
Connecticut College
Digital Commons @ Connecticut College

Computer Science Faculty Publications Computer Science Department

2015

Serve or Skip: The Power of Rejection in Online
Bottleneck Matching
Barbara M. Anthony
Southwestern University

Christine Chung
Connecticut College, cchung@conncoll.edu

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscifacpub

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut College. It has been
accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of Digital Commons @ Connecticut College. For
more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Anthony, Barbara M. and Chung, Christine, "Serve or Skip: The Power of Rejection in Online Bottleneck Matching" (2015). Computer
Science Faculty Publications. 30.
http://digitalcommons.conncoll.edu/comscifacpub/30

http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/30?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu

Serve or Skip: The Power of Rejection in Online Bottleneck Matching

Comments
Originally published in Journal of Combinatorial Optimization November 2016, Volume 32, Issue 4, pp
1232–1253.

The final publication is available at link.springer.com via https://doi.org/10.1007/s10878-015-9948-9

This article is available at Digital Commons @ Connecticut College: http://digitalcommons.conncoll.edu/comscifacpub/30

http://digitalcommons.conncoll.edu/comscifacpub/30?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages

Noname manuscript No.
(will be inserted by the editor)

Serve or Skip: The Power of Rejection in Online Bottleneck
Matching

Barbara M. Anthony · Christine Chung

August 13, 2015

Abstract We consider the online matching problem, where n server-vertices lie in a
metric space and n request-vertices that arrive over time each must immediately be
permanently assigned to a server-vertex. We focus on the egalitarian bottleneck objec-
tive, where the goal is to minimize the maximum distance between any request and its
server. It has been demonstrated that while there are effective algorithms for the util-
itarian objective (minimizing total cost) in the resource augmentation setting where
the offline adversary has half the resources, these are not effective for the egalitarian
objective. Thus, we propose a new Serve-or-Skip bicriteria analysis model, where the
online algorithm may reject or skip up to a specified number of requests, and propose
two greedy algorithms: GRINN(t) and GRIN∗(t). We show that the Serve-or-Skip
model of resource augmentation analysis can essentially simulate the doubled-server-
capacity model, and then examine the performance of GRINN(t) and GRIN∗(t).

1 Introduction

We consider the well-studied problem of minimum-cost bipartite matching in a metric
space. We are given n established points in the metric space, s1,s2, . . . ,sn, referred to
as servers, which form one side of the bipartition. Over time, the other n points,
r1,r2, . . . ,rn, appear in the metric space, and we refer to them as requests. We must
permanently match or assign each request ri, for i= 1 . . .n, to a server upon its arrival,
without any knowledge of future request locations ri+1, . . . ,rn.

The standard objective for this problem has been to minimize the total cost of the
final matching, frequently referred to as the min-weight matching problem. Formally,

Barbara M. Anthony
Mathematics and Computer Science Department, Southwestern University, Georgetown, TX
E-mail: anthonyb@southwestern.edu

Christine Chung
Department of Computer Science, Connecticut College, New London, CT
E-mail: cchung@conncoll.edu

if d(r,s) gives the cost or distance in the metric space from point r to point s, and we
use µ(ri) to denote the server matched to request ri in the matching µ , the goal of the
min-weight matching problem is to find a matching

µ
∗ = argmin

µ

n

∑
i=1

d(ri,µ(ri)).

In this work, however, we consider instead the objective of minimizing the maximum
distance from any request to its assigned server. That is, we seek a matching

µ
∗ = argmin

µ

max
i=1...n

d(ri,µ(ri)).

This objective is also known as the bottleneck objective, and we refer to this problem
as the online minimum-bottleneck matching problem.

From an economic perspective, the total-cost objective is a utilitarian objective
that may be natural in many situations (for example, when trying to stay within an
overall, centralized budget), while the bottleneck objective is egalitarian and seeks
to ensure fairness. Issues such as fairness are a growing concern in algorithm design,
as part of the wide-spread emergence of game theoretic settings in computer science,
due to the proliferation of internet-based, distributed and ad-hoc computing. How-
ever, in spite of the egalitarian objective growing in importance and relevance, to the
best of our knowledge, the bottleneck objective has remained largely unexplored.

There is growing evidence that the utilitarian total-cost objective for our on-
line matching problem is easier than the egalitarian bottleneck objective. Indeed, the
total-cost objective has been quite well-understood with respect to deterministic algo-
rithms for over two decades. Kalyanasundaram and Pruhs (1993), and independently,
Khuller et al. (1994), first showed that the basic greedy algorithm that matches each
arriving request to its nearest available server has an exponential competitive ratio,
and that the best competitive ratio any deterministic algorithm can achieve is 2n−1.
They also give an algorithm called PERMUTATION that achieves this competitive
ratio. (Interestingly, when the underlying metric is restricted to the line, the worst-
known lowerbound is 9.001, given in Fuchs et al. (2005), yet no constant-competitive
algorithm has been found.)

The fact that no sub-linear-competitive deterministic algorithm can be found for
the utilitarian objective gave rise to a natural question: if the offline optimal solution
is too lofty a benchmark, what natural adversary can an online algorithm hope to
compete with? An answer was given in Kalyanasundaram and Pruhs (2000b), in the
context of the Online Transportation Problem, a generalization of the min-cost match-
ing problem that additionally specifies the number of servers at each server location.
They showed that the greedy algorithm BALANCE is constant-halfOPT-competitive.
In other words, the online algorithm is constant-competitive when given twice the
server capacity at each server location.

Unfortunately, such a “weakened adversary” or “resource augmentation” approach
does not help when it comes to the bottleneck objective. It was demonstrated in An-
thony and Chung (2014) that PERMUTATION and BALANCE both fail to be better
than O(n)-halfOPT-competitive for the bottleneck objective. Additionally, algorithms

2

(such as BALANCE) that are designed based on the assumption that each server loca-
tion has the capacity to serve at least two requests, do not apply to the classic match-
ing setting of one server per request. It was also shown early on in an unpublished
manuscript by Idury and Schaffer (1992) that any deterministic algorithm must be at
least ≈ 1.5n-competitive (against the standard, unweakened, optimal, offline adver-
sary).

These negative results motivate us to consider an alternate form of resource aug-
mentation that gives a benchmark as simple and appealing as “half the server capac-
ity,” but perhaps powerful enough to compete with the offline optimal solution for the
more difficult bottleneck objective. In the present work, we ask: what happens when
the online algorithm is allowed to reject requests? In other words, what if the online
algorithm is given a number of “free passes”?

Specifically, we propose the Serve-or-Skip (SoS) bicriteria analysis model: as-
sume the online algorithm has an allowance of p passes or skips, which means the
online algorithm may reject up to p of the requests without incurring any cost. This
means that, in the case of the bottleneck (egalitarian) objective, a rejected request
will not be a candidate for being the bottleneck match. We refer to an algorithm
as c-SoS(p)-competitive if, when rejecting no more than p of the requests, it is c-
competitive with the offline optimal solution.

One might expect the resource augmentation model of doubling the capacity of
each server to be just as powerful as having permission to ignore half the requests.
However, we show that SoS can readily simulate the result of any algorithm under
the doubled-capacity model of resource augmentation, suggesting that it may in fact
be a more “powerful” resource augmentation model (i.e., the “weaker” adversary of
the two). We also propose two threshold-based algorithms and analyze their compet-
itiveness against the offline optimal matching that is required to serve all requests.

