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Abstract 

When analyzing a table of statistical results, one must first decide whether 

adjustment of significance levels is appropriate.  If the main goal is hypothesis 

generation or initial screening for potential conservation problems, then it may be 

appropriate to use the standard comparisonwise significance level to avoid Type 

2 errors (not detecting real differences or trends).  If, however, the main goal is 

rigorous testing of a hypothesis, then an adjustment for multiple tests is needed.  

To control the familywise Type 1 error rate (the probability of rejecting at least 

one true null hypothesis), sequential modifications of the standard Bonferroni 

Method, such as Holm’s method, will provide more statistical power than the 

standard Bonferroni method.  Additional power may be achieved by using 

procedures that control the False Discovery Rate (the expected proportion of 

false positives among tests found to be significant).  When the Holm’s method 

and two different false discovery rate procedures (FDR and pFDR) were applied 

to the results of multiple regression analyses of the relationship between habitat 

variables and abundance for 25 species of forest birds in Japan, the pFDR 

procedures provided the greatest statistical power. 

 

Introduction 

After the publication of Rice's (1989) paper on analyzing tables of statistical tests, 

reviewers and editors for field biology journals became more concerned about 

the problem of significant results that occur by chance when a large number of 

statistical tests are completed.  If the significance level for each test (α) is set at 
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0.05, then one in every 20 tests in which there is actually no difference or effect 

will be significant by chance.  Hence, if scores of tests are completed, a large 

number of significant results may be spurious.  The recommended solution is 

applying the Bonferroni Method or related procedures that set the "familywise" or 

"experimentwise" significance level at α rather than using the standard 

"comparisonwise" significance level appropriate for a single, isolated statistical 

test.   

 

As an example, Kurosawa and Askins (2003) recently investigated the effect of 

forest fragmentation on bird populations in southern Hokkaido, Japan.  In one 

analysis, the authors assessed the effects of forest area and isolation on the 

abundance of 25 common species using multiple regression methods to control 

for habitat variables such as canopy height, herb cover, shrub cover, and conifer 

cover.  When testing model significance for each species, the authors used 

Holm’s Sequential Bonferroni Method to adjust their levels of significance.  As a 

result, they found only 2 species in which the multiple regression model 

significantly explained variability in species abundance, despite having 9 p-

values below 0.05, 6 of which were below 0.01. 

 

Conventional wisdom demands the sort of multiple testing adjustments 

performed by Kurosawa and Askins; otherwise, spurious conclusions (declaring 

results significant when they really are not) become all too common.  The 

standard Bonferroni method controls the familywise error rate by simply dividing 
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the level of significance !  by the number of tests n.  Modifications such as 

Holm’s Sequential Bonferroni Method can increase the statistical power of 

multiple tests (Holm 1979; Rice 1989; Wright 1992; Shaffer 1995).  Nonetheless, 

researchers often suspect that these procedures are too conservative, making it 

difficult to detect valid differences (Saville 1990; Benjamini et al. 2001).  More 

recently developed alternatives that control the False Discovery Rate (Benjamini 

& Hochberg 1995; Storey 2002) can provide marked increases in power over 

sequential Bonferroni methods. 

 

A more fundamental consideration is whether adjustments in the significance 

level are appropriate in all cases of multiple testing (Saville 1990; Crabbe et al. 

1999).  As Tukey (1991) wrote: "We do not dare work at very high error rates.  

We should not try to work at very low ones.  We need to work in the range where 

error rates make an appreciable contribution to the "fuzz" that is always involved 

in our knowledge or belief".  This "fuzz" is tolerable because, as Tukey 

emphasized, "truly solid knowledge" comes from repeated confirmation from 

numerous studies.  Decisions about whether adjusted significance levels in 

multiple tests are appropriate and, if so, how testing power can be maximized, 

require careful consideration.  In particular, attention must be paid to the nature 

of the multiple tests (hypothesis generating or hypothesis confirming), the 

responses of interest (specific items or general patterns), and the error rate the 

researchers desire to control (comparisonwise, familywise, or false discoveries). 
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Screening and Confirmatory Testing 

The appropriateness of adjustments for multiple tests for clinical trials has been 

the subject of ongoing debate and study by pharmaceutical researchers.  

