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ABSTRACT 
 

THE EFFECTS OF FETAL ALCOHOL EXPOSURE ON GENE EXPRESSION AND 
ASSOCIATED BEHAVIORAL MARKERS IN SPRAUGE DAWLEY RATS 

 
By Sarah Willey 

 
 

Chairperson of Thesis Committee:      Dr. Deborah Eastman 
Department of Biology 

 
 

 Alcohol is a dangerous recreational substance because of its availability and the 

economic, social, and biological problems that it can cause. Fetal alcohol exposure, although 

preventable, is particularly harmful to a developing embryo. This exposure often causes fetal 

alcohol spectrum disorder (FASD), the symptoms of which include learning disabilities and 

psychological hardships with comorbidities such as anxiety, depression, and attention deficit 

disorder. One of the main teratogenic effects of alcohol is the effect on epigenetic modifications 

and altered gene expression during development.  These modifications involve changes in the 

methylation and condensation of DNA that then alters the expression of specific genes into 

proteins.  

The first trimester is a particularly important timeframe of focus since this is a critical 

time in embryonic development and also a time when women may consume excessive amounts 

of alcohol before they know they are pregnant. In my Honors Thesis project I aimed to examine 

the effects of prenatal ethanol exposure on both behavior and gene expression in a rat model 

system.  I used quantitative reverse transcriptase PCR to study the expression of two DNA 

methyl transferase genes critical for epigenetic modification and another gene associated with 

neuronal function and psychiatric disorders. Expression levels of these genes were altered in 

response to prenatal alcohol exposure. Behavior studies involving the Morris Water Maze and 
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forced swim test to study to spatial learning and depression, respectively, suggested that alcohol 

does affect behavior, although these differences were not statistically significant. This is the first 

study to analyze the gene expression and behavioral effects that a realistic level of alcohol 

consumption has on a developing embryo during the first trimester. 
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INTRODUCTION 

 Fetal alcohol spectrum disorder (FASD) encompasses a large range of clinical 

abnormalities associated with prenatal alcohol exposure. FASD is characterized by cognitive 

deficits, however it can be comorbid with other psychiatric illness including depression (Popova 

et al., 2016) as well as spatial learning and memory deficits (Toso et al., 2006). Fetal Alcohol 

Syndrome (FAS) exists at the most severe end of this spectrum and is characterized by growth 

deficiencies, central nervous system dysfunction, and cranio-facial disfigurement (Jones & 

Smith, 1973). Prenatal exposure to alcohol is of great economic and social concern to our 

country and the world. It is a leading preventable cause of neurodevelopmental disorders, 

intellectual disabilities, and birth defects (Guerri et al., 2009). Based on physical examinations, 

experts think that the full range of FASD in the United States and some Western European 

countries could be as high as 2 to 5 cases per 100 school children (May et al., 2014). The lifetime 

cost for one individual with FAS was estimated at $2 million in 2002. This estimate does not 

include data on people with other FASDs (Lupton et al., 2004).  

The majority of women discover they are pregnant between weeks four through seven, 

however this timeframe can extend well through the first 12 weeks of pregnancy (American 

Pregnancy Association). Thus, women could be consuming alcohol without know that they are 

pregnant. Because ethanol readily crosses the placenta and accumulates in the embryo and fetus 

at concentrations proportionate to maternal blood levels within the first hour of alcohol 

consumption (Lo et al., 2017), an embryo’s chance of being exposed to alcohol is increased 

during the first trimester. Thus, an embryo’s chance of being exposed to alcohol is increased 

during the first few months of pregnancy when many women have not yet realized they are 

pregnant at this time and consume alcoholic beverages. 
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Even at low levels, maternal alcohol consumption has been adversely related to child 

behavior. Consumption as low as one drink per week has produced deleterious effects on child 

behavior such as externalizing and aggressive behaviors (Sood et al., 2001). Low alcohol 

consumption is not a realistic assumption for women of reproductive age. The Behavioral Risk 

Factor Surveillance System (BRFSS ) defined binge drinking as having “consumed four or more 

drinks on an occasion at least one time in the past 30 days.”  Data collected from the BRFSS 

found that the percentage of binge drinkers among women of reproductive age (18-44 years) who 

reported any alcohol use in 2013 ranged from 23.5% to 42.6% on a state-by-state basis. Of those 

women surveyed, one in five nonpregnant women reported binge drinking in the past 30 days. 

Binge drinking behavior and associated withdrawal effects have been replicated in rats through 

self-administration of ethanol, thus rats have proven time and time again to be reliable and 

accurate animal models of binge alcohol exposure. Physical dependence can be so strong in rats 

that withdrawal can cause death from tonic-clonic seizures (Falk et al., 1972). Binge alcohol 

exposure during the first trimester can have extremely deleterious effects on a developing fetus 

due to the crucial developmental milestones that occur during this timeframe.  

The first trimester is a crucial developmental milestone for neural tube development and 

cell differentiation. Ethanol exposure during this delicate developmental timeline may increase a 

child’s risk for developing FASD. As previously mentioned, the majority of pregnant women 

discover they are pregnant between weeks four through seven. Week five marks the initial 

specification of the tissue that will become the brain, spinal cord, and heart in the developing 

embryo. During week six, the neural tube closes and the heart begins to pump blood and by week 

seven the embryo’s brain and face are rapidly developing (Gilbert, 2014). 
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Neural tube formation is crucial for embryonic development. For this to occur, the neural 

plate must move inside the embryo to form the neural tube. Primary neurulation and secondary 

neurulation are the steps by which this occurs (Figure 1). During primary neurulation in the 

anterior side of the embryo, mesodermal cells of the notochord signal to the cells surrounding the 

neural plate to fold and separate from the surface to form a hollow tube (Gilbert, 2014). The 

expression of various cell adhesion molecules mediates the separation of the neural tube from the 

surface ectoderm. Ectodermal cells adjacent to the neural plate become neural crest cells, which 

are mesenchymal and produce a variety of cell types including neurons and glia of the cranial 

glia, cranial cartilage and bone, connective tissue, sensory neurons and glia, and pigment cells.  

The posterior neural tube then arises from a collection of mesenchyme cells during secondary 

neurulation. This cluster of cells forms into a solid cord that forms cavities that come together to 

create a hollow tube (Figure 1). Primary neurulation generally makes the anterior portion of the 

neural tube, which will eventually form the brain and anterior spinal cord, while secondary 

neurulation makes the posterior portion. Neural tube closure is initiated at several different 

places along the anterior-posterior axis in mammals.  

These key nervous system developmental milestones occur during the period when 

women are most likely to find out they are pregnant and when they are most likely to binge drink 

without knowledge of their pregnancy.  Although studies linking alcohol and neural tube defects 

have been inconsistent (Leng et al., 2016), there are clearly effects of alcohol exposure on 

neurodevelopmental processes that manifest later in development and adulthood.   The 

phenotype of FASD suggests particularly that prenatal ethanol exposure disturbs neural crest cell 

development (Cartwright & Smith, 1995).  The neural crest cell migration paths, which are 

affected by signals from the neural tube and adjacent, determine the subsequent differentiation 
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and localization of these cells (Gilbert, 2014).  Although the cellular and molecular mechanisms 

responsible for ethanol’s teratogenicity remain largely unknown, craniofacial malformations 

most likely related to neural crest cells are a common symptom of FASD.  Malformations have 

been previously connected to ethanol-induced cranial neural crest cell (NCC) damage in 

mammalian embryos (Chen & Sulik, 1996). NCCs are of particular interest to the study of 

craniofacial malformations due to their susceptibility to free radical damage. Exposure of NCCs 

to ethanol stimulates the production of superoxide anion radicals, which suggests that ethanol-

induced NCC injury is mediated through the generation of free radicals. Ethanol induced free 

radicals may also play a large role in neural degeneration, possibly more so than the NCCs (Chen 

& Sulik, 1996). 