We believe that SoS has, in some circumstances, more practical appeal as a bench-
mark than the previously proposed benchmark of doubling the resources, since in
many real-world application areas, the question is one of “quality of service” rather
than “service at all costs.” We speculate that service providers in various real-world
situations may not only be interested in quantifying the gains from rejecting a fraction
of their incoming service requests, but also be more willing to entertain the notion of
reducing their quality of service before they consider the idea of dramatically aug-
menting their resources.

1.1 Other related work

Incidentally, there has been an active line of recent work in online algorithms studying
the power of allowing the online algorithm to have some recourse for its past actions.
Megow et al. (2012) study the online minimum spanning tree problem, where points
arrive online and the online algorithm must connect the point to the existing tree as
they arrive. They show that by allowing for a small number of re-arrangements on
previously-placed edges, a nearly optimal tree can be maintained. They also apply
their technique to online TSP. Gu et al. (2013) then showed that with only a single
retroactive edge-swap per step, a constant-competitive Steiner tree can be maintained

3

online. Finally, Gupta et al. (2014) show that in online b-matching, where a bipartite
matching must be maintained online such that the degree of each node is at most
b, allowing a constant number of total re-assignments of past matches suffices for a
constant-competitiveness. They also apply their technique to online scheduling with
unrelated machines in the restricted assignment model, as well as to an online single-
sink flow problem.

Resource augmentation analysis, or using a weakened adversary, is a technique
that has been well-established and effectively and successfully used in many domains,
including matching, scheduling, and algorithmic game theory. In the literature on
matching, the resource augmentation has been in the form of doubling (Kalyana-
sundaram and Pruhs (2000b); Anthony and Chung (2014)) or incrementing (Chung
et al. (2008)) server site capacities. In the online machine scheduling literature, it
has taken the form of augmenting the processing speed of machines (Kalyanasun-
daram and Pruhs (2000a); Phillips et al. (2002)). In auction theory, in an extensive
line of work starting with Goldberg et al. (2001), including Hartline and Roughgar-
den (2009), a weakened adversary is used as a trade-off for the lack of information
the auction mechanism has regarding the bidders true valuations for the items being
sold. And in a seminal work of algorithmic game theory by Roughgarden and Tardos
(2002), the optimal solution in a routing game is required to route twice as much
traffic in exchange for centralized coordination among the players.

A very active and popular problem of study in the domain of online bipartite
matching is known as the AdWords problem (see, e.g., Kalyanasundaram and Pruhs
(2000c); Mehta et al. (2007); Goel and Mehta (2008); Devanur and Hayes (2009);
Fernandes and Schouery (2014)). There, however, no assumption of an underlying
metric space is made (i.e., the edge weights need not satisfy the triangle inequality),
each server may be matched to multiple requests as long as its given “budget” is not
exceeded, and the objective is to maximize the weight of the final matching.

1.2 Our results

We begin by showing that our proposed SoS model of resource augmentation anal-
ysis can simulate the doubled-server-capacity model, and hence any algorithm ana-
lyzed under that model immediately implies a corresponding algorithm with an SoS-
competitive ratio at least as good as the original algorithm’s halfOPT-competitive
ratio.

We then propose a natural algorithm that assigns requests greedily, but skips any
request that has no available servers within t times the distance to its nearest neighbor.
We call the algorithm GRINN(t) for Greedy Inside Nearest Neighbor Threshold, and
show that this algorithm has an SoS(p)-competitive ratio of Θ(2n−p) and that this
ratio is tight. I.e., when allowed p free passes, the bottleneck cost of the GRINN(t)
solution is guaranteed to be no more than Θ(2n−p) times that of the optimal offline
assignment that matches all the requests. Hence each free pass improves the ratio by
a factor of 2. Of course, for instances in which the algorithm does not run out of free
passes, the SoS(p)-competitive ratio is at most t.

4

Table 1 Summary of the results in this work. Note that, trivially, c = t for instances in which the algorithm
does not run out of free passes. Also, the bottom-most lowerbound here on GRIN∗(t) is stronger (higher)
than the one above it, but we include the weaker bound because we find its structure to be intuitive and
instructive, and perhaps useful as a general technique for lower-bounding in the SoS model of weakened
adversary analysis.

Algorithm Applicable values of t Applicable values of p SoS(p)-competitive ratio c

GRINN(t) 1 < t < 2n−p−1 0≤ p≤ n−1 c =Θ(2n−p)

GRIN∗(t)

t = 1 0≤ p≤ n−1 c = 2n−p−1
t = 2 0≤ p≤ (n−1)/2 c = Ω(p2n−2p)

1 < t ≤ 2(n−1)/p−1 0≤ p≤ n+1
dlog te+1 c≥ 2n−(dlog te+1)p−1

t > 2 0≤ p≤ (n−1)/2 c≥ t p−2p

(t−2)t p +2n−2p−1

We then propose another greedy algorithm, which we refer to as GRIN∗(t), which
assigns requests greedily as long as there are available servers within t times the
optimal offline bottleneck distance of the requests that have arrived so far. If there are
no available servers within this threshold, the request is skipped. We then show that
the SoS(p)-competitive ratio of GRIN∗(1) is exponential in n− p, and that this is tight.
So each free pass improves the competitive ratio by a factor of 2, as with GRINN(t).
We also show that the SoS(p)-competitive ratio of GRIN∗(2) is exponential in n−
2p, suggesting, interestingly, that each free pass improves the competitive ratio by a
factor of 4. We conjecture that this ratio is tight for GRIN∗(2). Again, for instances in
which the algorithm does not run out of free passes, the SoS(p)-competitive ratio is
of course at most t. Finally, we also provide lowerbounds for the SoS-competitiveness
of GRIN∗(t) for any t > 1. Our results are summarized in Table 1.

Along the way, we also provide an upper bound on the competitive-ratio of the
basic GREEDY algorithm for online bottleneck matching (with no resource augmen-
tation). We show that GREEDY is (2n−1)-competitive, which essentially matches the
existing lower bound given in Anthony and Chung (2014).

2 Preliminaries

We propose the Serve-or-Skip (SoS) model of resource augmentation analysis, where
the online algorithm is endowed with an allotment of p free passes to be used as
follows. Upon the arrival of each request, the online algorithm may choose to assign
it irrevocably as usual, or, instead, use one of the p passes and reject the request,
leaving it unassigned. After the online algorithm has used all p passes, it is required
to assign all remaining incoming requests.

This is in contrast with the previously established resource augmentation model
where the offline algorithm is assumed to have greater server capacity at each server
location. Specifically, Kalyanasundaram and Pruhs (2000b) defined a c-halfOPT-
competitive algorithm to be one that is c-competitive with an optimal offline solution
that uses half the capacity at each server location (so this characterization only ap-
plies to settings where there are at least two servers per server location). We call an

5

algorithm c-SoS(p)-competitive if, when rejecting no more than p of the requests, it
is c-competitive with the offline optimal solution.

2.1 SoS
(n

2

)
-competitive vs halfOPT-competitive

We show that any online algorithm that is c-halfOPT-competitive can immediately be
transformed into an algorithm that is c-SoS

(n
2

)
-competitive, and hence that SoS

(n
2

)
is at least as easy a benchmark as halfOPT for online algorithms to compete with.