Following ICH (International Conference on Harmonisation of Technical 

Requirements for Registration of Pharmaceuticals for Human Use) guidelines, 

pharmaceutical researchers make a distinction between screening analyses for 

safety and confirmatory analyses for efficacy, and have reached a consensus 

that the Bonferroni method and other multiple-testing adjustments generally 

should apply only to the latter (Food and Drug Administration 1998:33-37).  

Screening tests for safety provide information about whether a compound 

produces deleterious side effects.  Typically, a large number of potential side 

effects are recorded and analyzed, resulting in a large table of related test 

results.  This is the type of situation in which the Bonferroni correction is often 

applied, but in this case it would result in few side effects showing significant 

results at the familywise level.  Detecting false positives is a less serious issue 

than disregarding potential side effects, so application of the Bonferroni method 

is considered inappropriate.  Researchers are aware that some of the apparently 

significant results will be due to chance, but all side effects that show a 

significantly higher frequency in the test group than in the control group will 

become the subject of more focused research, resulting in a higher level of drug 

safety.   
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In confirmatory analyses for efficacy, where the effectiveness of a compound is 

evaluated, the philosophy is different.  In such analyses it is important to show 

rigorously that the compound has a substantial positive effect on health.  These 

analyses may draw on data from the same trials as screening tests for safety, but 

typically they are more focused statistical analyses with fewer variables or 

comparisons, and a Bonferroni or similar multiple-comparison adjustment in 

significance levels is applied (Food and Drug Administration 1998:33-37).  In this 

case, false positives are a serious problem because they could result in the 

production of a useless pharmaceutical. 

 

Ecological research involves analogues to safety (screening) and efficacy 

(confirmatory) testing.  For example, researchers in the Hokkaido study 

compared the distributions of a large number of species in habitat patches of 

different sizes to determine if there is a set of species that are potentially affected 

by habitat fragmentation.  After this broad-scale screening process, the next step 

would be more intensive and focused studies of the life history, demography, and 

distribution of these species to more rigorously test whether they are affected by 

habitat fragmentation and, if so, to determine the causes.  While the Bonferroni 

correction would be appropriate in these focused studies, it is unnecessarily 

conservative for the initial screening.  Insisting on Bonferroni-type corrections for 

all tables of statistical test results will prevent the type of large-scale, exploratory 

studies that help identify important questions for more intensive studies.  The 

distinction between "screening" and "confirmatory" studies is not normally made 
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by ecologists, who tend to either ignore multiple-testing adjustments altogether or 

apply them to all tables of test results. 

 

The distinction between "screening" and "confirmatory" studies applies 

particularly well to research that has immediate relevance to conservation.  

"Screening" might involve the detection of potential population declines among a 

large group of species or of potential negative impacts on ecosystem functions 

following an environmental change.  Using confidence intervals or 

comparisonwise significance levels for each test will reveal potential problems, 

each of which can be studied more intensively.  In this situation it is important to 

reduce the frequency of Type 2 errors (false negatives) which might result in not 

detecting a serious population decline or ecological problem.  The inevitable 

"false positives" (Type 1 errors) can be screened out later with more intensive 

studies. 

 

Avoiding Type 2 errors appears to be less critical in basic ecological research 

than in safety testing of drugs or general surveys geared to early detection of 

environmental problems, but there may be cases in which the screening 

approach without multiple hypothesis testing would be appropriate in basic 

research.  For example, in the early stages of a new research program (Saville 

1990; Cobb 1998:453-455), a researcher might legitimately engage in hypothesis 

generation (screening) rather than hypothesis testing (confirmation).  Numerous 

regression analyses on different species might be used to determine whether 
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there are some key habitat variables that determine the species composition of a 

community.  If this approach is used without multiple hypothesis testing, 

however, the researcher should explicitly explain that the intent is generation of 

hypotheses, not hypothesis testing.  In many studies these two processes are 

confounded (Saville 1990); hypotheses generated by screening with p-values are 

implicitly assumed to have been adequately confirmed without further testing, 

leading to unreliable conclusions.  To be confirmed, the hypotheses generated 

from large sets of statistical tests must later be tested in more focused studies 

with a small number of tests and with the application of multiple testing 

adjustment procedures.  Often both hypothesis generation and confirmation can 

be accomplished in the same study and explained in the same paper, but this is 

not always practical.  When the goal of a study is hypothesis generation, this 

must be emphasized clearly in the abstract, introduction, and discussion section 

of any paper describing the results, and significant relationships should be 

labeled as "potential" or "tentative" until confirmed by further testing to reduce the 

chance that the results will be misapplied. 

