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Abstract— Various selection schemes have been described for use 
in genetic algorithms. This paper investigates the effects of 
adding greediness to the standard roulette-wheel selection. The 
results of this study are tested on a Cyclic Genetic Algorithm 
(CGA) used for learning gaits for a hexapod servo-robot. The 
effectiveness of CGA in learning optimal gaits with selection 
based on roulette-wheel selection with and without greediness is 
compared. The results were analyzed based on fitness of the 
individual gaits, convergence time of the evolution process, and 
the fitness of the entire population evolved. Results demonstrate 
that selection with too much greediness tends to prematurely 
converge with a sub-optimal solution, which results in poorer 
performance compared to the standard roulette-wheel selection. 
On the other hand, roulette-wheel selection with very low 
greediness evolves more diverse and fitter populations with 
individuals that result in the desired optimal gaits. 

Keywords- Genetic Algorithm; Cyclic Control; Hexapod; 
Greedy Selection; Gait; Evolutionary Robotics; Learning Control; 
Cyclic Genetic Algorithm 

I. INTRODUCTION 
      Gait generation was selected for testing the greedy factor 
because it is a real problem that we are familiar with, and in 
previous research, it was determined that some greedy aspects 
to the search of the solution space could speed up learning. 
Gait control for legged robots involves the repetition of unique 
steps in the correct sequence with smooth transitions from one 
step to the next. This problem increases in complexity when 
more legs are involved with unique features and the goal is to 
generate adaptive (near) optimal gaits. Many algorithms have 
been developed to learn gaits including evolutionary 
computation.  

      Daoxing Gong et al [1], in a recent article, reviewed the 
suitability of evolutionary computation techniques in gait 
optimization for mobile legged robots. In a previous work [2], 
Parker et al. used Cyclic Genetic Algorithms (CGAs) to 
generate gaits for legged robots using minimal a priori 
knowledge. Variations of these CGAs have been successfully 
used in generating primitive gait instructions that have been 
directly applied to actual quadruped and hexapod robots.  In 
this paper, we use CGA using roulette-wheel selection with 
and without greediness in a study to compare their 

effectiveness of a greedy factor in learning gaits for a hexapod 
robot. Our analysis is based on the efficiency of the gaits 
generated, the convergence time to the gaits learned, and the 
overall performance of entire population. 

      Selection is a significant part of genetic algorithms. During 
production of new generations two individuals are selected to 
parent one of the new individuals in the next generation. Even 
though we used a CGA that learns gaits for a hexapod robot, 
our study of greediness could as well be carried out with any 
other evolutionary method provided that selection is used. The 
first selection method used in this paper is the standard 
proportionate reproduction (roulette wheel selection) 
(Goldberg, 1989; Davis, 1991) where individuals are chosen 
for parenting a new offspring according to their objective 
fitness. Viewed as a wheel, in a roulette wheel each 
chromosome is given a slice of a circular wheel with an area 
proportional to its fitness ratio in the population. In this 
scheme, more fit individuals have more chances of being 
randomly picked out in the wheel for mating.  

      In this paper, we developed a second selection method by 
adding greediness to the roulette-wheel selection which can 
further bias selection towards or away from the individuals 
with best fitness in the population. In this selection method, 
each individual’s fitness in a population is scaled with a 
greedy factor. This approach is aimed at emphasizing the 
individuals in a population according to their individual fitness 
(both absolute and ranking) in such a way that the desired 
traits in population are recognized and picked out in the 
evolution process for faster convergence.  

      Other conventional selection techniques have been 
developed and are mainly biased toward individuals with 
better fitness. Ranking selection [3], for instance, assigns to 
every individual a numerical rank based on fitness and 
selection is based on this ranking rather that the absolute 
differences in fitness. The advantage of this approach is in 
maintaining the population’s diversity by preventing very fit 
individuals from gaining early dominance at the expense of 
the less fit ones. This on the other hand poses disadvantages 
by hindering and/or slowing the attempts to quickly reach the 
acceptable solutions. Another popular scheme is Tournament 
selection [3] where subgroups of individuals are randomly 



created from the main population, and after the comparison of 
fitness, winners from these subgroups are selected for 
reproduction. Unlike roulette wheel and ranking selections, 
tournament selection does not include all members of the 
population. Other more greedy-like algorithms appear in a 
work by Ravindra K. Ahuja et al[4]  where they developed a 
greedy genetic algorithm that incorporates many greedy 
principles in its design, but not in selection. Breeder Genetic 
Algorithm (BGA) developed by Heinz Muhlanbein and Dirk 
Schlierkamp- Voosen [5] is based on artificial selection of best 
parents for a model of the GA, which is a technique similar to 
that used by human breeders. This is a form of greedy 
selection, but excludes some members of the population. The 
selection method that we present involves the entire 
population, but gives even more priority to the fitter 
individuals than in roulette wheel selection. 