Theorem 1 If an online algorithm X is c-halfOPT-competitive for minimum bot-
tleneck (resp, weight) matching, there is an online algorithm Y that is c-SoS

(n
2

)
-

competitive for minimum bottleneck (resp, weight) matching.

Proof Given algorithm X that is c-halfOPT-competitive, transform it to a c-SoS
(n

2

)
-

competitive algorithm Y as follows.

1. Pretend there is a “secondary server” at the location of each server in the input.
2. Run X, and

whenever X wants to assign a request to an imaginary “secondary server,”
reject that request,

otherwise, choose the same server that X does.

We know that Y will not use more than n
2 free passes, because if it does, then X

must have assigned more than n requests, but there are only n requests total.
Since all of the assignments made by Y are also made by X, the bottleneck (resp,

total) cost of the assignment made by Y will be no more than the bottleneck (resp,
total) cost of X. ut

This result immediately yields the following fact regarding the min-weight ob-
jective and the SoS-competitiveness of the algorithm that would result from trans-
forming the previously proposed BALANCE algorithm (Kalyanasundaram and Pruhs
(2000b)). Recall that BALANCE was shown to be O(1)-halfOPT-competitive for the
online transportation problem, assuming there are at least two servers per server site.

Corollary 1 Let BALANCESOS be the algorithm that results after applying the trans-
formation described in Theorem 1 to the algorithm BALANCE (Kalyanasundaram
and Pruhs (2000b)). BALANCESOS is O(1)-SoS(n/2)-competitive for the min-weight
matching problem.

2.2 Greedy Threshold Algorithms

Greedy algorithms are a natural first choice to consider in the SoS(p) model. An
algorithm that merely assigns each request to the closest available server, without
skipping any requests, is the naive greedy algorithm in the classical model. Thus,
we must specify how the algorithm determines which requests, if any, to skip. One
logical choice is to use a threshold, where if the desired server is distance x away,
the algorithm greedily picks the closest available server within distance t · x for some

6

threshold t ≥ 1; if no such server exists, it rejects the request. (Clearly it does not
make sense to consider a threshold t < 1.)

It remains to define the ‘desired’ server. We first consider an algorithm we call
GRINN(t), where the desired server is the nearest neighbor to the current request.
Thus, when request ri arrives, the algorithm with a threshold parameter t ≥ 1 finds
the minimum distance di to any server (available or not) from ri. Formally, di =
min j d(ri,s j). It then greedily picks the closest available server within distance at
most t ·di, assigning ri to that server if it exists, and rejecting request ri if there is no
such server. If p rejections have already been made, the algorithm greedily assigns ri
to the nearest available server. While the simplicity of this algorithm is appealing, we
show that its performance is exponential in the number of assigned requests for any
threshold t.

We thus consider an improved version of the threshold algorithm which makes
its decision about serving or skipping a request based on what the optimal solution
would do with the set of requests that have arrived so far. We denote the algorithm
GRIN∗(t) with an associated parameter t ≥ 1. Let OPTi refer to the optimal offline
matching on the set of requests {r1,r2, . . .ri}, i.e., if Mi refers to the set of all partial
matchings between the first i requests and any i of the n servers {s1, . . . ,sn},

OPTi = argmin
µi∈Mi

max
j=1...i

d(r j,µi(r j)).

(We abuse notation to let OPTi represent either the set of assignments made, or the
bottleneck cost of said set of assignments.) With the arrival of request ri, if the near-
est available server is within distance t ·OPTi of ri, then assign it to ri, otherwise re-
ject/skip ri. Note that OPTi can be computed efficiently (e.g., as described in Gabow
and Tarjan (1988); Garfinkel (1971)) from OPTi−1 and thus the assignments made
by GRIN∗(t) are polynomial-time computable.

2.3 Observations about GRIN∗(t) and GRINN(t)

We now make some basic observations about GRIN∗(t) and GRINN(t) that will be
useful in analyzing their performance in the SoS(p) model. Let OPT = OPTn.

Lemma 1 GRIN∗(t) (resp. GRINN(t)) always assigns the first request, with a cost
of at most OPT1 ≤ OPT.

Proof The first request can always be assigned to the server it was assigned to by
OPT1, which is its nearest neighbor. GRIN∗(t) and GRINN(t) will make exactly this
assignment. Since the OPTi values are non-decreasing, OPT1 ≤ OPT. ut

We now provide an instance that requires n− 1 skips for GRIN∗(1) to stay opti-
mal, and then show that GRIN∗(1) is in fact 1-SoS(n− 1)-competitive (i.e., optimal
when it can reject n−1 requests). This instance is a subdivided star where all but one
edge in the original star is subdivided into two edges, as shown in Figure 1.

Lemma 2 If GRIN∗(1) (resp. GRINN(1)) is 1-SoS(p)-competitive, then p≥ n−1.

7

r3

r1

r2

rn-1

sn

1

11

1

s1

s2

s3

sn-1

rn

1

1+?

1+2?

1+3?

1+(n-1)?

3+?

OPT

GRIN*(1)

Fig. 1 The subdivided star instance of Lemma 2. Requests skipped by GRIN∗(1) are highlighted.

Proof Let there be a centrally-located server, called sn, at the root of a subdivided star,
with n requests each a distance of 1 from the center server. As shown in Figure 1,
servers 1 . . .n− 1 are located at the leaves of the star, with server si emanating a
distance of 1+ iε from ri, for i = 1 . . .n− 1. Thus, the subdivided edges of the star
each have a request at the division and a server at the leaf si, while the one undivided
edge has a request at the leaf rn. All distances d(r,s) not given explicitly are equal to
the cost of the path from r to s in the subdivided star.

Note that OPTi = 1+(i− 1)ε for i = 1 . . .n, as it always matches ri to sn and
r j to s j for j = 1 . . . i− 1. On the other hand, GRIN∗(1) (or GRINN(1)) skips every
request after the first request, which it assigns to the root. If GRIN∗(1) (or GRINN(1))
is only allowed to skip p < n− 1 requests, it will skip requests r2 . . .rp+1, forcing it
to assign all remaining requests, up to and including rn. The bottleneck edge is the
one associated with rn, with a distance of 3+ ε while OPT= 1+(n−1)ε . ut

Corollary 2 GRIN∗(1) (resp. GRINN(1)) is 1-SoS(n−1)-competitive for online min-
bottleneck matching.

Proof Since Lemma 1 ensures that the first request is always assigned with a cost
of at most OPT, GRIN∗(1) (resp. GRINN(1)) can skip all of the remaining requests.
With a threshold value of 1, GRIN∗(1) will only assign later requests if the assignment
cost is at most OPTi ≤ OPT, guaranteeing that the bottleneck cost is at most OPT.
Likewise, GRINN(1) will only assign to the nearest neighbor; that distance is again
at most OPT. ut

3 Upper Bounds for GRIN∗(t) and GRINN(t)

In this section we prove upper bounds on the performance of GRIN∗(t) and GRINN(t).
We note that, trivially, the SoS(p)-competitive ratio of both algorithms is t for in-
stances in which the algorithm does not run out of free passes.

