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Introduction: 
 

Over the last decade, there has been an ever-increasing interest in global anthropogenic 

climatic change and its impacts on the environment and societies across the world. This has been 

fueled largely by public interest and media coverage of reports made by the International Panel 

on Climate Change (IPCC) implying that, “Limiting global warming to 1.5 °C would require… 

unprecedented changes” (IPCC 2018). The IPCC report goes further, listing consequences of 

exceeding this threshold, including impacts on sea level, tropical storms, droughts, and biological 

systems to name a few. Many predictions are dire, for example, “Coral reefs would decline by 

70-90 percent with global warming of 1.5 °C” (IPCC 2018). The IPCC report released in 2022 

also contains very similar consequences, stating that the impacts of climate change, “have 

reduced food and water security… extreme heat events have resulted in human mortality and 

morbidity” (IPCC 2022). The scientific consensus is that CO2 emissions are increasing and this 

is the primary driver of current climate change. The general hypothesis is that temperatures are 

trending upwards at an alarming rate is a very important aspect of terrestrial and aquatic 

ecosystem research. Significant changes in temperature can have massive impacts on all 

organisms across all food webs.  

 While the IPCC is the main producer of such news, there are many scientists that are in 

agreement that climate change is an existential threat to humanity. For example, there is much 

research surrounding the impacts of anthropogenic climate change on extreme weather patterns. 

One such study, looking at the results of climate models, purported findings showing an, 

“increase in interannual variability of the Indian monsoon [season]” (Easterling et. al. 2000). 

Within the United States, this same study noted the increasing cost of storms, “$100 million 

annually in the 1950s to $6 billion per year in the 1990s”, also noting that the number of 
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catastrophic storms has increased in this same time frame. This is a very concerning statistic, that 

the United States alone is spending sixty times more on catastrophic event remediation than it 

once was.  

 There are also numerous studies implying that climate change, and specifically climate 

warming, is causing declines of some species to the point of extinction, and at the same time 

increases in others.  For example, one study looking at species dynamics within tick populations 

found an increase in ticks that carry diseases that impact humans (Gatewood et. al. 2009). The 

argument being that these disease bearing ticks survive better in milder climates, and when 

temperatures get warmer ticks are able to spread to once colder areas that they could not have 

survived in prior to climate change. The Gatewood et al. (2009) study, and since that time other 

reports (Beard et. al. 2016), warn of this trend, that if temperatures keep going up, we will see an 

increase in the spread of Lyme Disease into new areas. Further, mosquitos are another common 

insect that is said to expand its range with climate change, and therefore will result in an increase 

in malaria (ha et al. 2014), West Nile virus (Paz 2015) Dengue (Tran et al. 2020), and other 

insect-carrying diseases. A study by Epstein et al. (1998) was one of the earliest reports to 

suggest that mosquitos could serve as bioindicators for climate change trends, asserting that, 

“provided sufficient moisture, warmer temperatures – within the survival ranges – increase 

mosquito populations, biting rates (blood meals), mosquito activity and abundance.” As a result, 

the spread of mosquitos is considered by the media as a threat to global human health. 

Based on recent trends and media coverage, it is not shocking or even surprising to 

witness the responses of politicians, citizens, and policy makers based on model projections. In 

November 2021, the Biden Administration authorized $50 billion in funding for climate change 

catastrophes. It is not just the United States taking action, many countries and companies are 
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pledging “net zero” CO2 emissions. Governments are responding to their citizens’ who are, in 

turn, responding to the media-driven belief that climate change will have dire consequences on 

human populations.   

On many regional or local levels, there are reports summarizing the potential impacts of 

climate change. Many state agencies have released information on the projected impacts of 

climate change on their specific states (Reidmiller et al. 2018). For example, in Connecticut a 

report compiled in 2011 by the town of Groton lists a number of local impacts. First, the report 

finds that since 1970, annual average temperatures have increased 2˚F (1.1˚C). The paper 

discusses sea level rise as well, stating that the town of Groton, CT will be “underwater” in the 

near future. This study further projects an increase in vector-borne diseases such as West Nile 

Virus and Lyme Disease, droughts, heavy precipitation and a decrease in snow.  

A trend that seems to be developing, especially at regional and local levels and often 

driven by what can be viewed as unbalanced media coverage, is that practically every 

environmental issue being reported is linked primarily, if not exclusively, to climate change. The 

fact that other contributing variables are often down played or even overlooked in response to 

potential impacts of climate change can have significant consequences on how environmental 

issues are addressed on regional and local problems The Epstein et al. (1998) and Gatewood et 

al. (2009) studies looking at mosquito and tick populations, respectively, do not address other 

variables such as predator-prey dynamics and carrying capacities of ecosystems. Both studies 

purport that given an increase in air temperatures, the populations of these insects will thrive. 

There is no mention of an increase in predators that could also occur, limiting population growth. 

There is also no mention of the carrying capacity of the ecosystems they spread into, meaning 

these ecosystems may not have the necessary resources to support rampant growth of these 
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organisms. This, however, is not the case. In contrast, the importance of variables in addition to 

temperature is exampled by Abrams and Nowacki (2018) who concluded that, “fire and 

vegetation changes were likely driven by shifts in human population and land use beyond those 

expected from climate alone.” Unlike the Abrams and Nowacki (2018) investigation, many 

studies are focused on climate, and specifically temperature, rather than other variables that are 

just as important.  

 It is well established that bird populations are declining in North America (Rosenberg et 

al. 2019). Habitat loss associated with land use change is often reported as the primary 

contributing factor to the decline in bird populations (Pennisi, 2019; Craig et al., 2022).  

However, in reporting results from such studies, although subtle, climate change and not habitat 

loss is often emphasized.  For example, although Craig et al. (2022) show the major impacts of 

habitat loss, they stated, “Expected effects of climate change on populations were consistent with 

some findings, but habitat effects appeared related to a greater number of shifts.”  Similarly, 

Pennisi (2019) commented, “Climate change, habitat loss, shifts in food webs, and even cats 

may all be adding to the problem, and not just for birds.”  Even in a local newspaper story 

(Silber, 2022) discussing the findings of the Rosenberg et al., (2019) study, scientist Brooke 

Bateman states, “Birds Are Telling Us It’s Time to Act on Climate Change.” This is not to 

suggest that climate change is not important, but rather that without addressing habitat loss, the 

crisis with birds will not improve.   

Examples of factors being more important than climate change with respect to local 

issues can also be observed in aquatic ecosystems.  For example, without any direct evidence, 

local and state agencies assumed cyanobacterial blooms in Candlewood Lake, CT, were caused 

by climate warming. However, using a 35-year database, Siver et. al (2018) found that, “despite 
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the lack of trends in air temperature”, they observed a, “decline in the temperature of the 

hypolimnion [yielding] an increase in thermocline strength.” This study found that wind speed 

was highly correlated with in-lake dynamics and that air temperature was not important.  In fact, 

based on local air temperature records, there has not been a significant increase since 1985.  In 

another local example recently published in the Rivereast News Bulletin (January 21, 2022), it 

was suggested that a winter fish kill in Lake Pocotopaug, CT was caused by the impact of 

climate change on water temperatures and ultimately growth of algae.  However, this waterbody 

has a long history of eutrophication issues and previous fish die-offs.  The article does not cite 

any air or water temperature data.  

It is important to analyze temperature trends in a given region with respect to an 

environmental issue, and not make the assumption that warming has occurred.  This is especially 

important when evaluating changes in freshwater resources on a local or regional scale, and not 

to use generalizations for larger and more expansive areas.  The objectives of this study are to a) 

develop long term temperature datasets for specific localities in the northeastern United States 

that can be used in conjunction with existing datasets to aid in understanding shifts in freshwater 

lakes; b) analyze each individual site for trends in temperature for all seasons over a 69-year 

period and; c) examine temperature trends, if any, for the region based on combined dataset of all 

sites. 
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Methods: 
 

The northeastern states included in this study are: Connecticut, Massachusetts, Maine, 

New York, Vermont, New Hampshire, and Rhode Island. Thirteen sites were selected to 

represent a range of geographic and land use throughout the northeastern United States. The data 
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for each site were derived from weather stations operated at established airports. Airports 

maintain weather stations and many have operated continuously since 1950, yielding one of the 

most reliable collection methodologies of long-term records.  

The data for each airport was assembled from databases maintained by Weather 

Underground (www.wunderground.com). Weather Underground databases hold historical 

temperature readings for all sites, with records dating back to at least 1950, and in some 

instances back to the 1930s. For this study, data was collected for the period 1950-2018. This 69-

year time span was available for each site, resulting in an almost complete dataset for the suite of 

sites.  