      In this paper, we use the CGA to develop usable gaits for 
an autonomous hexapod robot. This was accomplished by 
creating a model with specific information taken from an 
individual robot. The CGA used this model to develop gaits 
that were specific to the robot's capabilities. Tests are done 
using the two selection methods: standard proportional 
(roulette wheel) selection and roulette wheel selection with 
varying greediness.  

II. THE HEXAPOD SERVO-ROBOT 
This project was based on tests on a simulation model of an 

actual hexapod robot; therefore the approach was to develop a 
simulation model of the robot with data from its physical 
features and movement capabilities. This model (Table I), with 
information for each leg, represents the movement state of the 
robot at any instance in time. The cyclic genetic algorithm 
used this model to evolve a walk, emphasizing forward 
movement produced and stability of the robot. The activations 
(signal commands to the servo motors) learned by the CGA 
were used with the movement capabilities in the model to 
determine how much to change the movement state of the 
robot in the model. Actual physical features were measured 
and the movement rates were calculated by dividing the 
maximum throw distance by the minimum number of 
activations required to attain it. 

TABLE I. INFORMATION USED IN THE MODEL OF THE ROBOT. 
Fields specific for each leg: 
*current up -- current vertical position of the leg. 
*max up -- position off the ground when completely up. 
*max down -- position off the ground when completely down. 
*current back -- current horizontal position of the leg. 
*max back -- posit relative to completely forward when completely 
back. 
 
Fields applicable to all legs: 
*rate up/down -- rate of vertical movement when servo activated. 
*rate back/forward -- rate of horizontal movement when servo 
activated. 
 

     The robot used was a six-legged servo-robot, which was 
developed for legged robot experimentation in our robotics 
lab. The hexapod robot has two degrees of freedom per leg; 
each leg can move up/down and forward/back. Twelve servos, 
two per leg, provide thrust and vertical movement. A learned 
control sequence of primitive instructions can be transmitted 
to the controller on robot and this learned gait will directly 
control the movement of the robot. 

     An input to the servo-robot, which we call an activation, is 
a 12 bit number where each bit represents a servo. A signal of 
1 moves the leg back if it is a horizontal servo and up if it is a 
vertical servo. A signal of 0 moves it in the opposite direction. 
Figure 1 shows an example of an activation and its result on 
the robot. The activation can be thought of as 6 pairs of 
actuations. Each pair is for a single leg with the first bit of the 
pair being that leg's vertical activation and the second being 
that leg's horizontal activation. The legs are numbered 0 to 5 
with 0,2,4 being on the right from front to back and 1,3,5 
being the left legs from front to back. The activation 
100101101001 results, as shown in Figure 1, in one phase of 
the classic tripod gait, which is considered to be the optimal 
gait for speed in this simple rigid robot when all its actuators 
are fully functioning. 

 

 
 

Figure 1: Results of a Robot Activation 
 

III. CYCLIC GENETIC ALGORITHM 
The Cyclic Genetic Algorithm is a type of Genetic 

Algorithm [3,6] that can be used to learn cyclic control 
programs [7]. Like standard genetic algorithms, CGAs 
consists of the three genetic operators (selection, crossover, 
and mutation) that are used to evolve a randomly generated 
initial population into more fit successive generations. The 
CGA was developed to be a more suitable method for learning 
gaits for legged robots by representation of a cycle of actions 
in its chromosomes. The CGA differs from the standard GA 
mainly in the makeup of the chromosome. In a CGA, the 
genes of the chromosome do not represent traits of the solution 
but represent tasks to be completed in a set amount of time 
(Figure 2). For gait generation, these tasks are activations that 
need to be sent to the servo-motors every 20ms. The CGA is, 
in effect, a method for directly evolving machine/assembly 
language control programs.  

