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EVOLVING PREDATOR CONTROL PROGRAMS
FOR A HEXAPOD ROBOT PURSUING A PREY

GARY PARKER, CONNECTICUT COLLEGE, USA, parker@conncoll.edu
BASAR GULCU, CONNECTICUT COLLEGE, USA, bgul@conncoll.edu

ABSTRACT
Control  program  learning  systems  for  autonomous  robots  are  important  to  assist  in  their
development and to allow them to adapt to changes in their capabilities and/or the environment. A
common method for learning in robotics is Evolutionary Computation (EC) and a good problem to
demonstrate  the  effectiveness  of  a  learning  system is  the  predator/prey  problem.  In  previous
research, we used a Cyclic Genetic Algorithm (CGA), a form of EC, to evolve the control program
for a predator robot with a simple sensor configuration of 4 binary sensors,  which yielded 16
possible sensor states. In this paper, we present the use of a CGA to learn control for a predator
robot with a more complicated sensor setup, which yields 64 sensor states. The learning system
successfully evolved a control program that produced search, chase, and capture behavior in the
simulated predator robot.

KEYWORDS: Cyclic Genetic Algorithms, Predator, Prey, Problem Simulation

1. INTRODUCTION
Robot  control  is  an  important  issue.  Systems  that  can  learn  control  programs  reduce

development time and allow the robot to adapt to changes in its capability to move. One interesting
problem that can be used to test control learning systems is the predator/prey problem. For this, the
robots must evolve to find an optimal/efficient way for the predator to catch the prey. In other
words, the robot must develop a strategy to maintain its existence. In this study, a control program
was learned for an autonomous hexapod robot,  the predator,  which allowed it to catch another
autonomous robot, the prey. The mechanism for learning was a Cyclic Genetic Algorithm (CGA).

Several researchers have used Evolutionary Computation (EC) for learning control programs
for  robots.  The  most  common  use  is  for  learning  connection  weights  and/or  architectures  in
artificial neural networks [1]. Beer and Gallagher states that one of the significant advantage of this
approach is that one needs to specify only a measure of an agent's overall performance [2]. As a
result of their experiments, legged locomotion controllers were evolved successfully. An additional
example is the evolving of a neural network controller for a Khepera robot in work by Lund and
Miglino  [3]. The robot was able to avoid walls and obstacles. 

Genetic Programming (GP) is another EC method used for learning robot control. A system
developed  by  Busch  et  al.  [4]  was  able  to  produce  gaits  free  from  the  robots'  predefined
movements. The evolved controller  was used in simulated robots. Lazarus  and Hu's  simulated
robot was capable of avoiding obstacles while following walls with the assistance of sensors [5].
Nordin et al. also created a system in which a controller for the Khepera robot was evolved by GP
[6].

In order to implement loops in evolved programs, the CGA was developed [7]. Like Holland's
Genetic Algorithm (GA), it has the standard operations: selection, crossover, and mutation [8].  In
the CGA, however, the genes of the chromosome represent tasks to execute as opposed to traits of
a solution. Parashkevov and Parker integrated Conditional Branching into CGA and experimented
on the predator/prey problem [9, 10]. The use of sensors was limited to on and off with a total of 16
possible sensor state combinations. In our research, we implement the CGA on the predator/prey
problem with an expanded set of possible sensor responses. Since some of the sensors are capable
of detecting distance we can create additional discrete states making a total of 64 combinations.



The controller that was evolved by a CGA is capable of avoiding obstacles while searching for and
chasing the prey.

2. PREDATOR & PREY PROBLEM
A good test bed for learning in robotics is the predator/prey problem. In this problem, the prey

does  everything  possible  to  evade  capture  while  avoiding  obstacles.  The predator's  goal  is  to
capture the prey while avoiding obstacles. For our experiments, the prey perceives all obstacles
(walls, predator) as hazardous. If there is a nearby obstacle, it moves away from it. Otherwise, it
stays where it is. The predator looks for prey. Its task can be split into two parts: search and chase.
It can detect any obstacle or target that is in front of it. If one obstacle that it detects is closer than
another, the robot will ignore the further obstacle. If the target is detected, the predator is to track
toward it.