The historical Weather Underground database contains mean minimum, mean average 

and mean maximum temperatures for all months. For this study, data was used for the months of 

January, April, July, and October, to represent each of the four seasons.  All data were 

downloaded, stored in excel files, and used to build tables for each site, and used for all analyses. 

Linear regressions, polynomial regressions, and an Autoregressive Integrated Moving 

Average (ARIMA) were conducted to determine long term trends in temperature. Standard error 

statistics were generated and plotted for all datasets to estimate variability within various subsets 

of the data, for example, standard error statistics were plotted for all sites that are non-ocean 

front vs sites that are near the ocean. Standard error statistics were used rather than standard 

deviation since all data points analyzed represented averages of daily temperature readings for 

given months. Standard error is the typical way to measure deviations among sample(s) of 

means. Standard error statistics were plotted using Excel to analyze for potential trends in that 

statistic. Scripts were written in Python to automatically analyze multiple datasets at once, 

particularly for packages such as Pandas (www.pandas.pydata.org), Numpy (www.numpy.org), 
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and StatsModels (www.statsmodels.org/stable/index.html#) used for various data cleaning and 

analysis capabilities. 

Prior to running the time series analyses, basic graphical and statistical exploration was 

conducted. For each site, graphs for all four months were produced for mean minimum, mean 

average and mean maximum temperatures (ºC, y-axis) versus time (years, x axis). Graphs for 

each month containing mean maximum, mean average and mean minimum readings were 

developed for the 68-year period across all sites. The standard error was calculated for each 

variable and distribution graphs were made to determine the variation in temperature for each 

site/month. Means and number of days in each month over or under the lower and upper inter 

quartile ranges (IQRs) were also calculated. These same statistics were calculated for the average 

temperature across all sites for each month, and for the average of all sites and all months to 

estimate the annual temperatures for the entire region. These analyses were done in Microsoft 

Excel. 

Secondly, Geographic Information System (GIS) was utilized to investigate the 

geospatial aspect of the temperature data. The mean temperature for each site and month was 

mapped using an overlay on a template map from the software QGIS (Quantum GIS) and our 

mean average temperatures and site coordinates from a csv file. The geographic variables 

distance from the ocean, distances between sites, elevation, aspect, and population size, were 

taken into account when analyzing potential temperature trends across the region.  

 The statistical techniques, linear regression, polynomial regression, and autoregressive 

integrated moving average (ARIMA), were conducted to evaluate magnitude and significance of 

temperature trends observed during 1958 to 2018 at 13 sites. A simple linear regression model is 

used to study whether there is any significant trend in temperature (dependent variable) over time 
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(independent variable).  Several metrics, the coefficient of determination (R2), magnitude and 

direction of the regression coefficient (beta-hat), and overall significance of the regression (p-

value), were used to evaluate the performance of the linear models.  R2 represents the amount of 

variability in the response variable (temperatures) that is explained by the model (time), where 

the higher the R2 value the greater the explanatory ability of the model. Some models can have 

low R 2 values and still be deemed significant, which is the why p-values were also analyzed for 

each linear regression model. If a model had a low R 2 value and the coefficient was not 

significant, it was concluded that the linear regression model could not explain any relationship 

between year and temperature.  

 Polynomial regression models are used to track non-linear relationship between variables 

of interest. Similar to the linear regression models, the polynomial regression analysis was used 

to test for significant linear or non-linear trends between temperatures (response) and time 

(independent). A key parameter in a polynomial regression model is the order of the polynomial. 

For example, a first-order model is the same as the linear regression, a second order polynomial 

involves two predictor terms, years and years squared, and so on. Including predictor terms of 

higher order, that is, increasing the order of a polynomial regression model increases its 

flexibility and the ability to fit. Or, in other words, by increasing the order you increase the 

polynomial regression’s ability to explain non-linear relationships. To test the fit of the 

polynomial regression, the same statistics were used as those for linear regression. For 

polynomial regression models, the p-value is more important in determining significance than R2 

valves. Thus, the p-value was used to determine whether a polynomial regression model is a 

better fit than a linear regression.  
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 While both of these models can be very valuable in determining relationships between 

variables, they may not be the best methods to use to determine significant trends over time. In 

both cases, the models determine the relationship between predictors (year) and responses 

(temperature) under the assumption that values at a given site are independent over the years, 

which is unlikely to hold true in this study. A time series regression model which accounts for 

the inherent dependence among observations recorded over time is more accurate.  In this work 

autoregressive integrated moving average (ARIMA) time series models were used. An ARIMA 

model utilizes past values for the dependent variable to model the current values which are 

estimated. There are three orders that the model utilizes to create the function for past values to 

estimate current ones, p (autoregressive model), q (moving average model) and d (discrete value 

representing seasonality). The value of p, the autoregressive operator, represents the number of 

years back the model will iterate to predict the current year’s temperature, meaning if p = 5, then 

the model will go back 5 years and use those temperatures to determine the current one. The 

value of q, the moving average operator, is similar in that it determines how far back the moving 

average operator will go. If q = 5, the moving average operator will calculate moving averages 

for every five years. Lastly, the value of d, is a parameter used to determine the number of 

transformations required to get a stationary model (when mean and variance are constant over 

time). While stationary models have constant variance overtime, you can also have a model with 

seasonality, meaning that the mean and variance will fluctuate (not remain constant) across the 

time series. Seasonality in a time series dataset is a trend in fluctuations in temperature that occur 

on a regular basis, and are spaced out over time, similar to seasonal trends in temperature. In the 

winter it is typically colder while the summer is typically warmer, those changes in temperature 
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of the dataset are examples of seasonal trends. Thus, the number of seasonal terms identifies the 

amount of variation which follow these trends.  

 Two different approaches were utilized to determine the best ARIMA model for the 

dataset. First, a genetic algorithm was utilized to determine the ideal parameters. Genetic 

algorithms have been used in many occasions to optimize model parameters based on fit on test 

or training sets. In this case, the chromosomes were binary versions of values one through ten. 

The fitness function ran the model for each chromosome and the chromosome’s fitness was 

based on minimizing what the ARIMA model’s (Bayesian Information Criterion) BIC value. 

After five-hundred generations, or iterations, trying different (p,d,q) sets, the genetic algorithm 

outputs the ideal order set (p,d,q) which when used as orders for the ARIMA model, produced 

the lowest BIC. The problem with the genetic algorithm-based approach is the chance of 

overfitting is essentially 100%, the second approach was to utilize Autocorrelation function 

(ACF) and Partial Correlation function (PACF) plots to determine whether or not correlations 

between variables change over time (ACF) and whether there are any lags in these changes 

(PACF). This second approach was to try values that would not lead to overfitting. The model 

with these orders combines patterns of exponential and linear trends and allows for flexibility to 

model non-linear relationships while also not overfitting.  

 The python package statsmodels was utilized to run the ARIMA model. The statsmodels 

package has several methods that efficiently run and provides outputs for several different 

models. In this case, the SARIMAX() method was used, which allows one to input the p, d, and 

q values as orders for any input dataset. The output of the function contains a wide variety of 

information, ranging from BIC (Bayesian Information Criterion) to Heteroskedasticity and Skew.  
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Results: 
 

Site and Data Information:   
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Thirteen sites were analyzed in this study, from seven northeastern states (site counts are 

in parenthesizes): Maine (1), New Hampshire (1), Vermont (1), New York (4), Massachusetts 

(2), Rhode Island (1) and Connecticut (3) (Figure 1). The sites range in latitude from 41.311 to 

44.699 and longitude from -70.255 to -78.878 (Table 1). Specifically, the furthest north site was 

Burlington, VT, the furthest south site was New Haven, CT, while the furthest west site was 

Buffalo, NY and the furthest east was Portland, ME. The weather stations associated with the 

sites were all situated at airports, all of which have recorded continuous temperature data over 

all, or most of the study period. 

The main criterion when selecting each site was to make sure they had as consistent data 

as possible over the study period (1950-2018, 69 total years), and that they contained these data 

for all four months: January, April, July and October. Some of the data are missing, mostly 

because of airport renovations. Except for Plattsburgh, NY, all sites had complete or near 

complete datasets for all four months for the mean average, mean minimum and mean maximum 

temperature (Table 2).  

Out of the possible 3,588 potential observations for mean average temperature, 3,450 

were recorded (Table 2), 138 observations are missing, or 4% of the potential total data. Of these 

missing observations 74 came from Binghamton, NY. The average number of observations for 

each of the sites is 66, meaning that on average our datasets account for roughly 96% of the 

study period. In each of the four months, all sites except Ithaca, NY, Danbury, CT, and 

Binghamton, NY, consistently had observation counts greater than 66. Most of our sites had at 

least 96% coverage and multiple (5 of the 13) sites had complete datasets for all months. 