    The chromosome of the original CGA had genes that 
represent three sets of tasks depending on location in the 
chromosome. A start section, a cyclic section, and a tail 
section. In the context of this research, the start section should 
set up the robot to move into a continuous cycle (the cyclic 



section) where sustained fluid motion can take place. The tail 
section can optionally be added to provide a smooth 
translation back to the at-rest stance of the robot. The genetic 
operations of the CGA are typically the same as that of the GA 
except that crossover in the cyclic section is done at two points 
since it is, in effect, swapping a section of the cycle. 

 

 
Figure 2: A comparison of chromosome structure between the classic 

GA and CGA. 
 

IV. CGA CHROMOSOME 
      The chromosome (Figure 3) for this problem was made up 
of 4 parts: coordinator, inhibitor, start section, and cyclic 
section.  
 
[C I {(R A)} {(R A)1 (R A)2 (R A)3 … (R A)11 (R A)12}] 
         --------   -------------------------------------------------- 
     start section                       cyclic section 
 
Figure 3: A CGA chromosome structure with coordinator (C), 
inhibitor (I), and the start and cyclic sections which are made up of 
genes with repetitions (R) and activations (A) in each. 
 
      Coordinators and Inhibitors are part of robot’s 
coordination mechanism, which evolves to increase gait 
control and proper movement. These two numbers were 
initiated as random numbers and were learned by the CGA. 
The coordinators and inhibitors were applied to the activations 
of the start and the cyclic section before the control program 
was run in the robot (simulated or actual). Coordinators 
coordinate the three movements on each leg.  For example, 
one coordinator makes sure that if a leg is going back it is 
either already down or moving in that direction. Another 
coordinator ensures that if a leg is going up it is either already 
forward or moving in that direction. The coordinator for all 
legs is a 12-bit binary. Inhibitors affect pairs or triples of legs. 
They prevent certain legs from moving in the same direction at 
the same time. For example, the inhibitor for legs 2&3 
prevents both legs 2 and 3 from going back or forward at the 

same time. It allows 2 to move back, but inhibits 3. The 
inhibitors for the set of legs are represented as a 15-bit binary 
number. Coordinators and inhibitors are applied equally to all 
genes and they are listed at the start and cyclic sections of the 
chromosome.  
      The start section has one gene and the cyclic section has 
12 genes. This setup was found to be sufficient to provide the 
maximum number of required chromosome changes during 
the evolution process.  Each gene has two parts: repetitions 
and activations.  Repetitions represent the number of times to 
repeat the activations which are concurrent signals sent to the 
servos. Activations represent the signal sequence sent to the 12 
servo-motors. Each activation signal is a 12-bit binary number, 
with 2 bits dedicated to each leg, one bit for up/down 
movement and the other bit is for the forward/back movement. 
Since each bit can either be a 0 or a 1, one bit is sufficient to 
represent the two states of any movement. A signal of 0 on 
any of the movements is interpreted as a command to send the 
legs down or forward. A signal of 1 would command any of 
the legs to go up or back.  

V. GREEDINESS 
      The CGA in this project used two selection techniques. 
The first selection method was the standard roulette wheel 
selection method. Each chromosome is given a slice of the 
circular roulette wheel where the area of the slice is 
proportional to the chromosome’s fitness ration in the 
population. To select a chromosome for mating, a random 
number is generated in the interval [0,100], and the 
chromosome whose segment spans the random number is 
selected. This process is like spinning a roulette wheel where 
each chromosome has a segment on the wheel proportional in 
size to its fitness. 

      The second selection method was to use a greedy factor, 
which adds varying degrees of greediness to the standard 
roulette wheel selection. This option involves scaling the 
entire fitness list in the population by a set of greedy factors. 
Each chromosome’s fitness is multiplied by a particular 
greedy factor corresponding to its fitness relative to the rest of 
the chromosomes in the population. The first step involves 
sorting chromosomes in a population in descending order 
based on fitness. Then a list of greedy factors, of an equal size 
to the population, is created by using a particular function of 
choice that would determine the degree of greediness in the 
selection. In this algorithm, populations of size 64 were used 
in the training. Formula (1) was used in generating the lists of 
greedy factors; Formula (2) calculates a greedy fitness from an 
actual fitness value and its corresponding greedy factor.  