 

Improving the Statistical Power of Multiple Hypothesis Tests 

If a researcher determines that an adjustment for multiple hypothesis tests is 

appropriate, then he or she should strive to use a procedure that produces 

maximum power while all its assumptions are satisfied.  Most adjustments for 

multiple testing attempt to control the familywise error rate—the probability of 

making at least one error by rejecting a true null hypothesis.  The standard 
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Bonferroni method controls the familywise error rate by simply dividing the level 

of significance !  by the number of tests n.  Many researchers find this 

adjustment to be highly conservative, but fortunately there are modifications of 

the basic Bonferroni method that increase power while maintaining familywise 

significance.   

 

One such modification is Holm’s Sequential Bonferroni Method (Holm 1979; Rice 

1989).  First, p-values corresponding to the n tests are ordered from smallest to 

largest: )()2()1( n
ppp !!! L .  In stage one, if np /)1( !? , then the null hypothesis 

)1(H  associated with )1(p  is not rejected and all other null hypotheses are not 

rejected without further test; otherwise, )1(H  is rejected and one moves to stage 

two.  In stage two, if )1/()2( !? np " , then the null hypothesis )2(H  associated with 

)2(p  is not rejected and null hypotheses )()4()3( ,,,
n

HHH K  are not rejected without 

further test; otherwise, )2(H  is rejected and one moves to stage three.  

Continuing in this manner, at any stage j, )( jH  is rejected if and only if 

all jiH i < ,)( , have been rejected and )1/()( +!" jnp
j

# .  Later, Hochberg (1988) 

and Hommel (1988) both provided procedures which, based on a result of Simes 

(1986), modify Holm’s method.  Hommel’s method is more powerful than 

Hochberg’s, which is more powerful than Holm’s (Shaffer 1995) for independent 

tests and most dependent test scenarios, although improvement typically is 

minor.  In addition, simulations in Simes (1986) suggest that dependency among 

tests leads to a conservative multiple testing procedure. 
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Benjamini and Hochberg (1995) have developed an alternative approach to 

multiple hypothesis testing that controls the expected proportion of false positive 

findings among all rejected hypotheses (the False Discovery Rate).  In many 

studies with multiple tests, the FDR is the more relevant error rate; out of all the 

rejected hypotheses, what proportion do we expect were incorrectly rejected?  

For example, if there are 100 significant tests and one is willing to incur a False 

Discovery Rate of 5%, about 5 of these significant results would be false 

positives.  As the number of tests increases, control of the familywise error rate 

can become overly restrictive, and few significant tests are noted as a result.  If 

we expect more than just a few null hypotheses to be truly false, then controlling 

the familywise error rate is impractical.  In response, FDR-controlling methods 

have started to appear in studies covering such diverse topics as plant breeding 

(Basford & Tukey 1997), education (Williams et al. 1999), and genetic mapping 

(Weller et al. 1998).  

 

Consider the following simulated example in which we compare controlling 

methods for the familywise error rate and the False Discovery Rate.  This 

simulation was designed as an illustrative example, not as proof of general 

properties, although the results here generally agree with those of more complete 

simulation studies (see, for example, Benjamini & Hochberg 1995 or Storey 

2002).  P-values corresponding to 1000 independent tests of significance were 

generated; 500 were randomly sampled decimal values between 0 and 1, and 
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500 were randomly sampled values from an exponential distribution with mean 

0.02.  The first set of 500 random p-values reflect p-values under the null 

distribution (i.e., those corresponding to true null hypotheses) while the 500 p-

values from the exponential distribution correspond to null hypotheses that are 

actually false.  Under the familywise error controlling methods discussed above 

(Bonferroni, Holm, and Hommel), only 1 of the 1000 null hypotheses is rejected, 

despite the fact that 184 p-values are below 0.01 and 483 are below 0.05.  Note, 

for instance, that the standard Bonferroni method would only reject p-values 

below 0 00005.01000/05. = , while Holm’s method requires the minimum p-value 

to fall below the same 0.00005 level and the next smallest p-value to fall below 

2*0.00005 = 0.0001.  In this simulation, the minimum p-value was 0.0000413 and 

the next smallest was 0.0001092.  On the other hand, Benjamini and Hochberg’s 

linear step-up procedure for controlling the FDR (1995; see below) rejects 114 of 

the 1000 null hypotheses, essentially setting a p-value cut-off of 0.00564.  In this 

example, their procedure has succeeded in controlling the False Discovery Rate 

at 5%; of the 114 rejections, only 5 represent false discoveries (4.39%). 