8

For the remainder of this work, we define k = n− p to be the minimum number of
assignments that must be made by the online algorithm. We first consider t = 1 and
then generalize to an arbitrary threshold t ≥ 1. We show that the SoS(p)-competitive
ratio of both GRIN∗(t) and GRINN(t) is O(2n−p). In the next section we show that
this ratio is tight for GRIN∗(1) as well as GRINN(t), for t > 1, so each free pass
reduces the ratio by a factor of 2.

3.1 Upper Bound for t = 1

Theorem 2 For 1≤ p≤ n−1, GRIN∗(1) is (2n−p−1)-SoS(p)-competitive for online
minimum bottleneck matching.

Proof By definition of GRIN∗(1), and since the OPTi are nondecreasing in i, if more
than k requests are assigned, they must each have assignment cost at most OPT =
OPTn. Thus, we may assume that exactly k requests are assigned, and only consider
these requests for the remainder of the proof.

We relabel these assigned requests to be r1, . . . ,rk, where the subscripts represent
the relative order of arrival (and thus assignment) within these k requests. We will
show inductively that the assignment cost of ri is at most (2i−1) ·OPT for i = 1 . . .k.

Base case: i = 1. By Lemma 1, the first request r1 is always assigned with a cost
of at most OPT, which satisfies the claim.

Inductive case: Assume that the assignment cost of r j is at most (2 j−1) ·OPT for
all 1≤ j≤ i. Consider the assignment cost of ri+1. Let si+1 be the server that OPTi+1
assigns to ri+1. If si+1 is available, the assignment cost is at most OPTi+1 ≤ OPT.

Thus, we may assume that si+1 is not available, and it is used by some r j with
j ≤ i. We thus consider the graph consisting of edges in OPTi+1 and the i edges
assigned thus far by GRIN∗(1). Since ri+1 is not yet matched by GRIN∗(1), there
must be a path in this graph from ri+1 to some sa that is used by OPTi+1 but not
currently matched by GRIN∗(1). Observe that said path must begin with an edge in
OPTi+1 and alternate between edges in OPTi+1 and edges in GRIN∗(1), terminating
with an edge in OPTi+1.

We can thus use triangle inequality to compute the distance from this available sa
to ri+1, giving an upper bound on the assignment cost of ri+1. Since all distances are
nonnegative, additional edges either cause the total cost to increase or stay the same.
Thus, in the worst case, the path includes all of the i assignments already made, as
well as the i+1 edges in OPTi.

By strong induction, the cost of the i assignments already made is at most

i

∑
h=1

(2h−1) ·OPT =
(
2i+1− i−2

)
·OPT.

Noting that the OPTi are non-decreasing, the total cost of the i+ 1 edges from
OPTi+1 is upper-bounded by (i + 1) · OPT. Adding this to the expression above
bounds the total distance (and thus assignment cost) of ri+1 to some available server
by (2i+1−1) ·OPT, completing the inductive proof. ut

9

Corollary 3 For 1 ≤ p ≤ n− 1, GRINN(1) is (2n−p − 1)-SoS(p)-competitive for
online minimum bottleneck matching.

Proof The proof is identical to that of Theorem 2, with the observation that the dis-
tance from a request to its nearest neighbor is naturally at most OPT. ut

Incidentally, a similar proof also yields the essentially-tight upper-bound of 2n−1
on the competitive-ratio of the basic GREEDY algorithm for the bottleneck matching
problem (without the aid of resource augmentation). The matching lower bound was
given in Anthony and Chung (2014). Due to its similarity to the proof of Theorem 2,
we defer the proof of this fact to Appendix B.

3.2 Upper Bound for t > 1

In generalizing the upper bound for GRIN∗(t) to t > 1, any of the greedy assignments
made by GRIN∗(t) may in fact cost up to a factor of t more than the optimal solution
on the set of requests thus far. The following proof parallels that of Theorem 2, but
has some notable distinctions because requests that would have been skipped when
t = 1 may now be assigned.

Theorem 3 For 1≤ p≤ n−1, GRIN∗(t) is max{2n−p−1, t}-SoS(p)-competitive for
online minimum bottleneck matching.

Proof Since GRIN∗(t) only assigns a request if it has no skips left or the cost is below
the threshold, if more than k requests are assigned, these additional requests (above
k) must all have assignment costs of at most t ·OPT. Thus we may consider only the
first k requests that are assigned for the remainder of the proof.

Relabeling the requests and using strong induction as in Theorem 2 then shows
that the assignment cost of ri is at most max{2i− 1, t} ·OPT. Specifically, the base
case is unchanged, and the inductive case now relies on the observation that either the
alternating path has the same bound as in Theorem 2 or that request ri+1 was assigned
to some available server within distance t ·OPTi+1. Thus, taking the larger of these
two gives the upper bound for general t. ut

The result in Theorem 3 again extends naturally to the GRINN(t) algorithm.

Corollary 4 For 1 ≤ p ≤ n− 1, GRINN(t) is max{2n−p− 1, t}-SoS(p)-competitive
for online minimum bottleneck matching.

In the next section we provide a matching lower bound for GRINN(t) (and for
GRIN∗(1)) that, combined with the upper bound in this section, shows that each skip
improves the SoS(p)-competitiveness of GRINN(t) (resp. GRIN∗(1)) by a factor of
2.

10

r3
rn

r1

r2

rp+1

sp+2

1

11

1

s1

s2

s3

sp+1

rp+21

1+?

1+2?

1+3?

1+(p+1)?

3
sp+3 rp+31

sp+47
sn 1

2k-1+?

OPT

GRIN*

Fig. 2 The broom-with-subdivided-star instance. Requests skipped by GRIN∗(1) are highlighted.

4 Lower Bounds

4.1 Lower Bound for GRINN(t) and GRIN∗(1)

We provide a lowerbound on GRIN∗(1), and use the same instance to provide a lower
bound for the cost of GRINN(t) in the SoS(p) model for arbitrary p = n−k. We use
an example whose structure is comprised of a broom with a subdivided star. While
a standard broom graph consists of a path and a star, this specialized broom graph
consists of a path, one of whose endpoints is the center of a subdivided star.

Theorem 4 For 0≤ p≤ n−1, if GRIN∗(1) is c-SoS(p)-competitive for online mini-
mum bottleneck matching, then c≥ (2n−p−1− ε) .

Proof The requests are numbered in order of arrival (see Figure 2). The broom with
a subdivided star consists of a star portion, centered at sp+2 with p+ 1 leaves, and
a longer handle. In particular, r1 through rp+1 are each a distance 1 away from the
center, sp+2. For i = 1 . . . p + 1, there is a server si that is at a distance of 1 + iε
away from ri, making these servers all a distance greater than 2 from the center. The
remaining requests and servers lie along a line emanating from the center, terminating
with request rn. Specifically, until rn is reached, rp+2 is a distance 1 from the center.
Server sp+3 is 3 units further along the line, with request rp+3 1 unit further. Server
sp+4 is 7 units further, followed by request rp+4 1 unit further. Server sp+5 is 15 units
further, followed by request rp+5 1 unit further. In general, sp+ j is 2 j−1−1 units past
request rp+ j−1, and 1 unit before rp+ j.