 Alcohol exposure affects animals and humans in a similar way. The rat brain and the 

human brain have strong correlations between structure, function, and behavioral abilities (Otero 

et al., 2012). These similarities have made it possible for researchers to use animal models to 

study FASD.  Sprague Dawley rats, Rattus norwegicus, are among the most commonly used 

models to study the effects of FASD due to their size and complex behaviors. Growth 

retardation, structural abnormalities, central nervous system dysfunction, and cognitive deficits 

have been previously observed in rat models of FASD (Patten et al., 2014). Due to alcohol’s 

wide spread effects on the developing hippocampus, Animal research has established that the 

hippocampus is particularly sensitive to the teratogenic effects of prenatal alcohol exposure 

(Livy et al., 2003; Maier & West, 2001).   
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The Role of the Hippocampus 

The hippocampus plays an important role in the processing and memory of spatial and 

contextual information. Rats without a hippocampus show impaired performance on tasks that 

require the utilization of spatial and contextual information (Jarrard, 1993). Clinical studies have 

found learning and memory deficits in children with FASDs (Hamilton et al., 2012). The 

hippocampus is also associated with serotonin function (Dale et al., 2016). Numerous studies 

have associated changes in the hippocampus to depression and major depressive disorder 

(O’Connor & Paley, 2006). These deficits are complex and numerous and include both verbal 

and nonverbal skills. Hippocampal alterations in children with FASD have also been associated 

with an increased incidence of depression. O’Connor and Paley (2006) found that higher levels 

of prenatal alcohol exposure correlated with increased depressive symptoms. Interestingly, this 

relationship was mediated by mother-child interactions that occur over time suggesting that 

lower levels of maternal emotional support increase depressive symptoms experienced by 

children exposed to alcohol while in the womb.  

 Evidence suggests that psychiatric disorders and behavioral deficits of children with 

FASD persist into adulthood (Barr, 2006; Spohr, 2007). The prevalence of deficits into 

adulthood creates social and economic hardship for people with FASD and their families. It is 

important to evaluate if rats that have been prenatally exposed to alcohol maintain or decrease 

cognitive brain function as they age in order to develop a way to ease the effects of FASD in 

humans.  Two predominant effects of fetal alcohol exposure found into adulthood are depression 

and spatial learning and memory deficits. The Morris Water Maze is used in rodent models for 

identifying spatial learning and memory deficits. In animal models, the Porsolt forced swim test 

is used as a possible indicator of depression. 
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 The aim of this study is to evaluate the effects that first trimester ethanol exposure in rats 

could have on the development of FASD associated behaviors such as depression and spatial 

learning and memory deficits as well as the underlying mechanisms related to the expression of 

specific genes, namely HTR2A (serotonin receptor)  and DNMTs (DNA methyl transferases). 

 

I. FASD and Depression 

Although the most common manifestations of FASD are deficits in cognitive ability, FASD is 

also associated with various psychiatric illnesses including depression. Prenatal alcohol exposure 

has been associated with an increased incidence of depression (Caldwell et al., 2008). Adults 

with FASD most commonly experience drug or alcohol dependence, depression, and psychotic 

disorders (Famy et al., 1998). In animal models, the Porsolt forced swim test is used as a possible 

indicator of depression.  

Reliable animal models of FASD have allowed researchers to explore the genetic 

mechanisms involved in prenatal alcohol exposure and its associated behavioral and psychiatric 

disorders. Behavioral epigenetics has gained popularity in the past decade for its ability to 

provide new insights into a biological basis of the behavioral effects of gene-environment 

interactions. Epigenetic alterations can change gene activity in response to environmental 

adversity. DNA methylation has emerged as the central pathway linking these gene-environment 

interactions (Roth, 2013). Prenatal ethanol induced epigenetic changes of HTR2A in 

hippocampal tissue may be a large contributor to depressive behaviors experienced by people 

with FASD. 
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Regulation of 5-Hydroxytryptamine Receptor 2A (HTR2A) 

Disturbances of the serotonergic pathway have been linked to depressive disorders in humans. 

Serotonin (5-HT) is a monoamine neurotransmitter involved in the regulation of body 

temperature, sleep, pain, mood, and energy. Serotonin is crucial for numerous stages of 

embryogenesis (neuronal development and differentiation, left/right axis modeling in 

vertebrates) and placentation (early gastrulation, blastocyst adhesion, and adhesion) (St.-Pierre et 

al., 2016). Several 5-HT receptors exist, each with different subtypes and biological roles. 

Serotonin 2A receptor (5-HT2A), is a G-protein-coupled receptor that’s defects have been linked 

to the pathogenesis of major psychiatric disorders including depression (Raote, Bhattacharya, & 

Panicker, 2007). 

HTR2A is the gene that encodes the 5-HT2A receptor and is involved in the regulation of 

serotonergic neurotransmission and the hypothalamic-pituitary-adrenal (HPA) axis (Falkenberg, 

2011). Functional regulation of the 5-HT2A receptor involves internalization and recycling of the 

receptor. These two phases regulate the desensitization and resensitization processes that help to 

prevent overstimulation and allow the receptor to recover signaling ability. Desensitization and 

resensitization are common processes of G-protein-coupled receptors.  

The placenta is a plastic organ that can quickly adapt to maternal environmental changes, 

for example, through epigenetic mechanisms. Ethanol exposure is associated with placental 

dysfunction, decreased placental size and impaired blood flow and nutrient transport (Burd, 

2006).   Disrupted placental serotonin signaling can affect infant brain development and cause 

long-term neurobehavioral issues (Paquette et al., 2014). Therefore, prenatal ethanol exposure’s 

deleterious effects on placental integrity and function could cause an imbalance in fetal serotonin 

regulation and lifelong behavioral disorders such as depression. 
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The expression of Tryptophan hydroxylase (TPH)-1 in the peripheral nervous system and 

THP-2 in the central nervous system allow for the synthesis of serotonin from L-tryptophan. 

Monoamine oxidases A and B (MAOA and MAOB) degrade the serotonin after it is synthesized. 

The complexity of this system and the widespread use of serotonin could possibly explain why 

serotonin disruption is involved in a large variety of diseases. The pattern of serotonin system 

development in utero in humans is relatively similar to early embryo development in rodents. In 

rodents, MAOA and SERT (serotonin transporter) are present in the developing brain before the 

appearance of the first serotoninergic neuron (Booij et al., 2015). SERT appears at week 8 of 

pregnancy in humans, followed by the formation of clustered serotonin cell bodies in the raphe 

nuclei at week 15. The results from Booij et al. (2015) suggest that the fetus depends on an 

external source of serotonin that allows the serotonin system to develop due to the fetus’s lack of 

independent synthesis. Bonnin et al. (2011) used a mouse model to show that the placenta 

synthesizes its own serotonin from the mother’s L-tryptophan by way of the placental TPH-1 

enzyme. Booij et al. (2015) also noted that MAOA stabilizes early in life. Therefore, 

deregulation in serotonin homeostasis during early crucial neural developmental windows in 

utero could alter fetal short-term development and lifelong health.  

The HTR2A gene has been directly associated with major depressive disorder (Mandelli, 

2013). Studies have shown decreased HTR2A expression in the brains of patients who have 

committed suicide. HTR2A methylation has been associated with decreased expression of 

HTR2A and occurs in higher rates in patients with psychiatric disorders such as depression and 

schizophrenia (Abdolmaleky et al., 2011). Studies have shown that antipsychotic drugs decrease 

HTR2A methylation and increase HTR2A expression. This study aims to look at the association 

between HTR2A expression in hippocampal tissue and depressive behaviors in rats under the 
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assumption of an inverse association between DNA methylation and gene expression 

(Abdolmaleky et al., 2011; Mandelli & Serretti, 2013). Abdolmaleky et al. (2011) matched DNA 

derived from post-mortem brains of patients with schizophrenia and bipolar disorder to control 

subjects. Bisulfite DNA sequencing was used to screen and quantify cytosine methylation in the 

HTR2A promoter and corresponding gene expression was analyzed by qRT-PCR. They found 

that epigenetic down-regulation of HTR2A was associated with early age of disease onset in 

schizophrenia and bipolar disorder. Conversely, Mandelli and Serretti (2013) used a review 

approach to investigate the literature regarding the interaction between genes modulating brain 

functions in the psychopathology of major depression and suicidal behaviors. Their literature 

review found that environmentally induced DNA methylation was inversely associated to gene 

expression in the case of major depression and suicidal behaviors. They emphasized the 

usefulness of studying genetic-environmental interactions for elucidating the effect of genes on 

the risk of developing major depression and suicidal behaviors.  