 

Specifically, Benjamini and Hochberg’s False Discovery Rate 

is )0Pr()0|( >?> RR
R

V
E , where R = number of rejected null hypotheses, and V = 

number of false positives among rejected null hypotheses.  In their 1995 paper, 

Benjamini and Hochberg provided a linear step-up procedure for controlling the 

FDR at a given level α for independent test statistics.  Simply let k be the largest i 

for which nip
i

/)( !" , then reject )()2()1( ,,,
k

HHH K .  Later, Benjamini and Yekutieli 
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(2001) showed that this linear step-up procedure controls the FDR under positive 

regression dependency on a subset, which, in simplified terms, means that 

knowing that a certain p-value is small does not decrease the chances of any 

other p-value being small.  Several alternatives to the linear step-up procedure 

have subsequently been developed (Benjamini & Liu 1999, Benjamini & 

Hochberg 2000), including a procedure that controls the FDR under general 

dependency (Benjamini & Yekutieli 2001), although this procedure tends to be 

highly conservative.  Several FDR-controlling procedures are incorporated into a 

stand-alone Windows program for computing the FDR minimum p-value for 

rejection and an analogous S-Plus function, both available at 

http://www.math.tau.ac.il/%7Eroee/index.htm.   

 

Storey (2002, 2003) introduced a related quantity of interest called the positive 

false discovery rate (pFDR) and a new approach for controlling the pFDR and the 

FDR.  In most instances of multiple testing, where the probability of rejecting at 

least one hypothesis is near 1, the pFDR is essentially equivalent to the FDR.  

However, Storey’s approach to controlling the FDR provides a potentially 

powerful alternative to Benjamini and Hochberg’s approach.   

 

One contribution of Storey’s approach, in addition to increased power in many 

instances, is the definition of the q-value, an analogue of the p-value.  As Storey 

and Tibshirani (2003) nicely summarize, “Given a rule for calling features 

significant, the false positive rate [the basis for traditional p-values] is the rate 
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that truly null features are called significant.  The FDR is the rate that significant 

features are truly null.”  The q-value attempts to measure each feature’s 

significance while taking into account that many features are being 

simultaneously tested, and a threshold placed on the q-value limits the proportion 

of significant features that turn out to be false leads.  The q-value is precisely 

defined as the minimum FDR at which the test can be called significant; it can be 

thought of as the expected number of false positives among all tests with results 

as or more extreme than the observed one.  A researcher interested in 

controlling the FDR at, say, 5%, can simply convert ordered p-values to q-values 

and reject hypotheses associated with q-values below 0.05. 

 

Since it is not a sequential rejection method like others previously discussed, 

Storey’s algorithm for estimating q-values cannot be adequately summarized 

here.  However, a key step is to estimate the true proportion of all null 

hypotheses which are true rather than assuming it is 1 as in many FDR-

controlling methods (Storey 2002).  To illustrate Storey’s q-value approach and 

compare it with other approaches, we applied it to our earlier example with 1000 

simulated p-values representing 500 true null hypotheses and 500 false null 

hypotheses.  For this example, Storey’s q-value procedure rejected 456 

hypotheses with an effective p-value cut-off of 0.0407 and false discovery rate of 

21/456 = 4.61%.  Thus, in this simulated example where 50% of the null 

hypotheses were truly false, Storey’s q-value procedure displayed the most 

power, rejecting the most hypotheses while still achieving the desired control 
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over the FDR.  In general, Storey’s approach becomes more advantageous as 

the proportion of truly false null hypotheses grows. 

