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ABSTRACT

Since the discovery of the Green Fluorescent Protein (GFP), fluorescent proteins (FPs)

have been used as biomarkers to monitor biological phenomena across many scientific

disciplines. All naturally-occurring FPs consist of an 11-stranded β-barrel with a non-canonical

α-helix, which contains the chromophore, running through the central axis of the protein.

Glycines 31, 33, and 35 are highly conserved across the fluorescent proteins found in the PDB.

These three residues are of interest due to them all being located in the second strand of the

β-barrel, but having no direct involvement in chromophore formation. This led to a presumption

that the glycines likely allowed space in a correctly folded β-barrel for the chromophore to form.

In this study, molecular dynamics simulations of G31A, G33A, and G35A single point

mutants of wild-type GFPs with immature (pre-cyclized) chromophores were used to investigate

how mutations to these residue positions could affect chromophore formation. Four additional

mutant simulations were performed to investigate the hydrophobic pocket that contains G35.

This was done by examining the hydrogen bond network in the central α-helix, water migration

through the β-barrel, aromatic rescue interactions, and main chain interactions among the

N-terminus β-sheets. The simulations show that if the β-barrel folds correctly, mutating the

conserved glycines does not result in hindrance or prevention of chromophore formation.

Through experimental analysis, it was found that the G3XA mutants were prone to

misfold and aggregate, suggesting that these glycines play a crucial role in the folding pathway

of fluorescent proteins.  Computationally, this was confirmed as the introduced mutations

caused reduced main chain interactions among the N-terminus β-sheets.
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INTRODUCTION

GFP History

Green Fluorescent Protein (GFP) was first discovered in the 1960’s by Dr. Osamu

Shimomura while studying bioluminescence of the crystal jellyfish, Aequorea victoria (Fig.1).1

Shimomura first found that the molecule responsible for Aequorea luminescence was aequorin.

Aequorin is a monomeric photoprotein that consists of an apoprotein, apoaequorin, and a

chromophore made of coelenterazine, a luciferin, and molecular oxygen. In the photo-organs of

the jellyfish, Ca+2 binds to aequorin, causing an oxidation of coelenterazine to coelenteramide,

which yields light (λmax = 470 nm), carbon dioxide, and a blue photoprotein that consists of the

oxidized coelenteramide and apoaequorin.2

Figure 1. Crystal Jellyfish, Aequorea victoria, courtesy of the Monterey Bay Aquarium

When the reaction happens in vitro, it gives off blue light, meaning that the green light

given off by the crystal jellyfish could not be completely explained by aequorin photochemistry.
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In 1969, Shimomura found that there was a protein present that turned blue light to green light

and appropriately called it “green fluorescent protein”. Shimomura then spent the next ten years

investigating the structure of the GFP chromophore, which he published in a paper in June of

1979.3

Attempts to clone GFP by Doug Prasher and Bill Ward, postdocs in the Cormier Lab

group, were made in order to resolve the issue of having to accumulate massive numbers of

jellyfish to only receive minimal amounts of the protein for investigation. Ward sequenced

Aequorea aequorin and GFP, and Prasher ended up cloning the aequorin. Prasher’s attempt to

clone GFP resulted in a non-fluorescent apoGFP, which led Ward to think that formation of the

chromophore was most likely a nonspontaneous process and that it could be not used as a

tracer molecule, as Prasher had first thought.4

Martin Chalfie, a specialist in neurobiology and genetics at Columbia University, and

Ghia Euskirchen, a rotation student that was working under Chalfie at the time, were the first to

correctly isolate and express the GFP gene. This was done by using polymerase chain reaction

(PCR) to amplify the coding gene for the protein, instead of using the same method that Prasher

had used to cut the gene out; this left extra nucleotides that preceded the GFP gene, preventing

the protein, and subsequently the chromophore, from forming correctly. Euskirchen was the first

to successfully express the GFP gene in Escherichia coli. Later on, Chalfie was able to express

GFP in touch neurons of Caenorhabditis elegans, a small nematode that is widely used in

genetic analysis laboratories.5 The most important finding from this work was that the GFP

chromophore does form autocatalytically. Since Chalfie’s expression of GFP in C. elegans,

fluorescent proteins have been used in many different organisms as a tracer molecule to

monitor different phenomena and make visualization of different cell functions, processes, gene

expression, etc. in different organisms much easier. GFP is also a much easier way to image

cellular functions because the protein readily makes its own chromophore, so its DNA code can
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be easily tagged onto the DNA of the protein under investigation and it will fluoresce without any

further manipulation.