Possible Molecular Mechanisms related to HTR2A expression and FASD 

Epigenetic regulation in eukaryotes relies on DNA methylation.  Preimplantation 

embryos represent one of crucial developmental periods when genomic methylation patterns are 

established. DNA methyltransferases (DNMTs) contribute to gene regulation by maintaining 

DNA methylation patters at specific regions of the genome. DNMTs establish and maintain 

cytosine methylation patterns throughout cell replication. DNMTs are responsible for the transfer 

of a methyl group from S-adenosyl-L-methionine (SAM) to the 5’ position on the cytosine 

pyrimidine ring and are vital for mammalian development (Morris & Monteggia, 2014). The 

addition of a methyl group in mammals is catalyzed by three different DNA methyltransferases: 

Dnmt1, Dnmt3a, and Dnmt3b. The current study focused on the regulation of Dnmt1 and 
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Dnmt3a. Dnmt1 is known as the maintenance Dnmt and is responsible for stabilizing 

methylation patterns that were previously established. Dnmt3a executes initial methylation 

patterns on unmethylated DNA. These DNMT’s establish and maintain the cytosine methylation 

patterns throughout cell replication (Denis, 2011). Most Dnmt3a in neural stem cells is located 

within gene bodies and intergenic regions. This finding is consistent with the recent discovery 

that DNA methylation levels are high in the gene bodies of actively transcribed genes (Wu et al., 

2010). 

Abnormal DNA methylation patterns are thought to play a vital role in the mechanism by 

which prenatal alcohol alters a growing fetus. Prenatal alcohol exposure during embryonic 

development affects the transfer of folate from the mother to the embryo (Laufer et al., 2016). 

Folate is a methyl donor and is essential for establishing and maintaining DNA methylation. The 

lack of folate can potentially cause altered epigenetic patterns in the developing embryo and 

possibly lead to behavioral deficits and psychiatric disorders.  

As the primary maintenance methyltransferase, Dnmt1 preserves methylation patterns 

during cell division. Dnmt1 localizes to DNA replication foci during the S phase and proceeds to 

preferentially methylate hemimethylated CG dinucleotides by interacting with UHRF1 (Denis, 

2011).  The exact methods underlying Dnmt1 regulation are poorly understood. Du et al. (2010) 

aimed to illuminate one pathway that regulates Dnmt1 protein stability. Their model suggests 

that Dnmt1, HASP, Tip60, UHRF1, HDAC1, and PCNA form a macromolecular protein 

complex that binds at the DNA replication fork to regulate the functional availability of Dnmt1. 

Du et al. (2010) claim that first, Tip60 acetylates Dnmt1. This acetylation triggers UHRF1 to 

ubiquitinate Dnmt1 and therefore leads to proteasomal degradation. HDAC1 and HAUSP then 

use deacetylation and deubiquitination to protect Dnmt1 from degradation. HAUSP and HDAC1 
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are the protectors and Tip60 and UHRF1 are the functional destroyers and together they form a 

multifunctional protein complex with Dnmt1. Parts of this newly formed complex localize to the 

replication fork through their association with PCNA. Therefore, the efforts of the functional 

destroyers and the protectors maintain the proper abundance of Dnmt1 at different stages during 

the cell cycle. Dnmt1 increases in S phase, decreases after S phase, and is lowest in G1. These 

results suggest Dnmt1 abundance is decreased after DNA replication by Tip60- and UHRF1-

mediated proteasomal degradation.  

Many unknowns exist surrounding the structures and mechanisms of Dnmts. For 

example, the crystal structure of Dnmt1 bound to hemimethylated DNA must be solved before 

Dnmt1 substrate recognition can be understood. A primary question in this mystery is what 

defines the intrinsic preferences of DNMTs for certain DNA sequences. Understanding DNMTs 

preference to hemimethylated CG, unmethylated CG, or non-CG substrates may rely on 

determining the crystal structure of Dnmt1. For example, Dnmt1 has shown dependence on the 

SRA domain of UHRF1 for its recruitment to hemimethylated CG sites. Dnmt3 enzymes, on the 

other hand, are responsible for de novo methylation during embryonic development. The way in 

which they target to genomic regions has been proposed in several models. These models focus 

on the influence that interacting partners have on the Dnmt3 enzymes and their inherent 

properties. These models suggest that the global de novo methylation performed by Dnmt3 

enzymes depends on the innate sequence preferences of Dnmt3 (Jurkowska et al., 2011).  The 

importance of sequence preference by de novo DNMTs in human genomic methylation patterns 

is further supported by the catalytic activities of Dnmt3a and Dnmt3b. Sequences next to the 

target CG sites have been found to influence these catalytic activities.  
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Many recent studies have been performed on the chromatin-mediated mechanisms of 

DNMTs. By studying the interaction between DNMTs and native nucleosomes, Jeong et al. 

(2009) found that Dnmt3a and Dnmt3b were mostly found stably anchored to nucleosomes with 

higher levels of methylated DNA in somatic cells. These results suggest that cues from the 

chromatin component, in addition to hemimethylation, are required for the inheritance of DNA 

methylation in certain cell types. DNA methylation works with local chromatin conformations to 

regulate certain methylation patterns that control gene transcription. DNMTs’ ability to “read” 

histone modifications allows them to recruit nucleosomes carrying specific marks.   

DNA Methyltransferase and Prenatal Ethanol Exposure 

DNA methylation is known to play a role in the regulation of gene expression during 

embryogenesis and prenatal ethanol exposure causes changes in DNMT activity. DNA 

methylation changes are highly organized during rodent embryo development. A cycle of 

demethylation occurs before implantation, which is proceeded by a wave of de novo methylation. 

These steps establish embryonic methylation patterns critical for assigning somatic DNA 

methylation patterns. This pattern of epigenetic reprogramming is crucial for normal embryonic 

development. Disruption of the cycle of methylation that occurs during early development will 

cause neural tube deficits (Liu et al., 2009) and may cause the cognitive deficits associated with 

FASD. Garro et al. (1991) found that acute ethanol administration to pregnant mice caused 

widespread hypomethylation of fetal DNA. Nuclei isolated from the ethanol-exposed mouse 

fetuses had lower levels of methylase activity than the control fetuses even in the presence of 

excess S-adenosylmethionine (methyl donor for DNMTs). These ethanol-associated changes in 

fetal DNA methylation could contribute to the developmental deficits children with FAS 

experience. Alcohol has been known to inhibit folate-mediated methionine synthesis in animals. 
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This inhibition interrupts critical methylation processes that are mediated by s-adenosyl 

methionine. S-adenosyl methionine is the activated form of methionine and the substrate for 

biologic methylation. Although fetal gene expression patterns have been altered after alcohol 

exposure, the mechanism by which alcohol causes changes in gene expression remains to be 

found.  

DNA methylation has been identified as a major factor involved in the epigenetic 

regulation of learning and memory (Roth et al., 2013). Hippocampal changes in DNMT 

regulation may be the cause of spatial learning and memory deficits in fetuses exposed to alcohol 

during the first trimester.  

 

Forced Swim Test 

The Porsolt forced swim test, initially described by Porsolt et al. (1977, 1978), is a well-

established model of behavioral despair in rodents and is used to quantify depressive behavior. 

The forced swim test was developed based on the notion that when placed in a cylinder of water, 

rodents that stop active escape behaviors will become immobile. An increase in immobility is 

considered as an increase in behavioral despair. Animals are placed in a cylindrical tank of water 

(deep enough so the tail cannot touch the bottom) for five minutes. In this study, the time spent 

performing climbing behavior was recorded and subtracted from the total time in the water. 

Climbing behavior is defined as actively scratching the side of the tank. Antidepressants have 

been shown to decrease immobility (Cryan et al., 2005).  

 Hellemans et al. (2010) found that males that were prenatally exposed to alcohol did not 

differ from their control counterparts in the Porsolt forced swim test, while females that were 

prenatally exposed to alcohol showed greater immobility than control females. This finding 
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suggests that prenatal alcohol exposure selectively increases depressive-like behaviors in female 

offspring in the forced swim test (Hellemans et al., 2010). However, Slone & Redei (2001) found 

no gender differences in males and females who were prenatally exposed to ethanol and 

underwent the forced swim test. These conflicting conclusions demonstrate the hypersensitivity 

of results to experimental design and execution when studying fetal alcohol exposure induced 

depression in any animal model. The forced swim test was used to measure helplessness in rats 

that received either the prenatal control treatment or prenatal ethanol treatment. 