Other geographic site variables were examined during this study, including altitude of the 

site and whether the site is situated on or close to the coast. The altitude ranged from 3.7 (New 
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Haven, CT) to 439.7 (Binghamton, NY) meters above sea level (Table 3). While not the lowest 

in elevation, Boston, MA is also worth noting as its elevation is only 6 meters. The average 

altitude for all of the sites was 135.1 meters. The determination was also made whether or not the 

site represented an ocean front site. To determine this, a buffer of 10 km was defined, meaning 

that if the site was within 10 km of the ocean, it is considered to be an ocean front site. Of the 13 

sites in this study, 4 were within 10 km of the ocean: Boston, MA, New Haven, CT, Portsmouth, 

NH, and Portland, ME (Table 4). The majority of sites did not meet this threshold, (9/13 or 69% 

are outside the 10 km buffer). In general, the ocean sites represent the lowest elevations.  

Descriptive Statistics: 

 Basic descriptive statistics were collected for all datasets, including the mean, range and 

standard error of each of the temperature metrics (mean maximum, mean average and mean 

minimum) for each of the sites and months (Table 5). The average of the mean temperature for 

the month of January was -4.1°C, and no site had a mean minimum or mean average that 

exceeded 0°C. However, most mean maximum values were greater than 0°C (except for three 

sites) (Table 5). The mean minimum ranged from -5°C (Boston, MA) to -15.7°C (Binghamton, 

NY) (Table 5). The mean average temperature ranged from -0.5°C (New Haven) to -7.6°C 

(Plattsburgh, NY). The mean maximum temperature ranged 9°C (the largest range for the mean 

maximum metric), from 8.3°C for Warwick, RI to -0.7°C for Ithaca, NY (Table 5).  

 For the month of April, the average of mean average temperatures across all sites was 

7.9°C (Table 5). The overall mean maximum metric (6.1°C) was smallest during the month of 

April (Table 5). The warmest site with respect to the mean average temperature during April was 

New Haven, CT (9.9°C), while the coldest was Plattsburgh, NY (6°C) (Table 5). The range for 
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the mean minimum temperature during April was 5°C for Boston, MA to -2.2°C for 

Binghamton, NY (-2.2°C) (Table 5). The range for the mean maximum was from Portland, ME 

(11.4°C) to the warmest site being Binghamton, NY (17.5°C) (Table 5).  

 During the month of July, the average mean temperature was 22.1°C (Table 5). The range 

for the mean average metric for July was largest during the month of July (8.1°C), this range was 

from New Haven, CT (27.9°C) to Binghamton, NY (19.8°C) (Table). The only site to have a 

mean average fall below 20°C was Binghamton, NY. The range for the mean minimum 

temperatures was from Boston, MA (18.9°C) to the coldest site being Binghamton, NY (13.9°C) 

(Table 5). The range for the mean maximum was also the lowest for this metric, with a range of 

4.7°C, from the warmest site, New Haven, CT (29.8°C) to Binghamton, NY as the coldest site 

(25.1°C) (Table 5). 

 For the month of October, the average mean temperature was 10.6°C (Table 5). The 

range for the mean minimum metric was from Boston, MA (8.7°C) to the coldest site being 

Binghamton, NY (1.3°C) (Table 5). For the range of the mean average metric, the warmest site 

was New Haven, CT (13.2°C) and the coldest site was Plattsburgh, NY (8.5°C) the range of this 

metric was 4.7°C. The range for the mean maximum metric from 6.2°C with the warmest site 

being New Haven, CT (20.1°C) to the coldest site being Burlington, VT (13.9°C) (Table 5).  

 The relationship between temperature and site latitude for each month is displayed in 

Figures 2-5. The linear regression model and R2 value is given for each relationship. As is 

apparent, more southern sites generally have warmer temperatures, across all months. The 

relationship is not as pronounced however in July where the linear regression model has a R2 

value of 0.35 (Figure 4), while the R2 values were greater than 0.5 for the other months (Figures 

2, 3 and 5). The weaker relationship in July is caused by the New Haven, CT site, which has a 
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significantly higher mean temperature than all other sites (27.9°C) (Table 5, Figure 4). The low 

R2 value could also be due to July having the largest mean temperature range out of all the 

months (Table 5). 

 As noted, ocean front sites (Boston, MA, New Haven, CT, Portsmouth, NH and Portland, 

ME) were defined as being within 10 km of the ocean. When these sites are removed from the 

scatter plots, the relationships between latitude and temperature for all months becomes even 

stronger. Besides July, the R2 value of the linear regression line improves when ocean-front sites 

are removed. The R2 for the July model decreases when the ocean-front sites are removed, even 

if only New Haven, CT is removed (Figure 8). The impact of latitude on temperature is most 

apparent during the month of April with a R2 value of 0.71 without ocean-front sites (Figure 7) 

and 0.69 when including the ocean-front sites (Figure 3). 

Variability Analysis: 

 In addition to descriptive statistical analyses, various metrics relating to variability were 

analyzed. Initially, variability in annual temperature was measured using standard error for each 

site-month combination. Based on this metric, colder months, especially January, had 

significantly higher variability (higher standard errors scores) than warmer months. This was true 

for all three-temperature metrics, mean minimum, mean average and mean maximum across sites 

(Figures 9-11). For all sites, the month of January had the highest standard error with respect to 

the mean and mean minimum temperature, while the month of July had the lowest standard error 

(Figures 9-11). However, the mean maximum temperature slightly deviates from this trend, 

where Plattsburgh, NY and New Haven, CT had higher standard errors for the month of April 
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rather than January (Figure 11). That being said, July still had the lowest standard error for the 

mean maximum metric for both of these sites (Figure 11).  

 While the trend does not exist for all months, standard error is correlated with latitude, 

where the southernmost sites have slightly less variability than the northern most sites (Figure 

12). In order to further explore relationships in temperature variability, coastal sites were 

removed from the analysis because ocean sites are known to have less variability relative to more 

inland sites. After removal of the ocean-front sites (Boston, MA, Portsmouth, NH, Portland, ME 

and New Haven, CT) the relationship was much improved with an increase in R2 from 0.38 

(Figure 12) to 0.59 (Figure 13), this measure gleaned a potential relationship between latitude 

and temperature variability. Temperature variability was also examined using box and whisker 

analyses by month. This analysis confirmed that the month of January had the highest variation 

in temperature, while July has the least variation (Figure 14). Temperature variations for the 

month of January were also greater on a year-to-year basis, that is, experienced greater swings 

between years. Line graphs were constructed by subtracting the prior year’s temperature from the 

current year (e.g., 1969’s temperature from 1970’s temperature). These data were plotted over 

time for the months of July and January, the months with the extremes in temperature variability 

(January being the most variable, July being the least variable). These results further confirm that 

there was significantly more year-to-year variability in January than in July (Figures 15-16). 

 

Regression and Time Series Analysis: 

 Three types of regressions were run against the time series data: linear regression, 

polynomial regression and an ARIMA model. All models were run on the mean average 
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temperature data metric for all sites and months (Figures 17-20). Linear models were visually 

analyzed and tested for significance, and polynomial and ARIMA models were analyzed to 

examine trends. The R2 value and the p-value of the coefficient were used to measure how well 

the linear regressions fit the data, with year being the predictor.  In the case of the linear 

regression, there is one predictor, which is the year. The p-values listed in Tables 6-9 represent 

the significance (if p<0.05) of the linear relationship between temperature and year.  

 For the month of January, the average R2 for the linear regressions across all sites was 

0.017, meaning that on average, the linear regressions explain 1.7% of the variation in January 

temperature. All of the R2 values were less than 0.15, with the largest being 0.102 (Plattsburgh, 

NY) and the smallest being 0.0001 (Portsmouth, NH) (Table 6). Given these low R2 values, there 

were also no significant coefficients for any of the linear regressions. For the month of April, the 

average R2 across all of the linear regressions for all sites was 0.036. Similar to January, no R2 

exceeded 0.15 for the month of April, with the largest being 0.107 (Portland, NH) and the lowest 

being 0.0001 (Danbury, CT and Ithaca, NY) (Table 7). While there were no adequate R2 values, 

two regressions had slightly significant year coefficients (Burlington, VT and Portland, ME) 

(Table 7). The month of July also yielded linear regressions with low R2 values, with an average 

R2 value across all sites of 0.056. None of the linear regressions for July had a R2 value greater 

than 0.18, with the lowest being 0.0001 (New Haven, CT) and the largest being 0.171 

(Burlington, VT) (Table 8). While there were no large R2 values, four of the linear regressions 

had significant coefficients (Burlington, VT, Windsor Locks, CT, Portland, ME, Worcester, MA) 

(Table 8). The month of October had the lowest performing linear regressions when comparing 

R2 values, with an average across sites of 0.014. None of the linear regressions had R2 values 

greater than 0.06, the largest was 0.056 (Portland, ME) and the smallest R2 value was 0.0001 
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(Buffalo, NY) (Table 9). While the linear regressions in October were the worst performing, one 

linear regression had a significant coefficient, Portland, ME (Table 9).  

