving in the same direction at
the same time. For example, the inhibitor for legs 2&3
prevents both legs 2 and 3 from going back or forward at the

same time. It allows 2 to move back, but inhibits 3. The
inhibitors for the set of legs are represented as a 15-bit binary
number. Coordinators and inhibitors are applied equally to all
genes and they are listed at the start and cyclic sections of the
chromosome.
 The start section has one gene and the cyclic section has
12 genes. This setup was found to be sufficient to provide the
maximum number of required chromosome changes during
the evolution process. Each gene has two parts: repetitions
and activations. Repetitions represent the number of times to
repeat the activations which are concurrent signals sent to the
servos. Activations represent the signal sequence sent to the 12
servo-motors. Each activation signal is a 12-bit binary number,
with 2 bits dedicated to each leg, one bit for up/down
movement and the other bit is for the forward/back movement.
Since each bit can either be a 0 or a 1, one bit is sufficient to
represent the two states of any movement. A signal of 0 on
any of the movements is interpreted as a command to send the
legs down or forward. A signal of 1 would command any of
the legs to go up or back.

V. GREEDINESS
 The CGA in this project used two selection techniques.
The first selection method was the standard roulette wheel
selection method. Each chromosome is given a slice of the
circular roulette wheel where the area of the slice is
proportional to the chromosome’s fitness ration in the
population. To select a chromosome for mating, a random
number is generated in the interval [0,100], and the
chromosome whose segment spans the random number is
selected. This process is like spinning a roulette wheel where
each chromosome has a segment on the wheel proportional in
size to its fitness.

 The second selection method was to use a greedy factor,
which adds varying degrees of greediness to the standard
roulette wheel selection. This option involves scaling the
entire fitness list in the population by a set of greedy factors.
Each chromosome’s fitness is multiplied by a particular
greedy factor corresponding to its fitness relative to the rest of
the chromosomes in the population. The first step involves
sorting chromosomes in a population in descending order
based on fitness. Then a list of greedy factors, of an equal size
to the population, is created by using a particular function of
choice that would determine the degree of greediness in the
selection. In this algorithm, populations of size 64 were used
in the training. Formula (1) was used in generating the lists of
greedy factors; Formula (2) calculates a greedy fitness from an
actual fitness value and its corresponding greedy factor.

fg(i) = ia (1)

Fg(i) = F(i) * fg(i) (2)

 In the formula fg(i) is the greedy factor corresponding to
the position i in the fitness list, Fg(i) is greedy fitness, F(i) is
an actual fitness score, i is an integer 1 to 64 representing
fitness position in the population of size 64, and a is a greedy

constant – a real number. For the test reported in this paper,
five greedy constants (a) were used, 0 (equivalent to the
standard roulette wheel), 0.2, 0.5, 1 and 1.5 were used in
generating the list of greedy factors depending on the value of
i. In our tests, we wanted to increase the greediness of the
selection so positive real numbers were used. In the case
where one wanted to reduce the greediness of a typical GA,
negative real numbers could be used.

VI. TRAINING
 During the learning stage, an initial population of 64
individuals was created by randomly assigning numbers to all
the parts of the chromosomes. Three separate tests were
conducted with the CGA learning on three random stating
populations. In each of the three tests, roulette wheel selection
was used with the five different greedy constants (0, 0.2, 0.5,
1, and 1.5). In order to accurately compare the performance of
the five greedy constants, each set of five runs with different
greediness was run on the same initial populations for each of
the three starting populations. The CGA evaluated each
chromosome using the simulation model and assigned each a
fitness score.

 Fitness was determined using a total of 400 activations for
each individual; this assured each individual was tested a long
enough time to ensure more than one full step was taken,
requiring more than one cycle. Fitness was computed by
summing the fitness of the individual activations after a total
of 400. The activation fitness equaled the forward motion
produced by the gene's activation signal, which is repeated the
indicated number of repetitions. This was done on the model
by:

• taking the current state of legs; applying the vertical
movement;

• calculating the balance and probable legs on the
ground from the model’s current vertical position of
each leg;

• applying the horizontal movement to alter the leg’s
state, but only counting legs on the ground in
computation of the movement (fitness); and

• deducting fitness for lack of balance and/or
asymmetry of movement;

• and repeating the process using next activation and
the new state.