 

Scientists working in large studies with many tests are therefore turning to the q-

value as a more appropriate measure of statistical significance; one notable 

example is in genome studies (e.g., Storey & Tibshirani 2003).  Although 

research into q-values and Storey’s procedure for controlling the FDR and the 

pFDR is ongoing, it has been shown that q-value estimates are conservative 

under weak dependence, especially the type of “clumpy” (local) dependence 

typically found in genomewide studies (Storey & Tibshirani 2001; Storey 2003; 

Storey et al. 2004).  The software QVALUE takes a list of p-values and calculates 

their estimated q-values, an estimate of the proportion of tests truly following the 

null hypothesis, and some useful diagnostic plots; it is available at 

http://faculty.washington.edu/~jstorey/qvalue/. 

 

The Hokkaido example: adjustments for multiple tests 

To provide an actual example of the different approaches to multiple hypothesis 

testing discussed here, Table 1 shows results from the Hokkaido study 

(Kurosawa & Askins 2003).  For each of 25 common bird species, a multiple 

regression model was fit using abundance as a response variable, and forest 

area, forest isolation, and three principal components summarizing several 

vegetation variables as predictor variables.  In this study, it is reasonable to 

assume that each species is a genetically independent population with a 
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separate evolutionary trajectory, so that each species responds to habitat and 

landscape variables independently.  Because adaptations to habitats are flexible 

and rapid in birds, this assumption of independence is even reasonable for 

species with relatively recent common ancestors.  The following significance 

levels are provided: comparisonwise (unadjusted) p-values, adjusted p-values 

based on Holm’s (1979) Sequential Bonferroni Method, adjusted p-values based 

on Benjamini and Hochberg’s (1995) controlling method for the FDR, and 

estimated q-values based on Storey’s (2002) approach for controlling the pFDR.   

 

Based on unadjusted p-values, there are several species for which the model 

seems to explain a significant portion of the variability in abundance; 9 of the 25 

p-values are below 0.05, and 6 of these 9 are below 0.01.  If Holm’s Sequential 

Bonferroni Method is used to control the familywise error rate at 0.05, then the 

picture is much different: tests for only 2 of the 25 species (Oriental Cuckoo and 

Great Tit; see Table 1 for scientific names) are considered significant.  If, 

however, the False Discovery Rate is controlled at the 0.05 level, then tests for 7 

of the original 9 species (all except Coat Tit and Marsh Tit) can be considered 

significant while still maintaining the upper bound for the expected number of 

false positives among the significant findings at 5%.  This is based on an FDR 

rejection value of 0.013 for Benjamini and Hochberg’s linear step-up procedure; 

rejection values can depend on the FDR-controlling procedure used.  Finally, if 

we require a q-value at or below 0.05, then tests for 10 of the 25 species can be 

considered significant (the original 9 species along with Oriental Greenfinch).  
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These q-values are based on an estimate (based on Storey 2002) of 86% for the 

proportion of false null hypotheses among all tests.  Although this is merely one 

example, the gain in power from controlling the False Discovery Rate rather than 

the familywise error rate is clear.  However, a researcher who decides that some 

adjustment for multiple testing is necessary must control the error rate that is 

most appropriate for the research question at hand. 

   

Conclusions 

When many hypothesis tests are performed, adjustments in the significance level 

may not always be warranted, especially when the purpose of the study involves 

screening for potential conservation problems or hypothesis generation.  In cases 

where adjustment in the significance level is required, the False Discovery Rate 

may often be a more appropriate error rate to control than more traditional 

familywise and comparisonwise error rates.  Controlling methods for the FDR 

offer powerful alternatives to controlling the familywise error rate with sequential 

Bonferroni methods, especially in cases where many independent tests are 

performed.  Some work has been done on cases where dependencies exist 

among tests (Storey & Tibshirani 2001, Benjamini & Yekutieli 2001), so these 

FDR-controlling methods can be used under certain dependency structures (e.g., 

positive regression dependency or clumpy dependence).  Dependency structures 

in specific problems must therefore be carefully considered.  For example, 

independence might be a reasonable assumption for testing the effect of a 

habitat variable on different species, but not for assessing the effects of climate 
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change on different populations of the same species.  At this point, if the False 

Discovery Rate is appropriate to control but the hypothesis tests have an 

uncommon dependence structure, one can use Benjamini and Yekutieli’s (2001) 

conservative procedure for general dependency structures, or any procedure 

which controls the familywise error rate, since any procedure which controls the 

familywise error rate will also control the FDR (Benjamini & Hochberg 1995). 