 After linear regressions were run, polynomial regressions were performed on the same 

datasets. Even though the R2 metric is similar for polynomial and linear regressions, the testing 

metrics differ. Because 6th order polynomials were utilized, there are now six potentially 

significant coefficients. To measure the fit of the polynomial models, significant coefficients 

were counted, with a maximum of six significant coefficients (technically, 6th order polynomials 

can have seven, if the y-intercept is included, however in this case, it was not included).  

 For the polynomial regressions, the first month tested was January. The average R2 of 

polynomial regressions run on the month of January was 0.049. No R2 values were greater than 

0.15, with the maximum R2 being 0.103 (Plattsburgh, NY) and the minimum being 0.005 

(Danbury, CT and Ithaca, NY) (Table 10). Of all of the polynomials run on January, only one 

had any significant coefficients (Portland, ME: 6 significant coefficients) (Table 10). The 

polynomial regressions for April had an average R2 value of 0.083. Similar to January, no R2 

value exceeded 0.15 for the month of April, with the largest R2 value being 0.131 (Portland, ME) 

and the lowest was 0.001 (Danbury, CT) (Table 11). One of the polynomial regressions had 6 

significant coefficients (Warwick, RI), none of the other regressions had any significant 

coefficients) (Table 11). For the month of July, the average R2 value was 0.122, the maximum R2 

value was 0.28 (Warwick, RI) and the minimum R2 value for the month of July was 0.029 

(Ithaca, NY) (Table 12). Four of the polynomial regressions had significant coefficients (number 

of significant coefficients in parenthesizes): Binghamton, NY (5), New Haven, CT (6), Warwick, 

RI (6) and Worcester, MA (6) (Table 12). The month of October had the best performing 

polynomial regressions when looking at both R2 values and number of significant coefficients. 
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The average R2 value for all polynomial regressions during the month of October was 0.118, the 

maximum was 0.279 (Warwick, RI), and the lowest was 0.049 (Ithaca, NY) (Table 13). The 

month of October had the most polynomial regressions with 6 significant coefficients, with all 

but two of the polynomial regressions containing 6 significant coefficients (Danbury, CT and 

Ithaca, NY both had 0 significant coefficients).  

 ARIMA models were also run on each site using the mean average temperature of each 

month. The ARIMA model forms depended on the PACF and ACF plots for each site, only two 

different ARIMA models were used based on the plots (ARIMA(0,0,0) and ARIMA(0,0,1)). For 

the month of January, the average BIC was 320.08, with a high of 359.58 (Burlington, VT) and a 

low of 270.12 (Plattsburgh, NY) (Table 14). For the month of April, the average BIC was 

250.49, with a high of 302.35 (Worcester, MA) and a low of 193.29 (Plattsburgh, NY) (Table 

15). The month of July had the lowest average BIC of 231.64, and values ranging from 270.94 

(New Haven, CT) to 186.31 (Plattsburgh, NY) (Table 16). The average BIC for the month of 

October was 253.23, with values ranging from a high of 302.81 (Binghamton, NY) to a low of 

198.29 (Plattsburgh, NY) (Table 17).  

 Each of the models (linear regression, polynomial regression and ARIMA) were also run 

across all sites for each month using the average mean temperature.  The results are displayed for 

the linear (Figures 19-22), polynomial (Figures 23-26) and ARIMA (27-30) analyses.  The linear 

model had low R2 values, ranging from a high of only 0.023 (April) to a low of 0.001 (October) 

(Table 18). Only the linear model for July had a significant predictor (Table 18). The polynomial 

regressions performed slightly better than the linear models with R2 values ranging from a high 

of 0.178 (July) to a low of 0.152 (October) (Table 19). However, while the R2 values were 

improved, each of the models (except July, which had 2 significant coefficients) only had 1 
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significant coefficient. The ARIMA model out-performed the other two analyses. The BIC for 

July (which was the lowest) was 246.06, while the month of January had the highest BIC at 

(365.38) (Table 20). In relation to the significance of coefficients, the ARIMA run on the 

temperature for October had 4 significant coefficients and the rest had 1 (Table 20).  

 While there was little evidence of temperature trends across the entirety of the dataset, a 

significant cooling period was identified for January from 1950-1970 (Figures 30-32).  The same 

trend was not observed for the other three months. The linear model (Figure 30) polynomial 

model (Figure 31) and ARIMA model (Figure 32) all performed better on the cooling period 

than on the entire time period as a whole.  

 

 

 

 

 

 

 

 

Discussion: 
 

After running linear regressions, polynomial regressions, and ARIMA models on the 

data, no significant trends in temperature were found for any of the months over the 69-year 
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period for the region as a whole. Given that all three statistical procedures could not identify any 

trends, up or down, from 1950-2018, it is concluded that there has been no significant increase in 

temperature throughout the study period for the northeastern United States. This is in stark 

contrast to the majority of the literature, and many institutions, which all have concluded 

dangerously significant increases in temperature across the northeastern United States. Our linear 

regression and polynomial regression models were unable to be deemed statistically significant 

when using the R2 values and coefficient p-values as tests. The ARIMA models were able to be 

deemed somewhat explanatory of the variation observed in our data due to satisfactory BIC 

values and some significant p-values for coefficients. Even with significance, the ARIMA 

models did not show any trends in temperature across the entirety of the study period for the 

region.  

Even though no statistically significant trend was observed for the whole time series 

(1950-2018), a statistically significant decrease in temperature was uncovered for the 20-year 

period from 1950-1970. This decrease in temperature is most significant for the month of 

January, and to a lesser degree for the other months examined. Due to this decrease in 

temperature, there is an observable increase in temperature from 1981 to present. However, 

without the earlier decrease in temperature, the increasing temperature trend post 1980 does not 

exist. This finding emphasizes the importance of looking at climate trends over long periods of 

time rather than finding trends over shorter arbitrary intervals. Given a lack of trends across the 

entirety of the study period, this data set does not support previous conclusions that significant 

climate warming has occurred in the northeastern United States since 1950 (Burakowski et. al. 

2008).  
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It is important to note that all three models yielded either insignificant trends or no trend. 

Polynomial and linear regressions both were unable to define any significant trends up or down 

in temperature, meaning there were no trends, linear or non-linear, in the temperatures data 

between 1950 to 2018, which at least refutes a linear increase in temperature over time. These 

two statistical models proved insignificant based on R2 values, which represents how much of 

the variation in the data the model can explain. Because the polynomial regression models had 

more coefficients than our linear models (polynomials had six variables, linear models had one), 

R2 values are expected to increase. As a result, p-values of the coefficients were also used to 

evaluate the strength of the models. If a polynomial regression model had a relatively high R2 

value compared to a linear regression model, but none of the coefficients were significant, then 

the model was deemed insignificant. The difference in number of coefficients and model type 

made it important to employ multiple metrics when comparing models.  

Because linear regressions and polynomial regressions attempt to model a relationship 

between an independent variable and a dependent variable, they present a potential drawback 

when analyzing time series data. In the case of time series data, this isn’t the relationship you are 

generally looking for, and in the case of temperature trend data, this relationship is typically not 

going to exist. Linear regressions and polynomial regressions also have slightly different 

drawbacks as well. Linear regressions are not very flexible, as they only model a linear trend, 

which rarely exists in the real world, thus making it often hard to apply accurately to real world 

data. Polynomial regressions do a much better job of modeling non-linear relationships, because 

their flexibility allows them to be fitted to a non-linear trend. That being said, again, both 

methods are attempting to define a relationship between an independent and a dependent 

variable, which for temperature time series data (year vs. temperature) is unlikely to be 
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significant. A relationship is unlikely to exist between temperature and a specific year because a 

given year itself does not impact temperature. There are several other factors that impact 

temperature, such as CO2 emissions, methane emissions, ozone-depleting substances, and 

increased cloud cover (caused by perfluorocarbons) (Montzka, Dlugokencky, Butler 2011). Due 

to there being several causes of temperature fluxes, it is highly unlikely for there to be a causal 

linear relationship between year and temperature (where a specific year is causing a change in 

temperature). 

Given the potential drawbacks of linear and polynomial analyses, ARIMA models were 

also used to search for trends in our time series data. “Classical regression is often insufficient 

for explaining all of the… dynamics of a time series” (Shumway and Stoffer 83), whereas 

ARIMAs can be more efficient because they integrate two components, an autoregressive factor 

and a moving average factor. The autoregressive factor regresses on past data to attempt to 

determine future data, while the moving average factor calculates the average of n year length 

subsets of the data. When these two factors are integrated, ARIMA models are able to map subtle 

trends and determine magnitude of these trends. Unlike linear/polynomial models, it is not 

attempting to explain the relationship between a specific independent and dependent variable. 