 
fg(i) = ia                                                   (1) 

Fg(i) = F(i) * fg(i)                          (2) 
 

     In the formula fg(i) is the greedy factor corresponding to 
the position i in the fitness list, Fg(i) is greedy fitness, F(i) is 
an actual fitness score,  i is an integer 1 to 64 representing 
fitness position in the population of size 64, and a is a greedy 



constant – a real number. For the test reported in this paper, 
five greedy constants (a) were used, 0 (equivalent to the 
standard roulette wheel), 0.2, 0.5, 1 and 1.5 were used in 
generating the list of greedy factors depending on the value of 
i. In our tests, we wanted to increase the greediness of the 
selection so positive real numbers were used. In the case 
where one wanted to reduce the greediness of a typical GA, 
negative real numbers could be used. 

VI. TRAINING 
      During the learning stage, an initial population of 64 
individuals was created by randomly assigning numbers to all 
the parts of the chromosomes.  Three separate tests were 
conducted with the CGA learning on three random stating 
populations. In each of the three tests, roulette wheel selection 
was used with the five different greedy constants (0, 0.2, 0.5, 
1, and 1.5). In order to accurately compare the performance of 
the five greedy constants, each set of five runs with different 
greediness was run on the same initial populations for each of 
the three starting populations. The CGA evaluated each 
chromosome using the simulation model and assigned each a 
fitness score. 

      Fitness was determined using a total of 400 activations for 
each individual; this assured each individual was tested a long 
enough time to ensure more than one full step was taken, 
requiring more than one cycle. Fitness was computed by 
summing the fitness of the individual activations after a total 
of 400. The activation fitness equaled the forward motion 
produced by the gene's activation signal, which is repeated the 
indicated number of repetitions. This was done on the model 
by:  

• taking the current state of legs; applying the vertical 
movement;  

• calculating the balance and probable legs on the 
ground from the model’s current vertical position of 
each leg;  

• applying the horizontal movement to alter the leg’s 
state, but only counting legs on the ground in 
computation of the movement (fitness); and 

• deducting fitness for lack of balance and/or 
asymmetry of movement;  

• and repeating the process using next activation and 
the new state.  

This was sequentially done from the start to the end of the 
chromosome and then repeated as many times as required in 
the cyclic section. Due to the nature of servos under a load, 
adjustments were required in determining the back/forward 
movements when direction changes were first applied. Each 
forward/back movement in a new direction was set to produce 
⅛ of the movement in the 1st pulse, ¼ in the 2nd pulse, ½ in the 
3rd pulse, and full movement from the 4th pulse and on. 

      Subsequent generations of chromosomes were created by 
performing one of the five selection options, a stochastic 
(roulette wheel) or one of the four greedy selection choices to 
select two parent chromosomes. 

      Crossover was performed at randomly selected points in 
the chromosome. The resultant offspring was subjected to 
mutation where each bit was given a 1 out of 150 chance of 
flipping from a 0 to a 1 or vice versa. After 64 children 
chromosomes were created in this way, the generation was 
complete. The process was repeated for a total evolution run 
of 5,000 generations. The program stored copies of the 
population every 10 generations from generation 0 up to 
generation 100, every 20 generations up to generation 300, 
every 50 generations up to generation 800, and every 100 
generations up to generation 5000. 

VII. RESULTS 
      Three trials, with three randomly generated initial 
populations, were completed for each of the five greedy 
constants for selection method. From each trial, the average 
fitness per population was stored from selected generations. 
From these, we calculated the average of the average fitness 
per population for the three trials on each of the five greedy 
constants. We then plotted these results in graphs of average 
fitness per population versus the appropriate generation 
number. Figure 4 shows this graph for populations collected 
throughout the 5000 generations. Figure 5 shows the same 
graph focused on the pattern observed from the first 1500 
generations. Runs with each of the five greedy constants are 
represented with 0G, 0.2G, 0.5G, 1G and 1.5G. 
 

 
Figure 4: A plot of average fitness per population from populations 

selected from generations throughout the 5000 generations. 
 