This was sequentially done from the start to the end of the
chromosome and then repeated as many times as required in
the cyclic section. Due to the nature of servos under a load,
adjustments were required in determining the back/forward
movements when direction changes were first applied. Each
forward/back movement in a new direction was set to produce
⅛ of the movement in the 1st pulse, ¼ in the 2nd pulse, ½ in the
3rd pulse, and full movement from the 4th pulse and on.

 Subsequent generations of chromosomes were created by
performing one of the five selection options, a stochastic
(roulette wheel) or one of the four greedy selection choices to
select two parent chromosomes.

 Crossover was performed at randomly selected points in
the chromosome. The resultant offspring was subjected to
mutation where each bit was given a 1 out of 150 chance of
flipping from a 0 to a 1 or vice versa. After 64 children
chromosomes were created in this way, the generation was
complete. The process was repeated for a total evolution run
of 5,000 generations. The program stored copies of the
population every 10 generations from generation 0 up to
generation 100, every 20 generations up to generation 300,
every 50 generations up to generation 800, and every 100
generations up to generation 5000.

VII. RESULTS
 Three trials, with three randomly generated initial
populations, were completed for each of the five greedy
constants for selection method. From each trial, the average
fitness per population was stored from selected generations.
From these, we calculated the average of the average fitness
per population for the three trials on each of the five greedy
constants. We then plotted these results in graphs of average
fitness per population versus the appropriate generation
number. Figure 4 shows this graph for populations collected
throughout the 5000 generations. Figure 5 shows the same
graph focused on the pattern observed from the first 1500
generations. Runs with each of the five greedy constants are
represented with 0G, 0.2G, 0.5G, 1G and 1.5G.

Figure 4: A plot of average fitness per population from populations

selected from generations throughout the 5000 generations.

 As can be seen on these two graphs, the learning pattern of
the CGA can be observed. General observation shows that the
evolution shows a rapid increase in average fitness in the first
generations which then becomes steadier after about 2000
generations. All the three selection methods were successful at
evolving more fit generations in successive generations, and
continued to slowly improve the control program until
somewhere in the 2000 to 4000 generation range. A closer
look at the plot in Figure 5 reveals that selection with higher
greediness (1G and 1.5G) evolve more rapidly in the first 100
generations compared to the lower greedy constants and the
standard roulette wheel selection 0G). Looking at the entire

length of 5000 generations in Figure 4, selection with greedy
constants 0.2, 0.5 and 1 evolves more fit populations than with
standard roulette wheel selection which in turn evolves more
fit populations than with selection with greedy constant of 1.5.
This observation implies that very high greediness is not
effective, and best entire population performance (which is
better than standard roulette wheel selection) is achieved with
low greediness, with greedy constants in the range 0<a<=1.

Figure 5: A plot of average fitness against generation number focused

on the first 1500 generations.

 From each trial, the best (most fit) individuals were stored
from populations taken from selected generations throughout
the 5000 generations. From this data, we calculated the fitness
of each best individual and plotted two graphs of best
individual fitness vs. generation number. The two graphs are
shown in Figures 6 and 7.

Figure 6: A plot of best individual fitness from populations selected
from generations throughout the 5000 generations against generation

number.

Figure 7: A plot of best individual fitness against generation number

focused on the first 500 generations.