ARIMA models attempt to define trends over the time period that are represented in your data.  

The testing of importance of a ARIMA model is slightly different than testing linear and 

polynomial regression models. To test a ARIMA model, the BIC and coefficient p-values were 

used to determine significance. BIC was primarily used to evaluate model strength, but 

coefficients’ p-values were also examined in order to maintain some consistency amongst all 

three types of models. It was not straight forward to compare the results from ARIMA models 
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with those of linear and polynomial models given utilizing BIC vs. R2. However, given the fact 

that the R2 values were low for both models, it was easy to conclude that they were insignificant.  

There were clear differences in temperature variability between months for each site and 

across all sites. In particular, significantly more year-to-year variability in temperature was found 

for January relative to the other three months. In contrast, the least variable month was the 

warmest month, July. Not only was there more year-to-year variability in the winter, but the 

range in temperatures over all sites in January was much greater than that of July. Clear 

differences in metrics related to variability yield the conclusion that colder months (and thus, 

colder temperatures) are much more variable than warmer months (and warmer temperatures). In 

addition, temperature variability was related to distance from the ocean.  In general, sites closer 

to the ocean had lower variability than those more inland. This means, that in the northeastern 

United States, models purporting both increases in temperature variability and increases in 

temperature are unlikely to be accurate when tested against raw data.  

Findings from the current study, which are based on long-term data continuously 

collected from airports, is in stark contrast to other studies focused on the northeast region as 

well as individual northeastern states. Mecray et al. (2018), stated that the northeastern United 

States is warming at a faster rate than most of the United States. In their regional results, Mecray 

et al. (2018) reported that, “Increases in annual average temperatures [of] about 3°F [1.7°C] or 

more in New England since 1901.” Although details are not provided, it is unlikely that the 

Mecray et al. (2018) study has continuous raw temperature data for each month and year dating 

back to 1901. Another study by Runkle et al. (2017) discussed temperature increases specifically 

in Rhode Island during a similar length of time as depicted in the Mecray et al. (2018) study. 

This Runkle et al. (2017) study stated, “Temperatures in Rhode Island have risen almost 4°F 
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(7.2°C) since the beginning of the 20th century.” This study states that their pre-1950 data are 

also observed temperatures, meaning they were measured at the time, which brings into question 

the model they create. A model created by faulty data becomes a faulty model. It is unlikely that 

the data collected in Rhode Island pre-1950 is going to be as accurate/precise as the data that is 

currently being collected, nor consistently recorded from the same locality.  In the current study, 

no data sets consisting of continuous temperature records from the same localities (e.g. airports) 

were uncovered that date to the early 1900’s.  

Despite the reliability of data sets purported older than 1950, the results from both the 

Mecray et al (2018) and Runkle et al. (2017) studies greatly deviate from findings reported in the 

current investigation. One site included in the current study from Warwick, RI, had continuous 

and consistent data across all months from 1950-2018. None of the metrics employed indicate 

results for the Warwick, R.I. site remotely similar to those purported by Runkle et al. (2017).  

When using a linear regression model run on each of the four months, none of them return 

increases in temperature even close to an increase of 7.2°C.  In fact, for the month of January, a 

linear model returned a decrease in temperature of 0.94°C for the Warwick site over the last 69 

years. These stark differences are important to note, as they form the basis of alarm and concern 

for citizens and politicians.  

The Mercray et al. (2018) study, which also cites the work of Runkle et al. (2017), 

discussed potential impacts of a significant increase in temperature on different ecosystems. One 

of them, directly pertinent to the current study, is the potential impact of climate warming on 

freshwater lakes and water resources. The Mecray et al. (2018) study implies that, moving 

forward, freshwater habitats will face severe impacts from increases in temperature. It is 

important that all factors impacting a waterbody be considered when evaluating the health of the 
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system.  This relates to one of the problems outlined above, that issues in freshwater lakes are 

regularly defined as climate change impacts rather than including other potentially significant. 

What can only be viewed as an overestimated increase in temperature defined by Runkle et al. 

(2017) when compared with findings from the current study, is being purported as the most 

important driver causing change in freshwater lakes. This increases the likelihood of other 

variables that may be impacting freshwater lakes being overlooked, leading to more damage to 

these systems.  

Given a lack of transparency (or description) in data sourcing and model parameters in 

both the Mecray et al. (2018) and Runkle et al. (2017), it was not possible to evaluate the root 

cause resulting in different conclusions regarding climate warming. It is possible that the 

temperature observations from their pre-1950 data are the cause of such stark differences. Lastly, 

it is notable that the ARIMA model used in the current study, which can be accurate in its 

predictability, also failed to yield significant increases in temperature.  

While not reporting as significant of trends in temperature as Runkle et. al. (2017), 

Murray et al. (2021) reports significant increases in the mean average temperature at Mt. 

Washington in New Hampshire. They find warming temperatures as well across the entirety of 

the study period (1935-2018); their study finds approximately 0.10°C increase in temperature at 

the summit of Mt. Washington, a 0.17°C increase in temperature for the State of New 

Hampshire, and reports a 0.11°C increase in temperature for the entirety of the northeast. 

Although these temperature increases are slight compared to values reported in both the Mecray 

et al. (2018) and Runkle et al. (2017) reports, they still are contrary to conclusions made in the 

current study. What appears to be a significant difference in the Murray et al. (2021) study is 

based on linear regression. Their testing method for significance was a non-parametric Mann–
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Kendall test, which they used to indicate significant trends, versus usage in this study of R2 and 

p-values which yielded no linear trends over time. This transparency in testing and data sourcing 

allowed for a comparison of methods to potentially help to determine where divergence between 

the two studies.  

The Mann-Kendall test is used to determine significance of trends (up, down or 

monotonic). This method of determining any increase in temperature does not determine the 

significance of linear regressions in the same way that temperature trends were evaluated in the 

current investigation. The significance tests in the current study focused on evaluating the 

significance of the regressions and determine how much of the variation in the data can be 

attributed to the models. While the Mann-Kendall is effective in that it does not require a linear 

relationship or a normal distribution, it is not able to determine the magnitude of change (by how 

much the trend increases/decreases). Their approach to identifying statistically significant trends 

is less efficient than how significance of a linear model was measured in the study done here 

(which would require a linear relationship between variables). In that they attempted to identify 

if there was a statistically significant change, then attempted to map that change without 

identifying if their mapping was significant or not. Our study also includes non-linear models, 

which were also utilized to test for non-linear relationships (like the Mann-Kendall test is able 

to). Thus, this allowed for a determination of trend significance over the time series, and the 

magnitude of any trend over time. Interestingly, Murray et al. (2021) found much more subtle 

increases in temperature than either the Runkle et al. (2017) and Mecray et al. (2018) studies. 

While they found a significant trend and an increase in temperature, due to the two different 

tests, it’s hard to determine if their increase in temperature is a trend or not.  Lastly, it is 
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important to note that the Murray et al. (2021) study is focused on New Hampshire while the 

current study covers a broader region, which could result in differences between the studies. 

The lack of trends across the entirety of the time series dataset are all important to note, 

and are the larger message gleaned from the study. However, based on a subset of the data, a 

definitive cooling period was uncovered from 1950-1970.  All three statistical analyses were 

used to test and confirm this trend.  It is hard to specifically determine how significant the trend 

was because it is not uncommon for regressions run on smaller datasets to yield higher R2 and 

BIC values. However, this again points to the importance of our coefficient p-values which were 

more significant for this cooling trend than they were with the entirety of the dataset. The 

cooling period is important and significant to note, as it is the likely reason that some studies 

report temperature in the northeastern United States to be increasing post the 1980s. The cooling 

trend identified between 1950 and the 1970’s, which is just as significant as any warming post 

1980 trend (if not more significant) shows that temperatures in the northeast have been 

fluctuating over the last seven decades and not necessarily consistently up or down.  

 The cooling period identified in this study was previously identified by scientists, and 

documented in the literature, for the contiguous United States. Mascioli et al. (2017) identified a 

cooling period in summertime temperatures in the northeast and southeast United States. In their 

study, they state, “significant summertime cooling occurs in the early 1950s to the mid-1970s, 

which partially is attributed to increasing anthropogenic aerosol emissions” (Mascoli et. al. 