 

II. FASD and Spatial Learning and Memory Deficits 

Children with FASD have been shown to have an impaired ability to learn and remember spatial 

locations. Little is known about the cause of this spatial learning and memory deficit, however 

researchers think that modifications in the hippocampus could be the cause. In a 2003 paper 

published in the journal of Behavioral Brain Research, Hamilton et al. used a computerized 

version of the Water Maze test. This virtual test was sensitive to hippocampal functioning and 

tested spatial learning in male children with FAS. Hamilton et al. (2003) came to the conclusion 

that children with FAS demonstrate difficulty with spatial learning. Hamilton et al. correlate fetal 

alcohol exposure in humans and animal models to spatial learning and memory deficits. Several 

studies outlined by Morris and Monteggia (2014) found that disrupted homeostatic expression of 

DNA methyltransferases contributes to learning and memory deficits. 
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Morris Water Maze 

Richard G. Morris first used the Morris Water Maze (MWM) test in 1981 to test hippocampal-

dependent learning. The MWM is unique because it reduces odor trail interference and can test 

spatial and non-spatial conditions in order to analyze acquisition of spatial memory and long-

term spatial memory (Bromley-Brits et al., 2011). The maze consists of a large, circular pool 

filled with opaque water and a platform that is submerged just below the water’s surface. Rats 

start from a randomized location and use a series of visual cues placed on the wall to navigate a 

pool of water in search for the submerged platform. After a number of trials, rats begin to learn 

where the platform is located by using the visual cues on the walls. Several studies have used the 

MWM to test the effects of fetal alcohol exposure on spatial learning and memory. The MWM 

has been shown to be sensitive to the neurobehavioral teratogenicity of fetal alcohol exposure in 

rodent models (Johnson & Goodlett, 2002; Richardson et al., 2002; Savage et al., 2002). Johnson 

and Goodlett (2002) exposed rats to ethanol during postnatal days (PD) 7-9 (5.25g/kg/day) and 

observed whether it would produce selective spatial learning deficits that endured into adulthood. 

The rats were tested on PD70 in the Morris Water Maze. They found that neonatal alcohol 

treatment significantly impaired acquisition and reduced place biases in the probe trial. 

Richardson et al. (2002) hypothesized that chronic prenatal ethanol exposure through maternal 

ethanol ingestions would results in spatial learning impairments and short- and long-term 

plasticity in the CA1 region of the postnatal guinea-pig hippocampus. Pregnant guinea pigs were 

treated with 4g/kg of ethanol per day throughout gestation. These offspring were studied between 

PD 40 and 80 in the Morris Water Maze. They found that chronic prenatal ethanol exposure 

impairs spatial performance and long term potentiation in CA1 neurons. Due to these results 

Richardson et al. (2002) concluded that hippocampal dysfunction could contribute to the 
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cognitive and behavioral deficits that results from chronic prenatal ethanol exposure. Savage et 

al. (2002) allowed pregnant rats to consume 2%, 3%, or 5% liquid ethanol diet throughout 

gestation. They tested adult offspring for either evoke [3H]-D-aspartate (D-ASP) release from 

hippocampal slices or spatial learning using the Morris Water Maze. Offspring whose mothers’ 

consumed 3% or 5% liquid ethanol diet experienced significantly difference results in the one-

trial learning on a moving platform version of the Morris Water Maze and the activity-dependent 

potentiation of evoked D-ASP release from slices of hippocampal tissue compared to the control. 

This study shows that the threshold for eliciting learning deficits with prenatal alcohol exposure 

is less than 30/mg/dL, which translates to the equivalent of drinking 1 to 1.5 ounces of ethanol 

per day.  

 

Study questions and hypotheses 

The present study aims to elucidate the effects that binge alcohol exposure during the first 

trimester of pregnancy could have on behaviors and gene expression in their progeny using a rat 

model. I hypothesized that behaviors such as depression and spatial learning deficits would be 

higher in animals prenatally exposed to alcohol.  Based on previous published results, several 

genes were chosen to examine the effects of alcohol on the expression of specific genes 

associated with depression and spatial learning, namely DNA methyl transferases critical for 

epigenetic regulation, and HRT2A, a critical component of the serotonergic pathway.  This study 

used RT-qPCR to analyze Dnmt3a and Dnmt1 regulation in hippocampal tissue of rats that were 

exposed to ethanol in vivo. It was hypothesized that expression of these genes would be affected 

in response to prenatal ethanol exposure.  More specifically, the expression HTR2A will be 

downregulated and Dnmt1 and Dnmt3a will be upregulated. The rats treated with ethanol in 
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utero will also experience increased immobility times in the forced swim test and increased 

latency times in the Morris Water Maze compared to control rats. An increase in immobility time 

should be associated with the downregulation of HTR2A and upregulation of the Dnmts. These 

two factors together may be an indicator of prenatal ethanol induced depression. Increased 

latency times should be connected to general hypermethylation and increased DNMT expression 

in rats treated with ethanol. 
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METHODS 
 

Fetal Alcohol Exposure in Rattus norwegicus 

Dams were assigned to one of four groups: postnatal day (PD) 30 control, PD30 ethanol, PD60 

control, or PD60 ethanol. Dams were received on gestational day (GD) 2 and received ad libitum 

access to food and water throughout gestation. Dams were subcutaneously injected with either 

1.5g/kg of 20% ethanol in saline or 1.5g/kg of 0.9% saline from GD3 to GD10. This time frame 

is equivalent to the first trimester of human pregnancy. All injections were performed two days 

in a row with a rest day in between. Injection schedule is as follows: GD3-GD4, GD6-GD7, 

GD9-GD10. All dams did not receive injections on the days in-between the above injection days.  

 On PD1 pups were weighed as a litter and an average weight of each pup was calculated 

from the total litter weight. The pups were given ad libitum access to the mother’s milk. On 

PD21 pups were weaned from the dam and separated by gender.  

Pups had ad libitum access to food and water after weaning and were euthanized PD30 or PD60. 

 

Behavioral Despair Tests 

Half of each of the four litters (PD30 control, PD30 ethanol, PD60 control, and PD60 ethanol) 

did not participate in behavioral despair tests in order to evaluate whether the behavioral tests 

had an effect on the genetic results. Rats that completed behavioral tests did so from either PD26 

to PD30 or from PD56 to PD60. All rats were euthanized on the last day of the behavioral 

studies despite whether they participated in the behavioral tests or not.  
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 Forced Swim Test 

 The forced swim test was performed on PD26 and PD56 depending on the group 

assignment. The forced swim test was used to assess behavior that could indicate depression. 

Animals were placed in a plastic tank (30cm diameter) filled with water (23-25 ºC) to a height of 

50-60cm for 5 minutes. Animals were scored for climbing as defined by thrashing movements 

along the sides of the water tank measured in number of seconds. Any animal that was in danger 

of drowning would have been immediately removed from the water, however this did not occur.  

Morris Water Maze Test 

 Morris water maze tests were performed over four days in order to assess possible spatial 

learning and memory deficits. A small pool (divided into four quadrants: north, south, east, west) 

with a platform was filled so the platform was just submerged.  The water was made opaque by 

adding white tempura paint.  Rats were given 60 seconds to find the platform. Rats were directed 

to the platform and left on it for 15 seconds if they did not find the platform in the alloted 60 

seconds. They were allowed to sit on the platform for 15 seconds in order to observe, and 

hopefully remember, the visual cues on the walls. When placed in the pool, rats swam until they 

found the platform.   

Rats were placed in the pool four times a day for four days (PD27-PD30 and PD57-

PD60).  The length of time it took the rat to find the platform was compared over successive 

trials to determine spatial learning.  On the final trial of the Morris Water Maze, the platform was 

removed and a full 60 second trial for each rat was recorded to evaluate how long the rat spent in 

the quadrant where the platform was previously.  All rats were euthanized by CO2 exposure 30 

minutes following the final Morris Water Maze test.  
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Gene Expression Analysis 

Tissue Collection 

 All rats were euthanized by CO2 exposure 30 minutes following the final Morris Water 

Maze test in order to allow for the transcription of c-Fos for possible future studies. The rats’ 

brains were removed without profusion with parafermaldehyde in order to maintain the integrity 

of the RNA. The frontal cortex, entire hippocampus, and raphe nuclei were removed from each 

brain and immediately placed in separate microcentrifuge tubes containing 150µL of RNALater 

(QIAGEN). However, only the hippocampal tissue was used for RNA isolation, cDNA synthesis  

and quantitative RT-PCR analysis. Tissue samples were stored at 4 ºC until RNA was isolated 

(no longer than 90 days).  