The optimal solution assigns each request ri in the star portion (i.e., 1≤ i≤ p+1)
to its corresponding leaf server si for a cost of 1+ iε , and each request on the handle
portion also to its corresponding server (ri to si for p+ 2 ≤ i ≤ n), for a cost of 1.
Hence, OPT is 1+(p+1)ε .

We now consider the behavior of GRIN∗(1). Again, the first request is always
assigned, so r1 is greedily assigned to the center of the star portion, sp+2. With the
arrival of r2, OPT2 would have assigned r1 to s1 and r2 to sp+2, so OPT2 is 1+ ε ,
causing GRIN∗(1) to skip r2 (since the closest available server, s2, is 1+ 2ε away).

11

Similarly, for the remaining requests on the star portion, that is, for i = 2 . . . p+ 1,
when ri arrives, OPTi is 1+(i−1)ε and the nearest available server, si is at a distance
1+ iε so the algorithm skips request ri. Hence, it uses up all of the allowed p skips.
Thus, all of the remaining requests must be assigned, and will be done so greedily. In
particular, rp+2 greedily chooses the server sp+3 that is 3 to the right instead of paying
3+ ε (or more) to use a server in the star portion. Similarly, each of the remaining
requests will choose to go further along the handle when possible rather than paying
slightly more to go back to the star portion. Thus, the final request rn, the leaf of the
handle, must traverse the entire length of the handle, a distance of

1+
n−1

∑
i=p+2

(2i−p−1+1),

and then go ε +2 to the closest leaf of the star (s1) for a total cost of

ε +1+2+
n−p−1

∑
i=2

2i = ε +
n−p−1

∑
i=0

2i = 2n−p−1+ ε,

growing exponentially in the number of requests assigned by the algorithm. ut

In contrast with GRIN∗(1), GRIN∗(t), t ≥ 2, for example, does well on the broom
with subdivided star. GRINN(t), on the other hand, is not as effective. We can easily
modify the distances in the graph to be more challenging for GRINN(t).

Corollary 5 For 0≤ p≤ n−1, if GRINN(t) is c-SoS(p)-competitive for online min-
imum bottleneck matching, then c≥Ω(2n−p).

Proof The instance here is similar to that of Theorem 4 (Figure 2), however the dis-
tances d(ri,si), for i= 1 . . . p+1 are instead t+ε . The edge from rp+2 to sp+3 now has
cost t +2, the edge from rp+3 to sp+4 has cost 2t +5, the edge from rp+4 to sp+5 has
cost 4t +11, and in general the edge from rp+i to sp+i+1 has cost 2i−2t +3 ·2i−2−1
for all i = 2 . . .k.

Thus, the bottleneck edge, the edge out of rn, has a cost of 2n−p−2t +3 ·2n−p−2−
1+ ε . OPT assigns each ri to the corresponding si, for a bottleneck cost of t + ε . ut

We note that taken together with Corollary 4, we have now given a tight analysis
of the SoS-competitiveness of GRINN(t).

4.2 Lower Bounds for GRIN∗(2)

We now return to GRIN∗(2), having noted that it does well on some instances on
which GRIN∗(1) does poorly. We present two lowerbound instances in this section,
the first weaker, but straightforward and instructive, and perhaps useful as a basic
lower-bounding technique in the SoS analysis model.

It is well known (and we can see, i.e., from the “handle” portion of our broom
instance) that a standard greedy algorithm that is not able to reject requests can do
quite poorly, even when all the servers and requests lie on a single line. Intuitively, the

12

SoS(p) model allows GRIN∗(t) to recover from a poor decision by skipping a request.
Yet, what if the instance consists of numerous line segments, that are mutually far
apart? In such an input instance, each segment (of 2 requests/servers) forces a skip,
and on the last segment there are no skips left, so the final request will have to travel
the length of the segment: a distance of 2n−2p−1.

Theorem 5 For p ≤ n−1
2 , GRIN∗(2) is no better than 2n−2p−1-SoS(p)-competitive.

(Hence each pass reduces this lower bound on the competitive ratio by a factor of 4.)

Proof The instance consists of p+1 line segments as follows, with request numbers
indicating their arrival order, as usual. The first line segment consists of servers s1
located at −1− ε and s2 at value 1 and requests r1 located at 0 and r2 at 1+ 2ε . In
general, segment i, for i= 1, . . . , p, consists of server locations s2i−1 located at−1−ε

on line segment i, s2i at value 1 on line segment i, and requests r2i−1 located at 0 on
line segment i and r2i at 1+ 2ε on line segment i. Segment i, for i = 1 . . . p+ 1, is
far enough (at least 2n) away from all points on previous segments j < i. The final
segment has the standard server locations of the known worst instance against the
basic greedy algorithm that matches each arriving request to its nearest available
server: server s j for j = 2p + 1, . . . ,n are at locations −1− ε,1,3,7, . . . ,2n−2p−1.
Requests r j for j = 2p+ 1, . . . ,n arrive at the following corresponding locations on
the final segment: 0,1,3,7, . . . ,2n−2p−1.

OPT will assign each ri to the corresponding si, for a bottleneck cost of 1 +
ε (with many assignments having cost 0). GRIN∗(2) assigns r1 to s2 (the cheapest
assignment) and then the cost of assigning r2 to s1 is 2 + 3ε , which exceeds the
allowable cost of 2 ·OPT = 2+ 2ε , and all other servers are at least 2n away, so r2
is skipped. On the next segment, GRIN∗(2) similarly assigns r3 to s4, and skips r5,
and so on for the first p segments. After p segments, the algorithm has used all of its
skips, so its behavior on the remaining segment is to assign all requests to the servers
to their immediate right, assigning the final request to the leftmost server of segment
p for a cost of 2n−2p−1. ut

Note that when half the requests may be rejected (p≈ n/2), GRIN∗(2) is constant-
SoS-competitive on this instance. Unfortunately, our next theorem shows even when
p≈ n/2, GRIN∗(2) has an SoS-competitive ratio no better than linear.

While the previous instance required the algorithm to assign at least two assigned
requests per skipped request, this next instance is able to force a skipped request for
each assigned request. We conjecture that this is the worst-possible for GRIN∗(2) and
that there is a matching upperbound on the SoS-competitive ratio.

Theorem 6 For p ≤ (n− 1)/2, GRIN∗(2) has a SoS(p)-competitive ratio no better
than Ω(p2n−2p).

Proof Consider the following input instance, pictured in Figure 3. The structure of
the instance is that requests arrive from left to right, with requests ri, for i = 1,3, . . . ,n
(n an odd integer) assigned by GRIN∗(2) arriving on a line, and skipped requests
ri, i = 2,4, . . . ,n− 1, arriving “above” the line after each assigned request. (Note
that for now we assume p = k− 1 = (n− 1)/2, and we describe the general case

13

4

r4r2

r1 s31
s1 r321+? 4

s5 r54
s712

r9s9 16

r6

r7

s2 s4 s6

8 32

r8

s8

80+? = (p+1)2p+?

1

2+3?

2 8

4+7? 8+15? 16+31?=2p+(2p+1-1)?