 From Figures 6 and 7, we can make the observation that
only selection with greedy constant 0.2 evolves individual
gaits that are better than the gaits generated by the standard
roulette wheel selection, which in turn evolved more fit best
individuals than selections with greedy constants of 0.5, 1 and
1.5. These observations imply that, unless the greedy constant
is very low (close to 0) gait learning with greedy selection
tends to attain a premature convergence resulting in sub-
optimal gaits. Learning without greediness, as with roulette
wheel selection, results in evolving more diverse populations
with gaits ranging from the best optimal gaits to gaits that are
worse than the sub-optimal ones. Using a simulation, we have
the capability of being able to display the move-by-move
performance of any learned gaits; this display resembles the
actual step-by-step movement pattern displayed by legs of an
actual robot. Displays of the gaits represented by the best
individuals from trials with selection with greedy constants of
0, 0.2 and 0.5 look similar to the optimal tripod gaits. In these
gaits, legs 1,2,5 provide thrust, while legs 0,3,4 reposition.
And when legs 0,3,4 are back in position, they provided thrust,
while legs 1,2,5 reposition. On the other hand, the trials with
greedy constants of 1 and 1.5 didn’t evolve gaits that
resembled the optimal tripod gaits most of the time. One of
these resultant gaits with greedy factor 1 (1G in the graphs),
was tripod and the remainder were such that legs 1,3,4
provided thrust, while legs 0,2,5 repositioned. The resultant
1.5G gaits varied with this sub-optimal gait the best produced.

VIII. CONCLUSIONS
 All the five degrees of greediness demonstrated success in
learning and generating gaits for the simulation model of the
hexapod servo-robot. Our results displayed very interesting
effects posed by greediness in selection operator of the CGA.
Gait learning with very low greediness (greedy constant
between 0 and 0.5) tends to evolve better than the standard
roulette wheel selection (zero greediness), and results in both
more fit general populations and a few best individuals with
the most desired traits. On the other hand, too much greediness

(with greedy constants >0.5) tends to attain premature
convergence with populations filled with individuals with sub-
optimal fitness. Stochastic selection, which is solely based on
proportional absolute fitness, as demonstrated by trials with
the standard roulette wheel selection, generates more diverse
populations with the best optimal individuals along with less
fit ones. For the gait generation problem, selection with very
low greediness turns out to be a more effective approach.

 Even though the greedy constants of >=1 were not the
best selection methods for gait generation, they may be better
for other applications, which will be investigated in future
work. A full range of greedy factors is possible. Other levels
of greediness, such as greedy constants of <0 may also be
explored for the gait generation problem or other problems. In
addition, using this greedy constant allows the researcher to
vary the greediness as evolution progresses, in an effort to
apply selection pressure while maintaining diversity in the
population.

REFERENCES
[1] Daoxiong Gong, Jie Yan, and Guoyu Zuo (April 2010), “A Review of

Gait Optimization Based on Evolutionary Computation,” School of
Electronic Information and Control Engineering, Beijing University of

Technology, Beijing 100124, China.J. Clerk Maxwell, A Treatise on
Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892,
pp.68–73.

[2] Parker, G., Braun, D., and Cyliax, I.(1997), “Evolving Hexapod Gaits
Using a Cyclic Genetic Algorithm,” in Proceedings of the IASTED
International Conference on Artificial Intelligence and Soft Computing
(ASC’97). (pp. 141-144).

[3] David E. Goldberg, and Kalyanmoy Deb., “A Comparative Analysis of
Selection Schemes Used in Genetic Algorithms,” In Foundations of
Genetic Algorithms. Edited by Gregory J.E. Rawlins.

[4] Ravindra K. Ahuja, James B. Orlin, and Ashish Tiwari., “A greedy
genetic algorithm for the quadratic assignment problem,” in Computer &
Operations Research 27 (2000) 917-934. 1January 1999.

[5] Heinz Muhlenbein and Dirk Schlierkamp- Voosen, “Predictive Models
for the Breeder Genetic Algorithm,” Continuous Parameter
Optimization. GMD P.O. 1316. D-5205 Sankt Augustin 1, Germany

[6] Holland, J., “Adaptation in Natural and Artificial Systems,” Ann Arbor,
MI: The University of Michigan Press, 1975

[7] Parker, G., and Rawlings, G. (1996), “Cyclic Genetic Algorithms for the
Locomotion of Hexapod Robots,” in Proceedings of the World
Automation Congress (WAC’96), Volume 3, Robotics and
Manufacturing Systems. (pp. 617-622).

	Connecticut College
	Digital Commons @ Connecticut College
	6-2011

	The Effects of Using a Greedy Factor in Hexapod Gait Learning
	Gary Parker
	William T. Tarimo
	Recommended Citation

	The Effects of Using a Greedy Factor in Hexapod Gait Learning
	Keywords
	Comments

	untitled