2.1 The Colony Space
The colony space (Figure 1) that is being used for the experimentation is a 8x8foot area in the

lab. Within the colony space, the floor is divided up into 1x1 foot square blocks to measure the
movement of each agent. The walls of the colony space are made up of a wooden border that is one
foot  in  height.  The floor  is  covered  with low nap  carpet,  which provides  enough friction for
minimal slippage in the movement of the legged robots.

Figure 1. A photograph of the prey and the predator in the colony space.

2.2 The Prey
The prey (Figure 2) is a ServoBot, which is a hexapod robot designed by David Braun for

legged robot experimentation.  The body and legs of the prey are made of Masonite (hard-pressed
particle wood).  It has twelve servo motors, two per leg, which provides two degrees of freedom
per leg.  Each leg can move vertically up/down and horizontally forward/back.

The prey is equipped with six SONAR sensors (from Parallax, Inc.), which are positioned to
face 60 degrees apart to provide 360 coverage. Using 0 degrees as the heading of the robot, the first
sensor is 30 degrees and the rest of the sensors face in the directions of 90, 150, 210, 270 and 330
degrees. Since each SONAR sensor has approximately 60 degrees of vision; there are no blind
spots. The range of each SONAR sensor is approximately 150 inches. The whole rack of SONAR



sensors is placed on top of the robot. In addition to the SONAR sensors, there are 10 inch antennas
pointing 45 degrees and 315 degrees. These tactile sensors are mounted lower than the SONAR
sensors to provide protection against collisions with low obstacles.

Figure 2. Photo of the prey with 6 range finding SONAR sensors and two antennas (wire touch
sensors)

Binary
Message

Prey Movement Predator Movement

000 Forwards Forwards

001 Wait Backwards

010 Right-Forward Right-Forward

011 Left-Forward Left-Forward

100 Rotate-Right Rotate-Right

101 Rotate-Left Rotate-Left

110 Backup-Right Backup-Right

111 Backup-Left Backup-Left
Table 1. Possible movements of the prey (left) and predator (right).  The control program running
in the main controller directs the locomotion controller by sending the 3-bit control signal. The
predator is different from the prey in that 001 is Backwards (deemed more appropriate for the
predator) instead of Wait.

Control for the prey is provided by two micro-controllers; the locomotion controller and the
main controller.  Both of  them are  BASIC Stamp 2 (BS2).  There  are 16  usable  pins  on each
controller. All the servo motors (there are 12 servos) are connected to the locomotion controller.
Each pin on the controller can output 5V. Twelve of the pins are connected to each of the 12 servo



motors and can rotate them either clockwise or counter-clockwise. The movement continues until
the leg reaches its maximum position. Combinations of servo motor rotations with corresponding
leg movements can produce gaits for locomotion. Three of the 16 pins are used to communicate
with the other controller chip, the main controller. 

The main controller is connected to all of the sensors. After gathering information from  the
sensors, it directs the locomotion controller to execute one of the 8 movements (Table 1). 

Two LEDs are placed on top of the prey, to enable the predator to distinguish it from a wall.
The predator does not have a light, so the prey cannot distinguish it from any other obstacle. 

2.3 The Predator
The predator (Figure 3) is also a ServoBot. However, the body and the legs of the predator

(ServoBot) are made of Plexiglas. 

Figure 3. Photo of the predator with 2 light sensors, 2 infra-red sensors, 1 SONAR sensor, and 2
antennas..

The predator is equipped with one SONAR sensor (from Parallax, Inc.) which faces in the
direction of 0 degrees. Its range is approximately 150 inches with a 60 degrees of angle of vision.
The predator also has 9.5 inch antennas, 50 degrees apart, pointing 25 and -25 degrees. It has two
Infra-Red sensors pointing 30 and -30 degrees. Each of these Infra-Red sensors has a range of 50
inches. There are also two light sensors with a separator in between pointing to the front. The range
of the light sensors is approximately 60 inches and they have approximately 90 degrees of angle of
vision. The separator allows the robot to determine if a light source is coming from the left or right.
However, if the light is within 7.5 degrees of the robot’s heading both sensors will detect it.

The predator, as with the prey, has two BS2 controller chips; one the main controller and the
other the locomotion controller. The main controller  gathers data from the sensor outputs,  and
directs the locomotion controller as to what movement to make. 

Depending on the input from sensors, the predator determines which action to take. In order to
allow the learning to operate at a higher level, we developed the processing needed to transform the
sensor data into 8 categories (Table 2) of the robot's situation relative to both the nearest obstacle
and the target (prey). The predator's state at any point in time is the combination of these two



results. Since there are 8 possible situations for the nearest obstacle, and 8 for the target, there are
64 possible combinations.