 

Regardless of the error rate controlled or the controlling procedure used, the 

application of multiple testing procedures to all tables of statistical tests involves 

reducing false positives (Type 1 errors) at the cost of not detecting real 

differences (Type 2 errors).  This tradeoff becomes too costly when (a) 

adjustments for multiple testing are used when none are required, (b) an 

inappropriate error rate has been targeted for control, or (c) an underpowered 

adjustment procedure is applied.  The consequent loss of statistical power may 

lead researchers to reduce the number of statistical tests and focus on only a 

small set of variables or populations, usually those that are already known to 

show important ecological patterns.  The ultimate cost of using unnecessary or 

underpowered multiple testing adjustments is the reticence to explore new 

relationships or to screen for potential conservation problems, inhibiting a stage 

in scientific research that is critically important even though it is neither 

conclusive nor sufficient without further research.   
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Table 1.  Comparison of four approaches for multiple hypothesis testing applied to an analysis of data on the distribution of forest birds in Hokkaido, Japan.1    
          

Habitat group           

  Species 2 
Model 

F3 
Unadjusted 

p-value 
Holm p-

value 
FDR p-
value q-value 

 

Forest-interior species      

 Oriental Cuckoo (Cuculus saturatus) 4.6  0.002 0.048 0.025 0.024  

 Grey Thrush (Turdus cardis) 0.7  0.600 1.000 0.714 0.108  

 Eastern Crowned Leaf Warbler (Phylloscopus coronatus) 4.0  0.005 0.105 0.025 0.024  

 Coat Tit (Parus ater) 2.4  0.049 0.833 0.136 0.027  

 Varied Tit (Parus varius)4  4.1  0.006 0.120 0.025 0.024  

 Japanese White-eye (Zosterops japonicus)4 0.8  0.600 1.000 0.714 0.108  

Forest-generalist species          

 Oriental Turtle Dove (Streptopelia orientalis) 0.3 0.900 1.000 0.900 0.129  

 Japanese Pygmy Woodpecker (Dendrocopos kizuki) 1.2  0.300 1.000 0.417 0.067  

 Brown-eared Bulbul (Hypsipetes amaurotis) 1.3  0.300 1.000 0.417 0.067  

 Siberian Blue Robin (Luscinia cyane) 1.6  0.200 1.000 0.385 0.060  

 Brown Thrush (Turdus chrysolaus) 0.6  0.700 1.000 0.729 0.109  

 Short-tailed Bush Warbler (Urosphena squameiceps) 1.6  0.200 1.000 0.385 0.060  

 Bush Warbler (Cettia diphone) 0.7  0.600 1.000 0.714 0.108  

 Arctic Warbler (Phylloscopus borealis) 1.3  0.300 1.000 0.417 0.067  

 Eastern Pale-legged Leaf Warbler (Phylloscopus borealoides)4 0.5  0.700 1.000 0.729 0.109  

 Narcissus Flycatcher (Ficedula narcissina) 4.1  0.003 0.069 0.025 0.024  

 Blue-and-white Flycatcher (Cyanoptila cyanomelana) 1.2  0.300 1.000 0.417 0.067  

 Brown Flycatcher (Muscicapa dauurica) 0.6  0.700 1.000 0.729 0.109  

 Long-tailed Tit (Aegithalos caudatus)4 1.7  0.200 1.000 0.385 0.060  

 Marsh Tit (Parus palustris) 2.7  0.030 0.540 0.094 0.025  

 Great Tit (Parus major) 5.1  0.001 0.025 0.025 0.024  

 Black-faced Bunting (Emberiza spodocephala) 1.2  0.300 1.000 0.417 0.067  

 Masked Grosbeak (Eophona personata) 3.2  0.013 0.247 0.046 0.024  

Forest-edge species           
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 Oriental Greenfinch (Carduelis sinica) 2.2  0.070 1.000 0.175 0.030  

  Jungle Crow (Corvus macrorhynchos) 4.1  0.004 0.088 0.025 0.024  

1 See Kurosawa and Askins (2003) for a description of this study.        
2 Common and scientific names follow the Check-list of Japanese Birds (Ornithological Society of Japan 2000).     
3 The model F-test was based on results of multiple regression analyses with abundance of common species of birds as dependent variables and habitat variables 
as     

 independent variables.  Unless otherwise indicated, abundance was measured by the average of standardized values for 1996 and 1997.  

4 Based on 1996 data.      
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