RNA isolation and cDNA synthesis 

Due to time and resource constraints, only female hippocampal tissue was analyzed for 

gene expression. The results of the Morris Water Maze indicated that the female rats were 

slightly more affected, although not significantly so, by ethanol than the males. RNA was 

extracted from hippocampal tissue samples using the QIAGEN RNA-Easy kit. The tissue was 

removed from the RNAlater and placed in 600 µL of Buffer RLT. Tissue was homogenized by 

grinding and then by passing the solution through a 20 gauge needle 6-7 times. The solution was 

centrifuges for 3 minutes at 1300rpm and the supernatant was transferred to a clean 

microcentrifuge tube. 600µL of 70% ethanol was added to the lysate and mixed by gently 

pipetting. The sample was placed in an RNAeasy mini column and centrifuged for 15 seconds at 

1300rpm. The flowthrough was discarded and 700µL of Buffer RW1 was added to the column 

and centrifuged again. This process was repeated twice with 500µL of Buffer RPE. The silica-gel 

membrane was then dried by centrifuging the tube for 2 minutes. The RNA was eluted by adding 
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50µL of RNase free water to the tube and centrifuging for 1 minute. The RNA that was eluted 

into the microcentrifuge tube was stored at -20°C.  

First strand cDNA synthesis was performed from the isolated RNA using Oligo(dT) 

primers and Superscript II reverse transcriptase (Life Technologies). 10µL of the isolated RNA 

was combinted with 1µL of Oligo(dT) (500µg/mL) and 1µL of dNTP mix (10mM each). This 

solution was then heated to 65°C for 5 minutes, chilled on ice, and centrifuged for 15 seconds. 

4µL of 5X First-Strand Buffer and 2µL of 0.1MM DDT were added to the centrifuged solution. 

These contents were then mixed and incubated at 42°C for 2 minutes. 1µL of SuperScript II RT 

was added and mixed by gently pippetting. This solution was then incubated at 42°C. After 50 

minutes, the solution was heated to 70°C for 15 minutes. Isolated cDNA was stored at -20°C.  

Quantitative real time PCR 

Primer sequences related to this project can be found in Table 1 

 cDNA primers for Dnmt3a, Dnmt1, and HTR2A were designed using primer3 and 

acquired from invitrogen (Thermo). β-actin was used as the reference gene for this experiment to 

normalize expression levels between samples. Each primer was tested using a dilution series of 

cDNA. cDNA was diluted four times by a factor of 10 yielding samples with concentrations of 

0.1, 0.01, 0.001, and 0.0001 µg/µL. Quantitative RT-PCR (qRT-PCR) analysis of each dilution 

series was run using iQ SYBR® Green master mix from BioRad in 96 well plates on an iCycler 

running Real Time Detection System Software, version 3.1 (Bio-Rad). Each reaction contained 

10µL of iQ SYBR Green supermix, 8µL of water, 1µL of primer mix (10µM each), and 1µL of 

cDNA sample.  

Two of the initially designed primers did not produce a sufficient reaction efficiency or 

standard curve (DNMT1, DNMT3a). Another primer for Dnmt1 was then designed and produced 
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a satisfactory efficiency (99.4%). An alternative Dnmt3a primer was previously ordered in the 

initial batch of primers, which was then tested and used for the final tissue analysis (E: 83.1%). 

After each primer showed a consistent efficiency over the course of several quantitative RT-PCR 

analyses, cDNA isolated from the hippocampal tissue was analyzed using the same quantitative 

RT-PCR reactions with ExiLENT SYBR® Green master mix from Exiqon as mentioned above. 

Initial qRT-PCR analysis revealed extremely high expression of HTR2A. Because of this, and a 

concern regarding the limited cDNA that was isolated, cDNA samples were diluted 10 fold and 

used for analysis.  Dilutions were made to avoid isolating more cDNA and possibly creating 

another variable among cDNA homogeny within individual samples.  

Quantitative real time PCR Results Analysis  

 Gene expression was analyzed using the Real Time Detection System Software, version 

3.1 (Bio-Rad). The log of the concentrations of the standard genomic DNA was graphed as a 

function of threshold cycle (the cycle at which fluorescent intensity increases above background 

fluorescence). The levels of. β-actin expression in the different cDNA samples were used to 

normalize the concentration of HTR2A, Dnmt1, and Dnmt3a.  
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RESULTS 

Behavioral Analysis of Prenatal Exposure to Ethanol 

Birth Weight 

Average individual birth weights were calculated by dividing the total litter weight by the 

number of pups in the litter. An independent samples t-test was used to analyze birth weights. 

Prenatal ethanol exposure significantly increased the birth weights of the rat pups compared to 

the control rat pup birth weights (p < 0.001) (Figure 2). The number of pups in each litter was 

not significantly different between control pups and ethanol-exposed pups. 

Depression 

The forced swim test is an established test for quantifying a possible feeling of hopelessness in 

the rats, which is a measurement of depression. Feeling of hopelessness was correlated with 

increased immobility times. In utero exposure to ethanol did not cause any significant differences 

in the times that rats spent exhibiting clawing behavior during the forced swim test. However, six 

out of the eight postnatal day (PD) 30 ethanol exposed rats had longer immobility times than 

their control counterparts (Figure 3). PD60 rats did not show this same trend, all of the control 

and ethanol rats from both genders had very similar immobility times. 

Spatial Learning and Memory 

The Morris Water Maze was used to evaluate the effect of prenatal ethanol on the rats’ spatial 

learning and memory abilities. The latency time is the time in seconds that the rat took to find the 

platform. Independent sample t-tests were used to analyze the results from the Morris Water 

Maze. Trends in the data were observed but no statistically significant differences were detected. 

Age did not significantly change the times of rats prenatally exposed to ethanol. PD30 ethanol 
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rats did not find the platform any faster or slower than PD60 ethanol rats (Figure 4). The same 

lack of a difference was observed in the PD30 and PD60 control rats (Figure 4) 

PD30 control males and females were not significantly different from one another but 

they have more similar latency time than PD30 ethanol males and females did (Figure 5). As 

before, due to the insignificant differences of gender on latency times in PD30 rats, data from 

both males and females was plotted together to compare the effects of ethanol. In PD30 rats, 

prenatal ethanol treatment did not significantly affect latency times when compared to the 

control treatment group’s latency times (Figure 6).   

The mean latency times of PD60 males and females under control and ethanol conditions 

were also calculated. The difference between control males and control females at PD60 was 

almost statistically significant (p = 0.058). In this case, the PD60 control females started with 

higher latency times that declined more rapidly over the 16 trials compared to the males that 

started with lower times that declined less rapidly. Ultimately, the males ended with shorter 

latency times in trial 16 (Figure 7). This trend was slightly less dramatic in the PD60 ethanol 

group of males and females but the results were inconclusive (p > 0.05). PD60 ethanol males 

followed a steadier decline of latency times compared to the PD60 ethanol females, which 

tended to have sharp changes in mean latency times from trial to trial. Both males and females 

had very similar latency times for trial 16 (Figure 7). Due to the statistically insignificant 

differences of gender on latency times in PD60 rats, data from both males and females was 

plotted together to compare the effects of ethanol. The latency times of both males and females 

combined were not significantly affected by prenatal ethanol treatment.  

 The latency times from each individual day for the ethanol and control PD60 rats were 

analyzed using an independent sample t-test. Day 3 was the only day that came close to having a 
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significant difference between rats exposed to ethanol and control rats (p = 0.070), however the 

latency times were still not significantly different. This analysis process was repeated for PD30 

rats. None of the days represented a significant difference between ethanol rats’ and control rats’ 

latency times (0.787 > p > 0.920).  

 

Effects of Prenatal Ethanol Exposure on Gene Expression  

Quantitative Real-Time Reverse-Transcriptase Polymerase Chain Reaction (qRT-PCR) was used 

to quantify the expression of HTR2A, Dnmt1, and Dnmt3a in RNA isolated from female rat 

hippocampal tissue. The efficiencies determined for primers for Dnmt1, Dnmt3a, and HTR2A 

were 99.4%, 83,1%, and 97.9%. β-actin was used as a reference gene to normalize expression 

levels. Four litters of rats in total were used for this study. Two of them were raised until 

postnatal day (PD) 30 and two litters were raised until PD60. One litter from each age group 

performed behavioral testing in the four days leading up to ethanasia. Half of all rats were 

withheld from behavioral testing in order to analyze the effects that the behavioral testing could 

have on the expression of our target genes. Tissue from both non-behavioral and behavioral rats 

was obtained at postnatal day (PD) 30 and PD60.  