OBSTACLE TARGET

none none

near_right near_right

far_right far_right

near_left near_left

far_left far_left

near_front near_front

medium_front medium_front

far_ahead far_ahead
Table 2. Eight possible sensor situations relative to the nearest obstacle and eight relative to the
target. The combination of these defines the state of the robot.

The predator's control program uses the state to determine the movement desired to search for
or to catch the prey. It directs the locomotion controller to perform the desired movement. The
possible  movements  are  shown  in  the  Table  1.  The  control  program sets  three  of  the  main
controller's pins, which are connected to three of the locomotion controller's pins by direct lines.

3. SIMULATION OF THE ACTUAL PROBLEM
The simulation area is square with each wall 300 units in length. There are no obstacles, except

the walls of the area. The robots’ positions in the simulation area are fully described by their X and
Y coordinates, as well as a number between 0 and 359 that shows the direction of their heading. (0,
0) is positioned as bottom-left corner of the area.

The simulation is written in Java with the Robot Class defined abstractly. Calculations that are
required for both the predator and the prey, including sensor output, movement check, movement
and the sub functions of these,  are done in this class. Predator and Prey are subclasses of Robot. 

Every sensor has it angle of visibility,  type, and value. If an obstacle is detectable by the
sensor, then the distance between the obstacle and the sensor's owner is calculated and the output is
updated. In this particular simulation, since there are no free obstacles other than the prey for the
predator, and the predator for the prey, most of the sensors are showing the distance to the walls. In
order to calculate the distance to the walls, the program must determine which sensor is directed at
which wall. Once all the sensors are updated with the distance from the robot to the walls, each
sensor's direction is compared with the absolute angle between the prey and the predator. If the
values match, then the program calculates the distance between and updates the sensor.

Each movement is defined by its distance change in the direction of its initial  heading, its
distance change perpendicular to the initial heading and orientation change relative to the initial
heading. For example, for the prey ServoBot, a command of Forwards (Table 1) involves distance
change of 5 units along the initial heading, a 0.05 unit perpendicular distance change, and a 4.6
degree change from the initial heading. A command of Right (Table 1) involves distance change of
2.38 units along the initial heading, a 1.11 unit perpendicular distance change, and a -39 degree
change from the initial heading. These changes are used to calculate the new x and y position of the
robot and its new orientation.

Prey and Predator  Classes  included the  list  of  values  for  each movement  (measured  from
executing the command on the actual  robot) and the decision function that determines  which
movement to make.



4. CYCLIC GENETIC ALGORITHM TO LEARN PREDATOR CONTROL
Evolutionary Robotics (ER) is the application of Evolutionary Computation (EC), a learning

technique based on heredity and survival of the fittest, to generate a control program for the robot.
It allows robots to evolve over time and generate the best way to perform their assigned task,
which, in this study, is to catch the prey. The form of EC that we used in this research is the
Genetic Algorithm (GA). As with other EC techniques, it is a search technique used in ER to find
approximate solutions for robot control problems. It is typically used with a computer simulation to
run a population of possible solutions to determine their fitnesses. Each individual in the population
is a chromosome, which is a set of bits that represents a control program for the robot. The fitness
function evaluates each individual and assigns a fitness. The higher score a chromosome receives,
the higher possibility of its selection for use in producing the next generation. Two chromosomes
are selected and are combined through crossover with the new individual subjected to mutation.
This is repeated several times until a new population is formed.

The Cyclic  Genetic  Algorithm (CGA) is  a type of GA. It  is  capable  of  learning a  cyclic
combination of decisions/actions, which are coded in the chromosome. The chromosome can be
divided into blocks that contain the movement primitive and the number of times  that it should be
repeated. These blocks can also represent conditionals that control the process of execution. The
CGA provides a method for learning control programs that produce cyclic behavior.

For the predator/prey problem in this study, it was determined that only one action was needed
for each of the possible sensor inputs. This action could continue until the sensor situation changed.
A CGA with conditional branching [8] that has only one instruction in each loop could be used. In
effect, this would be functionally the same as a fully connected finite state machine with control
returning to the present node if there are no changes. A population of 256 randomly generated
chromosomes was used for this problem.