      As can be seen on these two graphs, the learning pattern of 
the CGA can be observed. General observation shows that the 
evolution shows a rapid increase in average fitness in the first 
generations which then becomes steadier after about 2000 
generations. All the three selection methods were successful at 
evolving more fit generations in successive generations, and 
continued to slowly improve the control program until 
somewhere in the 2000 to 4000 generation range. A closer 
look at the plot in Figure 5 reveals that selection with higher 
greediness (1G and 1.5G) evolve more rapidly in the first 100 
generations compared to the lower greedy constants and the 
standard roulette wheel selection 0G). Looking at the entire 



length of 5000 generations in Figure 4, selection with greedy 
constants 0.2, 0.5 and 1 evolves more fit populations than with 
standard roulette wheel selection which in turn evolves more 
fit populations than with selection with greedy constant of 1.5. 
This observation implies that very high greediness is not 
effective, and best entire population performance (which is 
better than standard roulette wheel selection) is achieved with 
low greediness, with greedy constants in the range 0<a<=1. 
 

 
 
Figure 5: A plot of average fitness against generation number focused 

on the first 1500 generations. 
 
      From each trial, the best (most fit) individuals were stored 
from populations taken from selected generations throughout 
the 5000 generations. From this data, we calculated the fitness 
of each best individual and plotted two graphs of best 
individual fitness vs. generation number. The two graphs are 
shown in Figures 6 and 7.   

 
Figure 6: A plot of best individual fitness from populations selected 
from generations throughout the 5000 generations against generation 

number. 
 

 
Figure 7: A plot of best individual fitness against generation number 

focused on the first 500 generations. 
 
     From Figures 6 and 7, we can make the observation that 
only selection with greedy constant 0.2 evolves individual 
gaits that are better than the gaits generated by the standard 
roulette wheel selection, which in turn evolved more fit best 
individuals than selections with greedy constants of 0.5, 1 and 
1.5. These observations imply that, unless the greedy constant 
is very low (close to 0) gait learning with greedy selection 
tends to attain a premature convergence resulting in sub-
optimal gaits. Learning without greediness, as with roulette 
wheel selection, results in evolving more diverse populations 
with gaits ranging from the best optimal gaits to gaits that are 
worse than the sub-optimal ones. Using a simulation, we have 
the capability of being able to display the move-by-move 
performance of any learned gaits; this display resembles the 
actual step-by-step movement pattern displayed by legs of an 
actual robot. Displays of the gaits represented by the best 
individuals from trials with selection with greedy constants of 
0, 0.2 and 0.5 look similar to the optimal tripod gaits. In these 
gaits, legs 1,2,5 provide thrust, while legs 0,3,4 reposition. 
And when legs 0,3,4 are back in position, they provided thrust, 
while legs 1,2,5 reposition. On the other hand, the trials with 
greedy constants of 1 and 1.5 didn’t evolve gaits that 
resembled the optimal tripod gaits most of the time. One of 
these resultant gaits with greedy factor 1 (1G in the graphs), 
was tripod and the remainder were such that legs 1,3,4 
provided thrust, while legs 0,2,5 repositioned. The resultant 
1.5G gaits varied with this sub-optimal gait the best produced. 

VIII. CONCLUSIONS 
      All the five degrees of greediness demonstrated success in 
learning and generating gaits for the simulation model of the 
hexapod servo-robot. Our results displayed very interesting 
effects posed by greediness in selection operator of the CGA. 
Gait learning with very low greediness (greedy constant 
between 0 and 0.5) tends to evolve better than the standard 
roulette wheel selection (zero greediness), and results in both 
more fit general populations and a few best individuals with 
the most desired traits. On the other hand, too much greediness 



(with greedy constants >0.5) tends to attain premature 
convergence with populations filled with individuals with sub-
optimal fitness. Stochastic selection, which is solely based on 
proportional absolute fitness, as demonstrated by trials with 
the standard roulette wheel selection, generates more diverse 
populations with the best optimal individuals along with less 
fit ones. For the gait generation problem, selection with very 
low greediness turns out to be a more effective approach.  

       Even though the greedy constants of >=1 were not the 
best selection methods for gait generation, they may be better 
for other applications, which will be investigated in future 
work. A full range of greedy factors is possible. Other levels 
of greediness, such as greedy constants of <0 may also be 
explored for the gait generation problem or other problems. In 
addition, using this greedy constant allows the researcher to 
vary the greediness as evolution progresses, in an effort to 
apply selection pressure while maintaining diversity in the 
population. 
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