2017). Results of the current study also show significant summer cooling, but to a lessen degree 

than noted by Mascioli et al (2017), however, both studies reported a similar winter cooling 

event. However, the winter cooling period noted by Mascioli et al (2017) from 1950-1970 was 

not linked to aerosol emissions, unlike the summer cooling trend. The Mascioli et al. (2017) 
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study also concluded that it is extremely important to consider multiple variables when looking 

at extremely complex systems, such as climate. They recommend, that climate scientists include 

aerosols as an important variable in climate models and one that limits warming.  

Although the current study did not detect any significant trends in temperature, up or 

down, it did uncover interesting insights related to temperature variability. Temperature 

variability for each month behaved slightly differently over the 69-year period. In general, there 

was significantly more variability during January than the other months studied, as depicted 

using standard error. The month of January had a standard error of 0.30 °C while July’s standard 

error was around 0.12 °C. The range in mean average temperatures for all sites in January is 

much larger than that of July. For the month of January, the lowest recorded mean average was 

8.83°C while the warmest was 0.77°C resulting in a range of 9.6 °C. In contrast, during July, the 

warmest mean average temperature was 24°C and the coldest was 19.15°C, resulting in a range 

of 4.85°C. This initially shows that colder months tend to have more variability than warmer 

months over the northeast. Further, when considering October and April, they both had standard 

errors lower than January, but higher than July. However, in this case, April is cooler than 

October (April’s mean is 7.89°C, October’s mean 10.72°C), and both months had a similar 

standard error (0.16 vs. 0.17).  To summarize, yearly mean temperature during warmer months 

were generally less variable than cooler periods.  

Further, year-to-year variability also was more apparent in the colder months than the 

warmer months. When analyzing year to year differences (e.x. temperature at 1951 – temperature 

at 1950) in January, there are, on average, significantly larger differences in winter. Regardless, 

no significant trends in variability over time were found, meaning that variability in temperature 

has not been increasing or decreasing over time. 
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 To summarize, it is of utmost importance to consider other factors in addition to 

temperature and other climate-related variables when analyzing changes to local environments. 

Climate warming is not consistent across the globe, and assuming that it is may lead to false 

interpretations of changes in aquatic and terrestrial trends ecosystems being related to climate 

warming, that may not exist in a region. For the northeastern United States, no temperature 

trend(s) was detected over the period 1950-2018 for the months of January, April, July and 

October.  
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Conclusion: 
 

 Our study does not support previous findings that the temperature in the northeastern 

region of the United States has significantly increased since 1950. There was statistically 

significant variability at all sites during cold months which may be important to researchers to 

note. These findings contradict the notion that temperatures are going to both increase and 

become more variable as time goes on. Our data also further emphasizes the importance of 

proximity to the ocean with respect to temperature variability. While further north sites were 

colder and more variable, it was also seen that sites near the ocean were warmer and less variable 

than sites at similar latitudes. This trend will be important for models in the future to consider 

when looking at temperature trends over regions that include coastline. The coastal sites will 

most likely experience less temperature variability, and depending on ocean currents be warmer 

or colder, than sites situated at similar latitudes but further inland. In the future, additional 

analyses will be necessary to understand why the air temperature in the northeast is not 

increasing at rates observed in other parts of the country.  
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Figures and Tables: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Map displaying the distribution of sites throughout the study 

region with labels identifying each site. 
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Table 1: The geographic coordinates of the 13 study sites. 

Site Latitude Longitude Site Latitude Longitude 

Boston, MA 42.367 -71.022 Portsmouth, NH 43.072 -70.762 

Buffalo, NY 42.886 -78.878 Portland, ME 43.661 -70.255 

Binghamton, NY 42.099 -75.913 Plattsburgh, NY 44.699 -73.543 

Burlington, VT 44.476 -73.212 Warwick, RI 41.700 -71.417 

Danbury, CT 41.395 -73.454 Windsor Locks, CT 41.929 -72.627 

Ithaca, NY 42.444 -76.502 Worcester, MA 42.263 -71.802 

New Haven, CT 41.311 -72.929    
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Table 2: Number of years out of 69 that mean temperature values were calculated for each 

of the four months (January, April, July and October) and each site used in this study.  

Site January April July October 

Binghamton, NY 69 69 69 69 

Boston, MA 69 69 69 69 

Buffalo, NY 69 68 69 69 

Burlington, VT 69 69 69 69 

Danbury, CT 61 66 63 64 

Ithaca, NY 65 66 63 64 

New Haven, CT 66 66 64 64 

Plattsburgh, NY 50 51 51 50 

Portland, ME 69 69 69 69 

Portsmouth, NH 68 68 67 68 

Warwick, RI 69 69 69 69 

Windsor Locks, CT 69 69 69 69 

Worcester, MA 68 69 69 68 

Average 66 66 66 66 
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Table 3: Altitude in meters (m) of each of the airports that are associated with each of the 

cities that were used in this study. 

Site Altitude (m) Site Altitude (m) 

Boston, MA 6.00 Portsmouth, NH 30.5 

Buffalo, NY 221.9 Portland, ME 23.2 

Binghamton, NY 439.7 Plattsburgh, NY 71.3 

Burlington, VT 108.2 Warwick, RI 16.8 

Danbury, CT 139.9 Windsor Locks, CT 52.7 

Ithaca, NY 334.9 Worcester, MA 307.5 

New Haven, CT 3.7 Mean 135.1 
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Table 4: Determination if sites are considered to be coastal based on being 10 km of the 

ocean. 

Site Ocean Front? Site Ocean Front? 

Boston, MA Yes Portsmouth, NH Yes 

Buffalo, NY No Portland, ME Yes 

Binghamton, NY No Plattsburgh, NY No 

Burlington, VT No Warwick, RI No 

Danbury, CT No Windsor Locks, CT No 

Ithaca, NY No Worcester, MA No 

New Haven, CT Yes   
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Table 5: Averages of each temperature metric (mean minimum, mean average, mean 

maximum) for each site and month of the study period. Table also includes the average and 

range for each temperature metric across all sites for each month.  

Site January April July October 

Binghamton, NY -15.7, -5.8, 5.8 -2.2, 6.8, 17.5 13.9, 19.8, 25.1 1.3, 9.2, 17.6 

Boston, MA -5, -1.4, 2.3 5, 9.1, 13.1 18.9, 23.1, 27.5 8.7, 12.5, 16.6 

Buffalo, NY -7.6, -4, -0.6 2.7, 7.6, 12.5 17, 21.8, 26.7 6.6, 10.3, 15.4 

Burlington, VT -11.9, -7.6, -3.1 1.4, 6.6, 11.8 15.9, 21.3, 26.8 4.7, 9.3, 13.9 

Danbury, CT -7, -2.7, 1.7 3.3, 9.1, 14.9 16.6, 22.2, 27.9 5.5, 11.1, 16.9 

Ithaca, NY -8.9, -4.8, -0.7  1.7, 7.2, 12.7 14.9, 20.9, 26.9 9.8, 10, 15.7 

New Haven, CT -10.1, -0.5, 7.9 3.2, 9.9, 17.4 17.6, 27.9, 29.8 5.9, 13.2, 20.1 

Plattsburgh, NY -19.9, -7.6, 3.8 -1.4, 6, 14.9 14.9, 20.4, 25.9 1.5, 8.5, 16.5 

Portland, ME -10, -5.4, -0.5 1.5, 6.4, 11.4 15.4, 20.5, 25.9 4.4, 9.7, 14.7 

Portsmouth, NH -8.1, -3.9, 0.3 2.9, 7.7, 12.5 16.6, 21.6, 26.8 5.9, 10.8, 15.7 

Warwick, RI -11.4, -1.5, 8.3 2.3, 8.9, 16.9 17.4, 22, 27.5 4.7, 11.7, 18.9  

Windsor Locks, CT -7.7, -3.3, 1.1 3.9, 9.6, 15.4 17.4, 23.1, 29 5.8, 11.5, 17.3 

Worcester, MA -8.2, -4.4, -0.5 2.8, 7.7, 12.6 16.7, 21.2, 25.9 5.9, 10.3, 14.7 

Average -10.1, -4.1, 1.9 2.1, 7.9, 14.1 16.4, 22.1, 26.9 5.4, 10.6, 16.5 

Range 14.9, 7.1, 9  7.2, 3.9, 6.1 5, 8.1, 4.7 7.4, 4.7, 6.2 
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Figure 2: The mean temperature for each site during the month of January when 

organized by latitude. Sites decline in latitude along the x-axis. The red line is a linear 

regression illustrating the relationship between latitude and mean temperature.  
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Figure 3: The mean temperature for each site during the month of April when organized by 

latitude. Sites decline in latitude along the x-axis. The red line is a linear regression illustrating the 

relationship between latitude and mean temperature. 
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Figure 4: The mean temperature for each site during the month of July when organized by 

latitude. Sites decline in latitude along the x-axis. The red line is a linear regression 

illustrating the relationship between latitude and mean temperature.  
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Figure 5: The mean temperature for each site during the month of October when organized 

by latitude. Sites decline in latitude along the x-axis. The red line is a linear regression 

illustrating the relationship between latitude and mean temperature.  
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Figure 6: The mean temperature for each site during the month of January when 

organized by latitude and removing the ocean-front sites. Sites decline in latitude along the 

x-axis. The red line is a linear regression illustrating the relationship between latitude and 

mean temperature.  
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Figure 7: The mean temperature for each site during the month of April when organized 

by latitude and removing the ocean-front sites. Sites decline in latitude along the x-axis. 