OPTi

OPT

GRIN*(2)

Fig. 3 Requests are numbered in order of arrival and requests skipped by the online algorithm GRIN∗(2)
are highlighted. The special case of the instance where p = k− 1 = (n− 1)/2 is pictured here. Note that
in this case GRIN∗(2) = (n− p)2p +ε = (p+1)2p +ε . In the more general version of this input instance,
when p≤ k−1, GRIN∗(2) = p2k−1 +2k−2p + ε

of p ≤ k− 1 below.) Define d(r1,s1) = 1+ ε . For each server si, for i = 3,5, . . . ,n,
numbered according to the index of the request that is matched to it by OPT, we
have d(ri−1,si) = 2(i−1)/2−1 and d(ri,si) = 2(i−1)/2. For each i = 2,4, . . . ,2p we have
d(ri,si) = 2i/2 +(2i/2+1−1)ε . Finally, each request ri, for i = 3,5, . . . ,n−2, has

d(ri,si+2) = 2d(ri−2,si)+d(ri,si), (1)

with d(r1,s3) = 1. This is effectively the total distance from ri back to s1, and it can
be verified via substitution that in closed form, for i = 3,5, . . .n−2,

d(ri,si+2) = (i+1)2(i−3)/2.

It can be easily verified that d(rn,s1) = (n− p)2n−p−1 by letting i = n and p =
(n−1)/2.

Each of the requests ri, for i = 1,3, . . . ,n− 2 is assigned by GRIN∗(2) to the
server to its right si+2, and by OPTi for i = 3,5, . . . ,n to the server to its left si. For
each request ri, for i = 2,4, . . . ,n− 1, OPTi initially assigns it to server si+1 on the
line, at a cost of 2i/2−1, and therefore ri is skipped by GRIN∗(2). But upon arrival
of request ri+1, OPTi+1 reassigns ri to si, which doubles the bottleneck cost of OPT.
Finally, when rn arrives, GRIN∗(2) has no choice but to match it to s1 for a final
bottleneck cost of (n− p)2n−p−1 + ε = k2k−1 + ε = (p+ 1)2p + ε , since p = k− 1,
and the added ε term comes from the definition of d(r1,s1).

For general p ≤ k− 1, we simply omit any excess requests arriving above the
line, stopping after p have arrived. In other words, we include one to-be-skipped
request “above” each assigned request until we have a total of p skipped requests. The
remaining requests all arrive on the line following the same pattern as the previous
requests that have arrived on the line, continuing to increment their index value from
left to right. Specifically, all distances are defined as above in equation (1) for i =
3,5, . . . ,2p+1. But now, for i = 2p+2 . . .n, we define d(ri,si) = 2p, and

d(ri,si+1) = 2d(ri−1,si)+2p (2)

14

Fig. 4 An instance for t = 6 is illustrated here, yielding an SoS(p)-competitive ratio of 2n−p(dlog te+1)−1 =
2n−4p−1−1. Requests are numbered in order of arrival and requests skipped by the online algorithm GRIN∗

are highlighted.

for i = 2p+ 2 . . .n− 1. The bottleneck cost is the total distance from rn back to s1,
which, using the two sets of recurrences (1) and (2), comes to

2(2(2 . . .(2︸ ︷︷ ︸
k−1 of these

(1)+2)+4)+8)+ . . .+2p)︸ ︷︷ ︸
p of these

+2p)+ . . .+2p)+2p︸ ︷︷ ︸
k− p−1 of these

= 20 ·2k−1 +21 ·2k−2 + . . .+2p−1 ·2k−p︸ ︷︷ ︸
p of these

+2p ·2k−p−1 + . . .+2p ·20

= 2k−1 + . . .+2k−1︸ ︷︷ ︸
p of these

+2k−1 +2k−2 + . . .+2p

= p2k−1 +
k−p

∑
j=1

2k− j = p2k−1 +
k−1

∑
j=p

2 j

= p2k−1 +2k−1− (2p−1) = p2n−p−1 +2n−p−2p.

Note that the above total is short by a single additive ε from the distance d(r1,s1).
OPT, on the other hand, had a final bottleneck cost of 2p + (2p+1 − 1)ε . Hence,
GRIN∗(2)/OPT ≈ (p2n−p−1 +2 ·2n−p−1−2p)/2p = (p+2)2n−2p−1−1. ut

4.3 Lower Bounds for GRIN∗(t)

Extending the instance of Theorem 5 to larger thresholds simply entails lengthening
the segments, as illustrated in Figure 4. As the threshold increases we also get a lower
ratio. Specifically, for a threshold of t, a segment of dlog te+1 requests is needed to
force each free pass, yielding the following corollary to Theorem 5.

15

t2

r4r2

r1 s31
s1 r3t1+? t+2

s5 r5t2
s7t2+2t+4

r9s9 t4=tp

r6

r7

s2 s4 s6

t3 t3+2t2+4t+8

r8

s8

1

t

t t3

t2 t3 t4=tp

OPTi

OPT

GRIN*

Fig. 5 Requests are numbered in order of arrival and requests skipped by GRIN∗ are highlighted. Note
that for simplicity the epsilon terms in the vertical distances from Figure 3 have been omitted from this
illustration. The special case of the instance where p = k− 1 and hence GRIN∗ = (tk − 2k)/(t − 2), is
pictured here. But the general cost for any p≤ k−1 is GRIN∗ =∑

p−1
j=0 t j2k− j−1+∑

k−1
j=p t p2k− j−1 ≥ t p−2p

t−2 +

t p(2k−p−1).

Corollary 6 GRIN∗(t) has an SOS(p)-competitive ratio no better than 2n−p(dlog te+1)−1.

A somewhat tighter lowerbound on GRIN∗(t), for all t > 2, is based on the in-
stance of Theorem 6 in Figure 3. In particular, we extend the distance from r2 to s2 in
that instance to t +(t +1)ε , and use t for the distance from r3 to s3. We follow these
initial distances and extend the remaining distances as follows. Explicitly, d(r1,s1) =

1+ ε , d(ri,si) = t(i−1)/2 for odd 3 ≤ i ≤ 2p+ 1, d(ri,si) = t i/2 + ε ∑
i/2
j=0 t j for even

i≤ 2p, d(ri,si+1) = t i/2−1 for even i≤ 2p, and d(ri,si+2) = 2d(ri−2,si)+d(ri,si) for
odd 3 ≤ i ≤ 2p+ 1. This completes the portion of the instance with even-numbered
requests arriving above the line, all of which GRIN∗(t) will pass on. (See Figure 5,
though note that epsilon terms on the distances other than d(r1,s1) have been omitted,
for simplicity.) The remaining requests all arrive on the line with distances defined
analogously to those of Equation (2) in Theorem 6 as follows. For i = 2p+2, . . . ,n,
we define d(ri,si) = t p (since there will be no more passes these vertical distances
need no longer increase) and d(ri,si+1) = 2d(ri−1,si)+ t p (equivalent to the total dis-
tance from ri back to r1, as usual). These adjustments yield the following corollary to
Theorem 6.

Corollary 7 Suppressing epsilon terms, for t > 2 GRIN∗(t) has an SOS(p)-competitive
ratio no better than

t p−2p

(t−2)t p +2n−2p−1.

Proof As in Figure 3, Figure 5 illustrates the special case of p = k−1 = n−1
2 , where,

following the same reasoning as in Theorem 6,

GRIN∗(t) =
k−1

∑
j=0

t j2k− j−1 =
tk−2k

t−2
.