Since there are 64 (8*8) states that the predator can be in (Table 2), a chromosome defining 64
movement blocks is sufficient for the CGA to learn how to control the predator. Each block of the
chromosome represents the action to be taken. When the condition is met for a certain block, the
movement in that block takes place. An example chromosome is shown in Figure 4. There are 64
blocks of 3 bits each, making it a 192 bit chromosome. If the robot does not sense an obstacle or
the prey, the action taken (Table 1, predator) is the one corresponding to the 3 bits of the first
block. In this case, it would execute movement 001, which is move backwards.

001 101 111 011 001 100 110 ...

Figure 4. Example chromosome divided into blocks. The total length is 192 bits. Each block holds
a movement corresponding to that state (a combination of sensor readings). The first block holds
movement for the state of no_object and no_target.

At  each  generation,  10  different  starting  positions  were  randomly  selected.  Each  of  the
individuals of the population was tested using these starting positions by running for 100 steps in
pursuit of the prey. Each individual was evaluated by the average distance that they approached the
prey. The maximum distance that the predator and the prey can be is 424.26 (since the field is a
square of 300 units). The fitness is calculated by using Eq. (1) and Eq. (2).

score = maximum_distance – distance_between_predator_prey (1)
f(x) = score+score/(number_of_steps_taken2) (2)

The fitness value is calculated after each step with the highest fitness stored. If the score is
greater than 405, it means the predator caught the prey, and as a reward, the score is multiplied by
three. 

no_object and no_target



The roulette wheel method of selection is used. An individual's chance of selection for the next
generation was biased by its fitness. The more successful an individual was, the more chance it had
to be involved in producing the next generation. Two-point crossover was performed on the two
selected individuals. Once the resultant chromosome was formed, it was subjected to a mutation
function. The mutation function went through each bit of the string with a 1/300 chance that the bit
would be inverted (if the bit is 0, make it 1 and vice versa). This process is repeated for 256 times
and the next generation was formed.

5. RESULTS
The CGA ran for 300 generations. Since the individuals at each generation were run on 10

randomly selected locations, the fitness values from generation to generation were highly variable.
For example, if the randomly selected positions of the robots were close to each other, the overall
fitness  of  that  generation  was  high.  To  make  a  useful  comparison  between  generations,  100
positions were picked at the beginning of each trial. In every 10th generation, all individuals from
the population were ran from these fixed positions. Figure 5 shows that the improvement of the
whole population increased vigorously in the first 50 generations and the improvement slowed
down. One can see that the average did not improve significantly after the 170th generation, but
changes can be seen in the individual trials.

Figure 5. The average fitnesses for 100 fixed positions over generations in 5 trials are displayed.
The thick line is the average of all trials.

In addition to plotting the fitness growth of the populations, we observed the behavior of the
best individuals in the population of one of the trials. These observations were made of individuals
from generation 1, 50, 130 and 270. In the 1st generation, the best individual did not tend to reach
the prey at all. It was moving backwards in most of the cases. In the 50th generation, the predator
was not successful in locating the prey. However, once the predator detected the prey, it was able
to chase it. In the 130th generation, although the predator seemed to act properly in most of the
situations and perform locating and chasing properly, there were a few unexpected movements
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while chasing the prey. In the 270th generation, the best individual performed its purpose properly.
In addition to being able to follow the trail of the prey, it would turn sharp enough at the start to
take a shortcut in reaching the prey. The observations of the results showed great improvement
throughout the learning process.

6. CONCLUSIONS
The results show that the CGA can learn an effective control program for a predator in the

predator/prey problem. The CGA learned the proper actions in response to 64 different possible
sensor inputs. In the initial/random population, the predator would not get close to the prey except
by chance. After 50 generations of training, the CGA learned the needed responses to chase the
prey. Further evolution resulted in both expected and unexpected results. The expected result was
that the predator learned to search for and catch the prey. The unexpected result  was that the
predator learned to take a shortcut to reach the prey.

The  successful  process  was  executed  in  simulation  on robots  that  closely  modeled  actual
robots. The next step will be to test our results on the actual robots. In further research, the CGA
learning method will be used to evolve the prey. Since our final predator controller was successful
at capturing the prey, we want to determine if a prey controller can be evolved that will allow it to
successfully evade. If this is the case, we will experiment with competitive co-evolution as both the
predator & prey learn concurrently.
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