The red line is a linear regression illustrating the relationship between latitude and mean 

temperature. 
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Figure 8: The mean temperature for each site during the month of July when organized by 

latitude and removing the ocean-front sites. Sites decline in latitude along the x-axis. The 

red line is a linear regression illustrating the relationship between latitude and mean 

temperature. 
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Figure 9: The standard error for each month at each site for the mean minimum 

temperature metric. Each bar represents a month for a site, which is listed on the x-axis.  
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Figure 10: The standard error for each month at each site for the mean average 

temperature metric. Each bar represents a month for a site, which is listed on the x-axis.  
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Figure 11: The standard error for each month at each site for the mean maximum 

temperature metric. Each bar represents a month for a site, which is listed on the x-axis.  
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Figure 12: The relationship between the standard error for the mean average temperature 

metric and the latitude of the site for the month of January. Sites decline in latitude along 

the x-axis. The red line is a linear regression illustrating the relationship between latitude 

and mean temperature.  
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Figure 13: The relationship between the standard error for the mean average temperature 

metric and the latitude of the site for the month of January. Sites decline in latitude along 

the x-axis. The red line is a linear regression illustrating the relationship between latitude 

and mean temperature. In this figure, all sites that were defined as ocean-front sites have 

been removed.  
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Figure 14: Box and whisker plot showing the distribution of mean temperatures by 

month for all sites. Each box and whisker represent mean average temperature for all 

sites for that individual month.  
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Figure 15: Line graph showing temperature trends for all sites for the mean average temperature 

metric for the month of January. This line is showing the average of all sites’ mean average 

temperature metric for January.  
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Figure 16: Line graph showing temperature trends for all sites for the mean average temperature 

metric for the month of April. This line is showing the average of all sites’ mean average 

temperature metric for April.  
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Figure 17: Line graph showing temperature trends for all sites for the mean average temperature 

metric for the month of July. This line is showing the average of all sites’ mean average temperature 

metric for July.  
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Figure 18: Line graph showing temperature trends for all sites for the mean average 

temperature metric for the month of October. This line is showing the average of all sites’ 

mean average temperature metric for October.  
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Table 6: Metrics used to measure the significance of the linear regression analyses when 

run on the mean average temperature for each site. This table represents linear regressions 

only run on mean average temperature metrics for the month of January.  

Site R2 P-Value Site R2 P-Value 

Binghamton, NY 0.007 0.49 Plattsburgh, NY 0.102 0.02 

Boston, MA 0.009 0.45 Portland, ME 0.013 0.357 

Buffalo, NY 0.002 0.67 Portsmouth, NH 0.0003 0.88 

Burlington, VT 0.047 0.07 Warwick, RI 0.014 0.34 

Danbury, CT 0.003 0.69 Windsor Locks, CT 0.015 0.316 

Ithaca, NY 0.001 0.76 Worcester, MA 0.006 0.538 

New Haven, CT 0.001 0.99    
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Table 7: Metrics used to measure the significance of the linear regression analyses when 

run on the mean average temperature for each site. This table represents linear regressions 

only run on mean average temperature metrics for the month of April.  

Site R2 P-Value Site R2 P-Value 

Binghamton, NY 0.008 0.46 Plattsburgh, NY 0.04 0.157 

Boston, MA 0.029 0.16 Portland, ME 0.107 0.006 

Buffalo, NY 0.016 0.31 Portsmouth, NH 0.005 0.58 

Burlington, VT 0.099 0.008 Warwick, RI 0.039 0.10 

Danbury, CT 0.0001 0.93 Windsor Locks, CT 0.038 0.11 

Ithaca, NY 0.0001 0.95 Worcester, MA 0.072 0.025 

New Haven, CT 0.011 0.41    
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Table 8: Metrics used to measure the significance of the linear regression analyses when 

run on the mean average temperature for each site. This table represents linear regressions 

only run on mean average temperature metrics for the month of July.  

Site R2 P-Value Site R2 P-Value 

Binghamton, NY 0.0002 0.92 Plattsburgh, NY 0.033 0.20 

Boston, MA 0.049 0.07 Portland, ME 0.164 0.001 

Buffalo, NY 0.041 0.09 Portsmouth, NH 0.009 0.458 

Burlington, VT 0.171 0.001 Warwick, RI 0.049 0.065 

Danbury, CT 0.035 0.142 Windsor Locks, CT 0.092 0.011 

Ithaca, NY 0.017 0.303 Worcester, MA 0.062 0.04 

New Haven, CT 0.0001 0.968    
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Table 9: Metrics used to measure the significance of the linear regression analyses when 

run on the mean average temperature for each site. This table represents linear regressions 

only run on mean average temperature metrics for the month of October.  

Site R2 P-Value Site R2 P-Value 

Binghamton, NY 0.012 0.37 Plattsburgh, NY 0.006 0.59 

Boston, MA 0.004 0.59 Portland, ME 0.056 0.05 

Buffalo, NY 0.0001 0.96 Portsmouth, NH 0.005 0.581 

Burlington, VT 0.039 0.10 Warwick, RI 0.028 0.17 

Danbury, CT 0.003 0.68 Windsor Locks, CT 0.006 0.521 

Ithaca, NY 0.007 0.49 Worcester, MA 0.0003 0.898 

New Haven, CT 0.016 0.32    
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Table 10: Polynomial regression testing metrics for the month of January, the table shows 

the metrics used to measure the significance of the polynomial regression when run on the 

mean average temperature metric for each site. Significant coefficients (Sig Coeffs) 

represents the number of significant coefficients for each polynomial regression. Because a 

6th order polynomial was used, the maximum number of significant coefficients is 6 

(ignoring the y-intercept).  

Site R2 Sig Coeffs Site R2 Sig Coeffs 

Binghamton, NY 0.015 0 Plattsburgh, NY 0.103 0 

Boston, MA 0.04 0 Portland, ME 0.078 6 

Buffalo, NY 0.049 0 Portsmouth, NH 0.045 0 

Burlington, VT 0.096 0 Warwick, RI 0.072 0 

Danbury, CT 0.005 0 Windsor Locks, CT 0.056 0 

Ithaca, NY 0.005 0 Worcester, MA 0.057 0 

New Haven, CT 0.019 0    
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Table 11: Polynomial regression testing metrics for the month of April, the table shows the 

metrics used to measure the significance of the polynomial regression when run on the 

mean average temperature metric for each site. Significant coefficients (Sig Coeffs) 

represents the number of significant coefficients for each polynomial regression. Because a 

6th order polynomial was used, the maximum number of significant coefficients is 6 

(ignoring the y-intercept). 

Site R2 Sig Coeffs Site R2 Sig Coeffs 

Binghamton, NY 0.026 0 Plattsburgh, NY 0.049 0 

Boston, MA 0.037 0 Portland, ME 0.131 0 

Buffalo, NY 0.016 0 Portsmouth, NH 0.032 0 

Burlington, VT 0.103 0 Warwick, RI 0.112 6 

Danbury, CT 0.001 0 Windsor Locks, CT 0.038 0 

Ithaca, NY 0.004 0 Worcester, MA 0.074 0 

New Haven, CT 0.011 0    
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Table 12: Polynomial regression testing metrics for the month of July, the table shows the 

metrics used to measure the significance of the polynomial regression when run on the 

mean average temperature metric for each site. Significant coefficients (Sig Coeffs) 

represents the number of significant coefficients for each polynomial regression. Because a 

6th order polynomial was used, the maximum number of significant coefficients is 6 

(ignoring the y-intercept). 

Site R2 Sig Coeffs Site R2 Sig Coeffs 

Binghamton, NY 0.207 5 Plattsburgh, NY 0.067 0 

Boston, MA 0.094 0 Portland, ME 0.187 0 

Buffalo, NY 0.059 0 Portsmouth, NH 0.049 0 

Burlington, VT 0.21 0 Warwick, RI 0.28 6 

Danbury, CT 0.038 0 Windsor Locks, CT 0.113 0 

Ithaca, NY 0.029 0 Worcester, MA 0.125 6 

New Haven, CT 0.124 6    
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Table 13: Polynomial regression testing metrics for the month of October, the table shows 

the metrics used to measure the significance of the polynomial regression when run on the 

mean average temperature metric for each site. Significant coefficients (Sig Coeffs) 

represents the number of significant coefficients for each polynomial regression. Because a 

6th order polynomial was used, the maximum number of significant coefficients is 6 

(ignoring the y-intercept). 