 Prenatal ethanol exposure caused an 88-fold upregulation of HTR2A, from 0.042 to 3.681 

normalized expression levels, (p<0.001) in PD30 non-behavioral ethanol exposed rats compared 

to PD30 non-behavioral saline controls (Figure 10). Multiple, but not all, interactions of rat age 

(PD30 and PD60) and treatment (ethanol vs control) showed significant differences in relative 

normalized expression of HTR2A. The gene study of rats euthanized on PD60 reveals that rats 

prenatally treated with ethanol have a lower expression of HTR2A than PD60 control rats, 

however this result is not statistically significant (Figure 10). PD60 rats that received prenatal 
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saline had a significant 17-fold upregulation of expression of HTR2A compared to PD30 control 

rats, from 0.042 to 0.731 normalized expression levels (p<0.001) (Figure 10). Prenatal ethanol 

exposure affected this age-related expression pattern. Rats prenatally treated with ethanol and 

allowed to age to 60 days old showed a significant decrease, from 3.681 to 0.707 normalized 

expression levels, (p<0.001) in HTR2A expression compared to ethanol treated rats raised to only 

30 days (Figure 10). PD30 ethanol rats showed a 5-fold upregulation of HTR2A, from 0.707 to 

3.681 normalized expression levels, compared to PD60 ethanol rats.  Exposure to behavioral 

testing decreased the normalized expression of HTR2A in PD30 rats prenatally exposed to 

ethanol compared to the PD30 ethanol rats that did not experience behavioral testing, from 3.681 

to 0.187 normalized expression levels (Figure 10). Conversely, behavioral testing on the PD60 

ethanol group significantly increased HTR2A expression by 2 fold, from 0.707 to 2.018 

normalized expression levels. Behavioral testing also significantly increased HTR2A expression 

in PD60 control rats by 5.5-fold, from 0.731 to 4.047 normalized expression levels. Behavioral 

testing did not cause a significant affect on HTR2A expression in PD30 control rats (Figure 10).  

Dnmt3a was significantly upregulated 53 fold, from 0.126 to 6.693 normalized 

expression levels (p<0.0001) in the hippocampal tissue of non-behavioral 30 day old rats that 

were prenatally exposed to ethanol during the first trimester of pregnancy compared to the non-

behavioral 30 day old rats exposed to saline (Figure 11).  Dnmt3a expression was significantly 

downregulated in non-behavioral PD60 rats prenatally exposed to ethanol compared to non-

behavioral PD60 control rats, from 0.531 to 1.942 normalized expression levels. Dnmt3a 

expression in non-behavioral PD60 control rats was significantly upregulated 15-fold compared 

to non-behavioral PD30 control rats, from 0.126 to 1.942 normalized expression levels 

(p<0.0001). Dnmt3a expression of PD60 ethanol rats was significantly downregulated compared 
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to PD30 ethanol rats, from 6.693 to 0.531 normalized expression levels (Figure 11). Behavioral 

protocol had no affect on Dnmt3a expression in the PD30 control rats. However, PD60 control 

rats that participated in behavioral studies had a significantly 3.6-fold upregulation of Dnmt3a 

expression, from 1.942 to 6.984 normalized expression levels, compared to PD60 control rats 

that did not undergo behavioral testing (Figure 11). The behavioral protocol significantly 

downregulated Dnmt3a expression in PD30 rats prenatally exposed to ethanol compared to PD30 

rats that were prenatally exposed to ethanol but did not participate in behavioral studies, from 

6.693 to 0.346 normalized expression levels. Conversely, the behavioral protocol caused a 13-

fold upregulation of Dnmt3a expression, from 0.531 to 6.985 normalized expression levels, in 

PD60 rats prenatally exposed to alcohol compared to PD60 ethanol rats.  

 Dnmt1 expression was significantly upregulated by 17.6 fold, from 0.007 to 0.120 

normalized expression levels, in non-behavioral PD30 ethanol rats compared to non-behavioral 

PD30 control rats (Figure 12). This significant upregulation was not observed in PD60 ethanol 

rats compared to PD60 control rats due to large error bars. Dnmt1 expression in PD60 control 

rats was significantly upregulated by 4.5-fold, from 0.007 to 0.031 normalized expression levels, 

compared to PD30 control rats (Figure 12). This significant upregulation was not observed in 

PD60 ethanol rats compared to PD30 ethanol rats due to large error bars. The behavioral protocol 

significantly downregulated Dnmt1 expression in PD30 ethanol rats, from 0.011 to 0.120 

normalized expression levels, and upregulated expression in PD30 control rats by 2 fold, from 

0.007 to 0.014 normalized expression levels. Participation in the behavioral protocol did not 

significantly affect Dnmt1 expression in PD60 ethanol rats or PD60 control rats (Figure 12).  
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DISCUSSION 

This study examined the effects of a realistic model of binge drinking during the first trimester of 

pregnancy on the expression of genes related to FASD and their possible associated behavioral 

markers. Changes in HTR2A, Dnmt1, and Dnmt3a expression have been linked to the molecular 

impact of prenatal ethanol exposure. Although the behavioral data was not significant, the results 

shed light on trends associated with ethanol exposure and possible sex-related effects. Pre-

existing sex-differences for spatial learning and memory and risk for depression could make 

prenatal alcohol exposure especially harmful to some individuals. Prenatal alcohol exposure 

generally upregulated gene expression earlier in life compared to the downregulation that 

occurred in the older rats. Participation in behavioral testing significantly impacted the gene 

expression of all target genes in rats prenatally exposed to alcohol.  

In order to gain a more comprehensive understanding of the effects of first trimester 

prenatal alcohol exposure, it is important to understand how alcohol influences DNA 

methylation. This study is important to the field of fetal alcohol exposure related epigenetics 

because a ratio of alcohol to body mass realistic to an adult female was administered to pregnant 

rats during a time when women may not know they are pregnant. Changes in DNA 

methyltransferase expression may predict if this pattern of prenatal ethanol exposure leads to 

hypermethylation.  

I investigated the expression of Dnmt1, Dnmt3a, and HTR2A in response to prenatal 

ethanol or prenatal saline exposure. These molecular markers have been associated with the 

psychopathology and cognitive deficits of FASD. Both behavioral and gene expression tests 

were run in order to elucidate these effects. The forced swim test was used to observe the effect 

of prenatal alcohol exposure on levels of hopelessness, measured by the time that the rats spent 
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actively trying to escape subtracted from the total time in the tank of water. Theoretically, signs 

of increased hopelessness in the rats that prenatally received ethanol could be connected to 

hippocampal hypermethylation, which would cause an upregulation of DNA methyltransferases 

and the subsequent down-regulation of HTR2A. Prenatal alcohol exposure has been associated 

with these broad hypermethylation patterns It is important to note the possible evolutionary 

benefits that offspring can receive from epigenetic modification in utero. The fetal origins of 

adult disease hypothesis states that common adult diseases might originate during fetal 

development. This hypothesis is based on the concept of fetal programming, which was 

originally developed from a large pool of data that showed low birth weights were associated 

with increased risk for various diseases such as hypertension (Hellemans et al., 2010). 

Evolutionarily, the function of fetal programming could be adaptive, preparing offspring to 

experience an environment after birth that is similar to the one experienced during gestation. 

However, when a mismatch between prenatal and postnatal environments occurs outcomes such 

as depression may occur.   The level of specificity in which DNA methyltransferases regulate 

fetal brain development under homeostatic conditions lacking environmental stress opens the 

doors for prenatal ethanol exposure to cause hypermethylation and cognitive deficits. Prenatal 

ethanol exposure has been shown to upregulate Dnmt1 and Dnmt3a in the hippocampus (Morris, 

2014). Spatial learning and memory deficits in rats exposed to ethanol in the womb would be 

evident in the Morris Water Maze and in the levels of Dnmt3a and Dnmt1 expression. Animal 

models of FASD have found that rats that experienced ethanol during fetal development took 

longer to navigate the Morris Water Maze task (Berman & Hannigan, 2000). In order for the 

memory formation to occur that allows the rats to navigate the maze, precise and temporally 

coordinated changes in transcription factor activation and inactivation, gene expression, and 
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bidirectional changes in the expression and activity of chromatin and DNA modifying enzymes 

must take place (Morris & Monteggia, 2014). The precision necessary for spatial memory 

formation allows for enormous destruction by environmental stressors including ethanol-induced 

DNA methylation.   