But for general p≤ k−1, the skipped requests beyond p that are pictured above the
main line segment would be incorporated into the remainder of the line segment, as

16

described in the proof of Theorem 6, yielding a bottleneck cost of

GRIN∗(t) =
p−1

∑
j=0

t j2k− j−1 +
k−1

∑
j=p

t p2k− j−1

≥
p−1

∑
j=0

t j2p− j−1 + t p
k−p−1

∑
j=0

2k−p− j−1

=
t p−2p

t−2
+ t p(2k−p−1).

To derive the final ratio, divide by the cost of OPT, which is t p (suppressing epsilons).
ut

5 Conclusion

This work investigates the relationship between two forms of bicriteria analysis for
online minimum bottleneck matching: the traditional one where resource augmenta-
tion comes in the form of added resources, and the one we propose here, where we are
effectively allowing for some “degradation of service” in exchange for being online.
Since the service provider is able to decline a number of requests upon arrival, this
model may be more relevant to some practitioners than having to service all requests,
but needing to supplement their resources for doing so. In addition, algorithms that
perform well against an adversary with half the servers per server location, may de-
pend on the assumption that there are at least two servers per server location, and may
not readily translate to the native online matching setting. It is also interesting to con-
sider the implications of the extra power afforded under the SoS(p) model, namely
the responsibility to wield it wisely. While the greater freedom allowed under the
SoS(p) model is appealing, more limited freedom can have the benefit of restricting
the number of poor decisions a greedy algorithm can make. This may make designing
good algorithms for the SoS(p) model more challenging.

We showed in this work that the most natural greedy algorithm, GRINN(t), has
a competitive ratio that is exponential in the number of requests assigned, and that
this ratio is tight, implying that each free pass improves the performance ratio of
GRINN(t) by a factor of 2. We proposed an improvement to this algorithm, GRIN∗(t),
and show that it does better under certain circumstances. Future work includes de-
veloping additional algorithms that may be constant-SoS(p)-competitive. This work
provides further evidence for the fact that the bottleneck objective for online match-
ing is quite different and far more elusive than the utilitarian total-cost objective.
We believe that with the internet-induced trend toward decentralization, systems with
multiple autonomous agents, and pervasive game theoretic concerns about fairness,
a better understanding of optimizing for egalitarian objectives will become essen-
tial, and developing benchmarks of practical relevance is one path to gaining such an
understanding.

17

Acknowledgements A preliminary version of this work was published in the proceedings of the 8th
Annual International Conference on Combinatorial Optimization and Applications, COCOA 2014. We
would like to thank the anonymous reviewers for their careful reading of our manuscript and their many
insightful comments and suggestions.

References

B. M. Anthony and C. Chung. Online bottleneck matching. J. Comb. Optim., 27(1):100–114, 2014.
Preliminary version appeared in COCOA, pp. 257-268, 2012.

C. Chung, K. Pruhs, and P. Uthaisombut. The online transportation problem: On the exponential boost of
one extra server. In LATIN, pages 228–239, 2008.

N. R. Devanur and T. P. Hayes. The adwords problem: Online keyword matching with budgeted bidders
under random permutations. In Proceedings of the 10th ACM Conference on Electronic Commerce,
EC ’09, pages 71–78, 2009.

C. G. Fernandes and R. C. S. Schouery. Second-price ad auctions with binary bids and markets with good
competition. Theor. Comput. Sci., 540–541:103–114, 2014.

B. Fuchs, W. Hochstättler, and W. Kern. Online matching on a line. Theor. Comput. Sci., 332(1–3):
251–264, 2005.

H. N. Gabow and R. E. Tarjan. Algorithms for two bottleneck optimization problems. Journal of Algo-
rithms, 9(3):411–417, 1988.

R. S. Garfinkel. An improved algorithm for the bottleneck assignment problem. Operations Research, 19
(7):pp. 1747–1751, 1971.

G. Goel and A. Mehta. Online budgeted matching in random input models with applications to adwords.
In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08,
pages 982–991, 2008.

A. V. Goldberg, J. D. Hartline, and A. Wright. Competitive auctions and digital goods. In Proceedings of
the 12th annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’01, pages 735–744, 2001.

A. Gu, A. Gupta, and A. Kumar. The power of deferral: maintaining a constant-competitive Steiner tree
online. In Proceedings of the 45th annual ACM Symposium on Theory of Computing, pages 525–534.
ACM, 2013.

A. Gupta, A. Kumar, and C. Stein. Maintaining assignments online: Matching, scheduling, and flows. In
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pages
468–479, 2014.

J. D. Hartline and T. Roughgarden. Simple versus optimal mechanisms. In ACM Conference on Electronic
Commerce, pages 225–234, 2009.

R. Idury and A. Schaffer. A better lower bound for on-line bottleneck matching, manuscript.
http://www.ncbi.nlm.nih.gov/core/assets/cbb/files/Firehouse.pdf, 1992.

B. Kalyanasundaram and K. Pruhs. Online weighted matching. J. Algorithms, 14(3):478–488, 1993.
Preliminary version appeared in SODA, pp. 231-240, 1991.

B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. J. ACM, 47:617–643, July
2000a. Preliminary version appeared in FOCS, pp. 214-221, 1995.

B. Kalyanasundaram and K. Pruhs. The online transportation problem. SIAM J. Discrete Math., 13(3):
370–383, 2000b. Preliminary version appeared in ESA, pp. 484-493, 1995.

B. Kalyanasundaram and K. R. Pruhs. An optimal deterministic algorithm for online b-matching. Theo-
retical Computer Science, 233(1):319–325, 2000c.

S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algorithms for weighted bipartite matching and
stable marriages. Theor. Comput. Sci., 127:255–267, May 1994.

N. Megow, M. Skutella, J. Verschae, and A. Wiese. The power of recourse for online MST and TSP.
In Proceedings of Automata, Languages, and Programming - 39th International Colloquium, ICALP
2012, Part I, pages 689–700, 2012.

A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized online matching. J. ACM, 54
(5), Oct. 2007.

C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via resource augmentation.
Algorithmica, 32(2):163–200, 2002. Preliminary version appeared in STOC, pp. 140-149, 1997.

T. Roughgarden and É. Tardos. How bad is selfish routing? J. ACM, 49(2):236–259, 2002. Preliminary
version appeared in FOCS, pp. 93-102, 2000.

18

A Limitations on Requests GRIN∗(t) can Skip

We formalize some observations about which requests GRIN∗(t) can and cannot skip. These observations
may be useful in obtaining better bounds on the performance of GRIN∗(t), or provide insight into algo-
rithms which may be more promising in the SoS(p) model. As noted in Lemma 1, r1 must be assigned by
GRIN∗(t). We now show that GRIN∗(t) for t ≥ 2 cannot pass on both requests r2 and r3.

Lemma 3 There is no instance in which GRIN∗(t) for t ≥ 2 passes on both requests r2 and r3.

Proof Note that if p < 2, then the model itself immediately precludes passing on two requests. Thus we
may assume p≥ 2 for the remainder of the proof.

We may restrict our proof to the case of n = 3, since additional servers/requests only allow for more
potential assignments. We know that r1 is assigned (as guaranteed by Lemma 1). We then assume r2 and
r3 are not assigned, and show that leads to a contradiction.