Site R2 Sig Coeffs Site R2 Sig Coeffs 

Binghamton, NY 0.214 6 Plattsburgh, NY 0.179 6 

Boston, MA 0.104 6 Portland, ME 0.126 6 

Buffalo, NY 0.083 6 Portsmouth, NH 0.086 6 

Burlington, VT 0.171 6 Warwick, RI 0.279 6 

Danbury, CT 0.054 0 Windsor Locks, CT 0.078 6 

Ithaca, NY 0.049 0 Worcester, MA 0.089 6 

New Haven, CT 0.197 6    
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Table 14: ARIMA model testing metrics for the month of January, the table shows the 

metrics used to measure the significance of an ARIMA model when run on the mean 

average temperature metric for each site. The BIC represents the Bayesian Information 

Criterion of the model, and the Sig. Coeffs. column represents the number of significant 

predictors in the ARIMA model.   

Site BIC Sig Coeffs Site BIC Sig Coeffs 

Binghamton, NY 338.21 3/3 Plattsburgh, NY 270.12 2/2 

Boston, MA 313.68 2/2 Portland, ME 328.24 2/2 

Buffalo, NY 337.96 2/2 Portsmouth, NH 319.35 2/2 

Burlington, VT 359.58 2/2 Warwick, RI 322.57 2/2 

Danbury, CT 293.39 2/2 Windsor Locks, CT 331.2 2/2 

Ithaca, NY 323.97 2/2 Worcester, MA 321.90 2/2 

New Haven, CT 300.88 1/2    
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Table 15: ARIMA model testing metrics for the month of April, the table shows the metrics 

used to measure the significance of an ARIMA model when run on the mean average 

temperature metric for each site. The BIC represents the Bayesian Information Criterion 

of the model, and the Sig. Coeffs. column represents the number of significant predictors in 

the ARIMA model.   

Site BIC Sig Coeffs Site BIC Sig Coeffs 

Binghamton, NY 279.27 2/2 Plattsburgh, NY 193.29 2/2 

Boston, MA 245.55 2/2 Portland, ME 212.43 2/2 

Buffalo, NY 274.96 2/2 Portsmouth, NH 241.87 2/2 

Burlington, VT 273.40 2/2 Warwick, RI 243.95 2/2 

Danbury, CT 233.13 2/2 Windsor Locks, CT 251.51 2/2 

Ithaca, NY 268.81 2/2 Worcester, MA 302.35 2/4 

New Haven, CT 235.79 2/2    

 

 

 

 

 

 

 

 

 



Eagle 67 
 

Table 16: ARIMA model testing metrics for the month of July, the table shows the metrics 

used to measure the significance of an ARIMA model when run on the mean average 

temperature metric for each site. The BIC represents the Bayesian Information Criterion 

of the model, and the Sig. Coeffs. column represents the number of significant predictors in 

the ARIMA model.   

Site  BIC Sig Coeffs Site BIC Sig Coeffs 

Binghamton, NY 267.36 4/4 Plattsburgh, NY 186.31 2/3 

Boston, MA 221.49 2/2 Portland, ME 215.35 4.5 

Buffalo, NY 241.15 2/2 Portsmouth, NH 214.87 2/2 

Burlington, VT 251.65 3/5 Warwick, RI 243.64 2/2 

Danbury, CT 209.95 2/2 Windsor Locks, CT 238.29 2/2 

Ithaca, NY 224.46 2/2 Worcester, MA 225.84 2/2 

New Haven, CT 270.94 2/2    
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Table 17: ARIMA model testing metrics for the month of October, the table shows the 

metrics used to measure the significance of an ARIMA model when run on the mean 

average temperature metric for each site. The BIC represents the Bayesian Information 

Criterion of the model, and the Sig. Coeffs. column represents the number of significant 

predictors in the ARIMA model.   

Site BIC Sig Coeffs Site BIC Sig Coeffs 

Binghamton, NY 302.81 2/2 Plattsburgh, NY 198.29 2/2 

Boston, MA 241.98 2/2 Portland, ME 251.78 2/2 

Buffalo, NY 264.29 2/2 Portsmouth, NH 236.39 2/2 

Burlington, VT 263.72 2/2 Warwick, RI 241.74 2/2 

Danbury, CT 279.94 2/3 Windsor Locks, CT 258.43 2/2 

Ithaca, NY 254.08 2/2 Worcester, MA 265.21 2/2 

New Haven, CT 233.75 2/3    
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Figure 19: The change in mean temperature metric versus year for the month of January 

as the average of all sites. The red line is the linear regression model run on the data to 

find any linear trends in temperature.  
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Figure 20: The change in mean temperature metric versus year for the month of April as 

an the average of all sites. The red line is the linear regression model run on the data to 

find any linear trends in temperature.  
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Figure 21: The change in mean temperature metric versus year for the month of July as 

an the average of all sites. The red line is the linear regression model run on the data to 

find any linear trends in temperature.  
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Figure 22: The change in mean temperature metric versus year for the month of 

October as an the average of all sites. The red line is the linear regression model run on 

the data to find any linear trends in temperature.  
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Figure 23: The change in mean temperature metric for the month of January for the 

average of all sites. The red line is the polynomial regression model run on the data to find 

any non-linear trends in temperature.  
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Figure 24: The change in mean temperature metric for the month of April for the average 

of all sites. The red line is the polynomial regression model run on the data to find any non-

linear trends in temperature.  
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Figure 25: The change in mean temperature metric for the month of July for the average 

of all sites. The red line is the polynomial regression model run on the data to find any non-

linear trends in temperature.  
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Figure 26: The change in mean temperature metric for the month of October for the 

average of all sites. The red line is the polynomial regression model run on the data to find 

any non-linear trends in temperature.  
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Figure 27: The change in mean temperature metric for the month of January for the 

average of all sites. The red line is the ARIMA model run on the data to find any trends in 

temperature that polynomial and linear models cannot identify.  
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Figure 28: The change in mean temperature metric for the month of April for the average 

of all sites. The red line is the ARIMA model run on the data to find any trends in 

temperature that polynomial and linear models cannot identify.  
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Figure 29: The change in mean temperature metric for the month of July for the average 

of all sites. The red line is the ARIMA model run on the data to find any trends in 

temperature that polynomial and linear models cannot identify.  
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Figure 30: The change in mean temperature metric for the month of October for the 

average of all sites. The red line is the ARIMA model run on the data to find any trends in 

temperature that polynomial and linear models cannot identify.  
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Table 18: Linear regression testing metrics for all months. These metrics are from linear 

regressions run on the mean average across all sites.  The columns represent the R2 value of 

each linear model along with the p-val of the x-value coefficient (coefficient for years). 

Month R2 P-Val 

January 0.009 0.433 

April 0.023 0.174 

July 0.058 0.045 

October 0.001 0.816 
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Table 19: Polynomial regression testing metrics for all months, the table shows the metrics 

used to measure the significance of the polynomial regression when ran on the mean 

average temperature metric for all sites. The significant coefficients (Sig Coeffs.) column 

represents the number of significant coefficients for each polynomial regression, since a 6th 

order polynomial was used, maximum number of significant coefficients is 6 (ignoring y-

intercept).  

Month R2 Sig. Coeffs. 

January 0.171 1 

April 0.173 1 

July 0.178 2 

October 0.152 1 
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Table 20: ARIMA model testing metrics for all months, the ARIMA models were run on all 

the mean average of all thirteen sites. The BIC value, Bayesian Information Criterion, is 

represented in the first column. The second column represents the number of coefficients 

which have a p-value less than 0.05 (maximum number of significant coefficients is 3). 

Month BIC Sig. Coeffs. 

January 331.68 2 

April 243.23 2 

July 210.99 2 

October 255.47 2 
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Figure 31: The change in mean temperature for the month of January for the average 

across all sitesfor th 1950-1970 subset of the data; the red line is the linear regression line. 

The graph also displays the R2 value of the linear model.   
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Figure 32: The change in mean temperature for the month of January for the average 

across all sites for the 1950-1970 subset of the data; the red line is the polynomial 

regression line. The graph also displays the R2 value of the polynomial model.   

 

 

 

 

 

 

 

Temperature Trend for All Sites in January 1950-1970 



Eagle 86 
 

 

Figure 33: The change in mean temperature for the month of January for the average 

across all sites for the 1950-1970 subset of the data; the red line is the ARIMA model line. 

The (p,d,q) parameters are also identified in the upper right hand corner of the graph 

space.  
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