 

Birth Weight  

This study found that prenatal ethanol exposure significantly increased the birth weight of pup 

compared to the control pups. The number of pups per litter was not significantly different 

between the treatment groups, however the two control rats gave birth to 17 pups and 13 pups 

while the two ethanol rats gave birth to 13 pups and 11 pups. Even though this difference in litter 

size was not significant, fewer pups in the ethanol-exposed litters could have allowed the pups to 

grow larger in utero compared to the control pups. There is no literature that supports an 

increased birth weight with prenatal ethanol exposure.  

 

Depression 

Although the forced swim test did not produce any statistically significant results, six out of the 

eight PD30 ethanol rats had higher immobility times than their PD30 control counterparts. This 

trend suggests that the younger rats that received prenatal ethanol may have a behavioral marker 

for depression. Animal models of depression have shown that treatment using selective serotonin 

reuptake inhibiting anti-depressants decreases immobility time in the forced swim test, therefore 

decreasing the possible “depression” that the rodents are experiencing (Castagne et al., 2010; 

Mague et al., 2003).  While not statistically significant, these results agree with previous studies 

that have found an association between fetal alcohol spectrum disorder and depression (Famy et 
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al., 1998; Streissguth et al., 1996). One study revealed that 94% of participants with FASD 

experienced mental health problems. Of these participants, 23% of adults had attempted suicide, 

and 43% had threatened to commit suicide (Kellerman, 2003).  

 The forced swim test is a highly debated method of measuring depression and 

hopelessness in rodents. Arguments against the behavioral test note that there is no concrete 

method of knowing whether or not the rats are experiencing depression or hopelessness. Many 

protocols also exist for the forced swim test, all with different positive and negative aspects. The 

results of the forced swim test performed in this study may not have been statistically significant 

due to human error. In this study, six out of the eight PD30 ethanol rats showed increased 

immobility times compared to their control counterparts.  

 

Spatial Learning and Memory 

The Morris Water Maze is a test for spatial learning and memory ability in rodents.  Deficits can 

be detected by analyzing how long a rat takes to find the platform that is hidden directly under 

the surface of the water and how these times change over the course of 16 trials. Prenatal alcohol 

exposure in rats has been shown to increase latency times in the Morris Water Maze Test 

(Westergren, 1996). The hippocampus is believed to be at the heart of the complicated process of 

acquiring and storing spatial memory. Therefore, any defects in the hippocampus could affect the 

processing and storing of spatial memories. Prenatal ethanol exposure has a known negative 

impact on hippocampal functions, including spatial memory (Scott-Goodwin et al., 2016). It is 

appropriate to perform the Morris Water Maze test on rats that have experienced prenatal alcohol 

exposure because spatial memory deficits are common cognitive alterations present in FASD 
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(Scott-Goodwin et al., 2016). Slight trends were observed and described in the results section, 

however no dramatic changes in latency times occurred.  

A larger sample size may have lead to significant data in the Morris Water Maze. The 

water maze has even more room for slight differences between rats from rat handling, placement 

in the pool, latency timing, the time the rat is allowed to stay on the platform before being taken 

out of the pool, to even how long that each rat was dried off. The results of the water maze could 

be compromised if the rats were handled even slightly different from each other at such a crucial 

developmental age. More experience or larger sample size can overcome these issues. 

Upregulation of Dnmt3a and Dnmt1 Suggests Alcohol-Induced Epigenetic Modifications 

Many environmental factors, including alcohol, are known to alter the intrauterine environment 

in such a way that contributes to abnormalities in fetal development. The relationship between 

fetal alcohol exposure and FASD has been a useful model in studying the epigenetic pathway 

between environment and phenotype. Several studies have found altered DNA methylation in 

multiple models of FASD (Resendiz et al., 2013). Some researchers believe that alcohol-induced 

epigenetic alteration has achieved a dysregulation of S-adenosylmentionine (SAM), an active 

methyl donor that is recruited by DNA methyltransferases to transfer a methyl group to the 

cytosine. Homeostatic DNA methylation includes hyper- and hypomethylation in the embryonic 

genome during neurulation and in neural stem cell differentiation. Alcohol’s affect on DNA 

methylation can be locus specific and bidirectional so any significant change in Dnmt3a 

expression suggests epigenetic alterations of the genome. Downregulation of Dnmt3a has been 

associated with anti-depressant drugs, suggesting that lowing levels of Dnmt3a would be 

beneficial when treating depression (Melas et al., 2012)     



38	

 Dnmt3a and Dnmt1 were significantly upregulated in rats prenatally treated with ethanol 

during the first trimester. Dnmt3a could be upregulated through a regulatory transcription factor. 

Dnmt3a may then methylate other genes to decrease their expression.  

Downregulation of HTR2A in Response to Prenatal Alcohol Exposure 

The relationship between anti-depressant drug efficacy, depression, and HTR2A 

polymorphisms is well known across many studies. However, only few connections have been 

made between how HTR2A expression affects the likeliness of developing depressive disorders. 

It has been suggested that HTR2A is downregulation in certain areas of the brain may contribute 

to depression but more research needs to be done to validate this limited research.  

Prenatal ethanol treatment significantly increases HTR2A expression early in life 

compared to the control. This increased expression balances out by PD60, where there is no 

significant difference between HTR2A expression in ethanol rats compared to control rats. 

HTR2A expression in the ethanol treated rats was significantly downregulated from 30 days old 

to 60 days old. Conversely, HTR2A expression was upregulated from PD30 to PD60 in the 

control rats. Ethanol appears to have reversed this natural age-related upregulation of HTR2A 

that is observed in the control rats. These results indicate that prenatal ethanol exposure may 

initially cause an increase in HTR2A expression, but as aging occurs prenatal ethanol exposure 

ultimately decreases the normal regulation of HTR2A. An increase in DNA methylation after 

PD30 in response to prenatal alcohol exposure may have caused the ultimate down-regulation of 

HTR2A. Epigenetic downregulation of HTR2A has been associated with schizophrenia and 

bipolar disorder (Abdolmaleky et al., 2011). HTR2A has also been associated with placental 

mitogenesis and DNA methylation of placental HTR2A may alter fetal serotonin signaling 

(Paquette, 2014). The hypermethylation of HTR2A caused by prenatal ethanol exposure may 
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have caused psychological effects in the rats that were not properly tested with the forced swim 

test.  

Behavioral Tests Down-regulated HTR2A  

 In healthy individuals, stress may induce expression of HTR2A as an adaptive function 

(Cheah et al., 2017). However, in ethanol treated rats with already hypermethylated HTR2A, the 

stress of the behavioral testing caused counterintuitive HTR2A expression. The behavioral testing 

down-regulated HTR2A in the rats prenatally exposed to ethanol but had no effect on HTR2A 

regulation in the control rats. The behavioral tests did not affect HTR2A expression in control 

rats. Ethanol magnified the effects of the stress past the control genetic response to stress to the 

point where behavioral testing caused a significant decrease in HTR2A expression. This result 

suggests that the alcohol genetically magnified the stress of behavioral testing.  
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Conclusion and Future Research 

The importance of educating women on the effects of alcohol consumption during the first 

trimester of pregnancy is invaluable.  It is important to explore alcohol’s effects during the first 

trimester because this is when women may not know that they are pregnant.  In order for that 

communication to begin, researchers must know exactly how prenatal alcohol exposure affects a 

developing embryo during the first trimester. Past studies have either focused on alcohol’s 

effects throughout the whole pregnancy, or on specific snapshots of alcohol exposure. These 

studies have found that alcohol can have significant epigenetic effects on a developing fetus, 

which can lead to the phenotypes associated with FASD. The exact molecular mechanisms of 

this epigenetic alteration are still largely unknown.  

First and foremost, the male rat hippocampal tissue and the rest of the female 

hippocampal tissue should be genetically analyzed to determine if the genetic trends observed in 

this study are consistent with the rest of the rats. Replicating results is always important in any 

study. Although three runs of each genetic expression qRT-PCR analysis were run per gene, 

more replicates of the data would hopefully lead to smaller error bars.  