Our requests are thus labeled r1,r2,r3 in order of arrival. Our servers are labeled sa,sb,sc. Without
loss of generality we let r1 be assigned to sa. Thus, d(r1,sa) = OPT1.

Since r2 is not assigned by GRIN∗(t), the available servers must be outside of the threshold bound,
and thus

d(r2,sb) > tOPT2, and (3)

d(r2,sc) > tOPT2. (4)

Similarly, r3 is not assigned by GRIN∗(t), so

d(r3,sb) > tOPT3, and (5)

d(r3,sc) > tOPT3. (6)

Consider the assignments made by OPT2. Since r2 is not assigned by GRIN∗(t), OPT2 must assign r2
to sa. (If not, GRIN∗(t) would have made the same assignment of r2 as OPT2.) Hence, r1 must be assigned
to either sb or sc by OPT2, giving

min{d(r1,sb),d(r1,sc)} ≤ OPT2.

Now consider the assignments made by OPT3. Since r3 is not assigned by GRIN∗(t), OPT3 must
assign r3 to sa, giving d(r3,sa) ≤ OPT3. Thus, OPT3 must assign r2 to either sb or sc. Hence, at least
one of d(r2,sb) and d(r2,sc) is at most OPT3. Since both d(r2,sb) and d(r2,sc) are at least t ·OPT2, this
guarantees that

OPT3 > t ·OPT2.

By triangle inequality, d(r3,sb) ≤ d(r3,sa) + d(sa,r1) + d(r1,sb). Likewise, d(r3,sc) ≤ d(r3,sa) +
d(sa,r1)+d(r1,sc). Combining the observations that d(r3,sa) is at most OPT3, d(sa,r1) is at most OPT1,
and that at least one of d(r1,sb),d(r1,sc)≤OPT2 gives that at least one of d(r3,sb) and d(r3,sc) is at most
OPT3 +OPT1 +OPT2. Since the OPTi are nondecreasing, OPT3 +OPT1 +OPT2 ≤ OPT3 + 2OPT2, and
using the fact that OPT3 > t ·OPT2, we get that at least one of d(r3,sb) and d(r3,sc) is at most 2 ·OPT3,
which (since t ≥ 2) contradicts the previous observation that d(r3,sb)> t ·OPT3 and d(r3,sc)> t ·OPT3.
ut

It is natural to consider extensions of this lemma, such as the analogous statement about r4 and r5 and
subsequent pairings, and to ask whether the parameter t may dictate what fraction of the requests may be
skipped at any point in time. We show, however, that it is not in fact true that GRIN∗(t) for t ≥ 2 in the
SoS(p) model cannot pass on both requests r4 and r5. (This also invalidates the more general possibility
that by request k, GRIN∗(t) can have skipped at most bk/tc requests.)

We now show by example, illustrated in Figure 6, that GRIN∗(2) for in the SoS(p) model can in
fact pass on both requests r4 and r5. Observe that OPT1 = 1,OPT2 = 1+ ε,OPT3 = 2,OPT4 = 2+
3ε,OPT5 = 2+3ε . In the final OPT, that is, OPT5, ri is assigned to si for i= 1 . . .n. GRIN∗(2) assigns r1 to
s5. Since OPT2 is 1+ε , GRIN∗(2) skips request r2 since the nearest available server is at 2+3ε > 2 ·(1+ε)
away. Request r3 is then greedily assigned to s4, a distance of 1 away. Request r4 is skipped since there
are no available servers within 2 · (2+3ε), as is r5 for the same reason. Thus, not only are both r4 and r5
skipped, but also three requests were skipped out of five, indicating that there are instances where more
than half of the total requests are skipped by GRIN∗(2).

19

GRIN*(2)

OPT

2+3?

r2

s5r1
1

s5r1
1

s4 1+?
1+?

r2

s5r1
1

s4 1+?
1+?

r2r3 1

s1
2

s5r1
1

s4

1+?
r2r3 1

s1

s3

2+3?

2+3?

2+3?

s5r1
1

s4

r2r3 1

s1

s3

2+3?

r4

2+3?

2+3?

s2r5

2+3? 2+3?

r4

OPT1

OPT2

OPT3

OPT4

OPT5

s5r1
1

s4

r3 1

s1

s3

2+3?

r4

2+3?

2+3?

s2r5

2+3?1+?
1+?

2

T
he

 c
om

pl
et

e
in

pu
t

 in
st

an
ce

 w
ith

 r
el

ev
an

t
di

st
an

ce
s

la
be

le
d

Fig. 6 An instance where n = 5 in which more than half the requests are skipped by GRIN∗(2). Requests
skipped by GRIN∗(2) are highlighted.

20

B Upper bound for the basic Greedy Algorithm

The proof of the following theorem closely echos that of the proof of Theorem 2 in Section 3. This theorem
essentially closes the gap that remained in Anthony and Chung (2014) between the lower bound on the
competitiveness of GREEDY (of 2n−1) and the upper bound.

Theorem 7 The basic algorithm GREEDY, which simply assigns requests to the closest available server,
is 2n−1-competitive for online minimum bottleneck matching, and this is tight. (Note that this guarantee
is without the aid of resource augmentation.)

Proof We will show inductively that the assignment cost of ri is at most (2i−1) ·OPT for i = 1 . . .n.
Base case: i = 1. By definition of GREEDY, the first request r1 is always assigned with a cost of at

most OPT, which satisfies the claim.
Inductive case: Assume the assignment cost of r j is at most (2 j−1) ·OPT for all 1≤ j ≤ i. Consider

the assignment cost of ri+1. Let si+1 be the server that OPTi+1 assigns to ri+1. If si+1 is available, the
assignment cost is at most OPTi+1 ≤ OPT.

Thus, we may assume that si+1 is not available, and is hence used by some r j with j ≤ i. We thus
consider the graph consisting of i+1 edges of OPTi+1 and the i edges assigned thus far by GREEDY. Since
ri+1 is not yet matched by GREEDY, there must be a path in this graph from ri+1 to some sa that is used by
OPTi+1 but not currently matched by GREEDY. Observe that said path must begin with an edge in OPTi+1
and alternate between edges in OPTi+1 and edges in GREEDY, terminating with an edge in OPTi+1.

We can thus use triangle inequality to compute the distance from this available sa to ri+1, giving an
upper bound on the assignment cost of ri+1. Since all distances are nonnegative, additional edges either
cause the total cost to increase or stay the same. Thus, in the worst case, the path includes all of the i
assignments already made, as well as the i+1 edges in OPTi.

By strong induction, the total cost of the i assignments already made is at most

i

∑
h=1

(2h−1) ·OPT =
(
2i+1− i−2

)
·OPT.

Since the OPTi are non-decreasing, the cost of the i+1 edges from OPTi+1 is no more than (i+1) ·
OPT. Adding this to the cost above gives an upper bound on the total distance (and thus assignment cost)
of ri+1 to sa of (2i+1−1) ·OPT, completing the inductive proof.

21

	Connecticut College
	Digital Commons @ Connecticut College
	2015

	Serve or Skip: The Power of Rejection in Online Bottleneck Matching
	Barbara M. Anthony
	Christine Chung
	Recommended Citation

	Serve or Skip: The Power of Rejection in Online Bottleneck Matching
	Comments

	tmp.1511376561.pdf.tDDkV