Epigenetics is a rapidly growing field that has the ability to explore nearly any 

environmental impact dozens of aspects of genetic expression and methylation. Examining the 

epigenetic effects of ethanol is a specific step towards a more concentrated problem. The 

epigenetics of prenatal ethanol exposure during the first trimester further specifies the problem, 

however there are numerous aspects to this process that are still unknown or may be known but 

not completely understood.  

Future studies of first trimester specific ethanol exposure should focus on the role that 

brain-derived neutrophic factors (BDNFs) play in the psychological and cognitive abnormalities 
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caused by FAS. The original plan of this study was to study BDNF expression; however adding 

BDNF expression to the genes already being tested was not realistic with the time restrictions. 

BDNFs are already connected to spatial learning and memory and depression; therefore it would 

be interesting to study the effects of a realistic binge drinking behavior during the first trimester 

of pregnancy on BDNFs and fetal development. Decreased BDNF protein levels have been 

associated with depression in mice prenatally exposed to alcohol (Caldwell et al., 2008).  

Ten-eleven translocation (Tet) proteins are interesting candidates as molecular agents of 

demethylation. Tet1, Tet2, and Tet3 are known to be the mediators of 5mC demethylation in 

plants. In mammalian tissue, they show a strong preference for CpG-rich motifs. Tet1 knockouts 

have impaired spatial memory formation and abnormally enhanced long-term depression 

triggered in the hippocampus (Morris & Monteggia, 2014). Tet proteins could represent yet 

another pathway that prenatal ethanol exposure disturbs. 

Bisulfite sequencing would be the next step in examining the epigenetic mechanisms and 

methylation patterns of genes associated with FASD. Bisulfite sequencing is the bisulfite 

treatment of DNA to determine the pattern of methylation. This treatment converts cytosine 

residues to uracil and leaves the 5-methylcytosine residues unaffected. DNA that has been 

treated with bisulfite retains only methylated cytosines.  

 The neurodegenerative apoptotic properties of ethanol have been studied but the exact 

mechanisms are largely unknown. Ikonomidou et al (2000) proposed that ethanol works as a 

blockade of N-methyl-D-aspartate (NMDA) glutamate receptors and excessively activates 

GABAA receptors. This dual mechanism triggers widespread apoptotic neurodegeneration in the 

developing rat forebrain. The neurodegeneration that prenatal ethanol exposure causes is 

particularly damaging to hippocampal neurons. Hippocampal neurodegeneration could possibly 
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be the cause of spatial learning and memory deficits in children with FASD experience. 

Ikonomidou et al. (2000) believe that ethanol’s effects on the hippocampus are most potent 

during the period of synaptogenesis. This stage of development occurs during the last trimester 

of pregnancy in humans to several years after birth. Due to this timeframe of particular 

vulnerability, Ikonomidou et al. (2000) designed their experiment to only target the third 

trimester equivalent of pregnancy in rats. While administering alcohol during the third trimester 

led them to support ethanol’s dual mechanism, it is not a realistic representation of human 

females’ consumption of alcohol during pregnancy.  Ikonomidou et al. (2000) concluded that 

exposure of the developing rat brain to ethanol during synaptogenesis induces an apoptotic 

neurodegenerative reaction that deletes large numbers of neurons from several crucial brain 

regions, including the hippocampus. They concluded that ethanol’s proapoptotic effects come 

from the blocking action at NMDA glutamate receptors and its positive modulatory action at 

GABAA receptors.  Although Ikonomidou et al. (2000) used a concentration of ethanol with the 

rats that is extremely unrealistic for women, their results shed light onto the poorly studied 

apoptotic mechanisms of prenatal ethanol exposure.  

This study makes a significant contribution to understanding the epigenetic impacts that a 

realistically high amount of binge drinking in an adult woman has on a fetus. A large portion of 

the studies analyzing the effects of prenatal alcohol exposure on developing fetuses use severely 

unrealistically high levels of alcohol for an adult woman, or for any person. This study did not 

tailor the alcohol dosage to the desired genetic result. Instead, it used a realistic binge drinking 

dosage and protocol and showed a significant upregulation of HTR2A accompanied by an 

upregulation of Dnmt3a and Dnmt1.  
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TABLES AND FIGURES 
 

Table 1: Sequences of the primers used in this study 
 
 

 
 
 

 
 

Gene Sequence 

HTR2AL TCATCATGGCAGTGTCCCTA 

HTR2AR ACAGGCATGACAAGGAAACC 

Dnmt3aL ACCAGGCCACCTACAACAAG 

Dnmt3aR AGCCTTGCCAGTGTCACTTT 

DNMT1L CCAGATACCTACCGGTTATTCG 

DNMT1R TCCTTTAACTGCAGCTGAGGC 

DNMT3aL CTGAAATGGAAAGGGTGTTTGGC 

DNMT3aR CCATGTCCCTTACACACAAGC 

b-actinL CGAGTACAACCTTCTTGCAGC 

b-actinR ACCCATACCCACCATCACAC 

Dnmt1L GCGCTCATTGGCTTTTCTAC 

Dnmt1R CTCGACCACAATCTTGCTGA 
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Figure 1: Neural Tube Development. A) Neuroectodermal tissues thicken into the neural plate 
after differentiation from the ectoderm. The neural crest is created from the neural plate borders 
as the neural plate bends dorsally. B) The neural plate bends dorsally and creates the neural 
groove. The two ends of the neural plate eventually join at the neural crests. C) The neural crest 
is disconnected from the epidermis after the closure of the neural tube. Neural crest cells 
differentiate to form the majority of the peripheral nervous system. D) The notochord begins to 
degenerate and exists as the nucleus pulposus. The spinal ganglion form from the neural crest.  
 
Illustration design adapted from Anatomy & Physiology, Connexions Web 
site. http://cnx.org/content/col11496/1.6/, Jun 19, 2013. 
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 Figure 2: Birth Weights of Control and Ethanol Exposed Pups. This graph shows that for 
both litter 1 and litter 2 the pups prenatally exposed to ethanol on average weighed 
significantly more than the pups prenatally exposed to saline.  
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Figure 3: Immobility Time Results from Forced Swim Test. The graph displays the 
immobility times of PD30 ethanol and control rats. Six out of the eight PD30 ethanol rats had 
higher immobility times than their control counterparts however the difference in times was not 
significant. The numbers in each bar are the average immobility times of each treatment group. 
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A. 

 
B. 

 
Figure 4: Change in time from latency times of PD30 to PD60 rats. These plots show the 
change in latency times with age of control (A) and ethanol (B) rats. No significant differences 
were seen. 
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A. 

 
 

B. 

 
 
Figure 5: Latency Time Results for PD30 rats from Morris Water Maze. The plot displays 
the latency time trends from trial 1 to trial 2 in PD30 control (A) and ethanol (B) rats separated 
by gender. No significance was found but trends can be seen. 
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Figure 6: Latency Time Results for PD30 rats from Morris Water Maze. This graph shows 
the latency times of PD30 ethanol rats plotted with the PD30 control rats. No significant 
differences were seen. 
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A. 

 
 
 

B. 

 
Figure 7: Latency Times from Morris Water Maze test of PD60 rats. This graph shows 
PD60 ethanol (A) and PD60 control (B) rats separated by gender. No significant differences 
were seen. 
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Figure 8: Latency Times from Morris Water Maze Test of PD60 ethanol and control rats. 
This plot shows PD60 control vs ethanol rats. Ethanol slightly decreased the slope of learning. 
No significant differences were seen. 
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A. 
 

		
	
B. 
	

	  
 
Figure 10: Quantitative RT-PCR data showing HTR2A Normalized Expression in 
Hippocampal tissue. cDNA was isolated from female hippocampal tissue of individuals that did 
not participate in behavioral testing (A) and those that did (B). Expression levels were calculated 
with normalizing to β-actin. 
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A. 

	  
 
B. 
 

 
 
 
Figure 11: Quantitative RT-PCR data showing Dnmt3a Normalized Expression in 
Hippocampal tissue. cDNA was isolated from female hippocampal tissue of individuals that did 
not participate in behavioral testing (A) and those that did (B). Expression levels were calculated 
with normalizing to β-actin. 
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A. 
 

 
 
B. 

 
 
 
Figure 12: Quantitative RT-PCR data showing Dnmt1 Normalized Expression in 
Hippocampal tissue. cDNA was isolated from female hippocampal tissue of individuals that did 
not participate in behavioral testing (A) and those that did (B). Expression levels were calculated 
with normalizing to β-actin.  
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