Roger Tsien, a biochemist at University of California San Diego, engineered multiple

variants of fluorescent proteins by performing structural changes in the chromophore. These

structural changes resulted in different chromophores, which led to different excitation and

emission maxima.6,7 He also looked into other structural aspects of GFP like protein folding and

pH impact. Shimomura, Chalfie and Tsien were awarded the 100th Nobel Chemistry Prize in

2008.

Fluorescent Proteins in Nature

The first fluorescent proteins that were studied were the GFPs that came from Aequorea

victoria; consequently, fluorescent proteins were only described from certain species of jellyfish.

Over time, other organisms that contained fluorescent proteins were discovered. There was an

emergence of fluorescent proteins that originated from coral reefs during the early 2000’s.

These proteins were of very high interest because from all of the GFPs and GFP variants that

were studied or engineered, none of them were able to emit light at wavelengths longer than

529 nm.8 So when the coral reef fluorescent proteins were discovered, it marked a significant

expansion of emission wavelengths that could be used for biological imaging applications. One

of the proteins that came from this group is drFP583, or DsRed, which has an emission maxima

of 583 nm9, has since become an experimental standard for marker proteins in cellular biology

studies.10

Although fluorescent proteins are very widely used, the natural function/purpose in

animals that bear fluorescent proteins are still debated. This is not the case for reef coral

fluorescent proteins, which most likely serve the purpose of changing the light environment for

the symbiotic algae. It was thought that since the signals these proteins emitted were so strong,

they had to serve some role for the organism. Other hypotheses of natural function included that
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(i) it could be an effective, metabolically inexpensive way to produce color patterns in lower

depths of the sea, where most color wavelengths are not present besides blue light, or (ii) that

the protein could serve a physiological function and that the fluorescence is an unrelated side

product. Recent experiments done by Steven Haddock and Casey Dunn suggested that

fluorescent proteins might have the natural function of being an attractant for their prey because

of the high amount of contrast that the longer wavelengths of light would cause in the

monochromatic environment of the sea.11

Uses of Fluorescent Proteins

Fluorescent probes (small molecules) and fluorescent proteins have been used in a

multitude of scientific and medical research fields. They are being found, developed, and used

as in vivo sensors for many different types of target molecules and ions (ex. Ca2+ and

ethylene).12,13 For example, the Dodani group at the University of Texas at Dallas characterized

a fluorescent protein found in the jellyfish species Phialidium called phiYFP which can serve as

a turn-on yellow fluorescent protein sensor for chloride, which they hope will be a useful tool for

imaging chloride dynamics in the cell.14 A lab at the Goethe University of Frankfurt has

developed a superfolder variant of the GFP variant pHluorin, a fluorescent protein that is one of

the easiest and most convenient tools to use to measure intracellular pH.15 The original pHluorin

has been used in many studies with varying organisms to measure pH, but it did not have a high

fluorescence intensity or pH sensitivity to perform in vivo pH measurements of the endoplasmic

reticulum in the yeast species Saccharomyces cerevisiae. This was likely because of protein

misfolding due to the environment of the organelle. The superfolder variant caused the emission

intensity to increase significantly at a wavelength of 508 nm across all pH values tested, which

led to the conclusion that this protein could be useful to study pH changes under certain growth

conditions and mutant strains.
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3D Structure of Fluorescent Proteins

The crystal structure of GFP was simultaneously solved by the Tsien/Remington and

Philips research groups in the 1990’s.16,17 The Phillips group solved it with wild type GFP and the

Tsien/Remington group solved it with an enhanced GFP S65T variant. Although fluorescent

proteins come from many different species, they all have the same basic structure consisting of

an 11-stranded β-barrel, which is unique to fluorescent proteins, with an ⍺-helix running through

the axis of the barrel.18 All fluorescent proteins are around 30 Å in diameter and 40 Å in

height.19 The C and N termini of GFP are on the same side of the β-barrel and are relatively

close together. Lids composed of short helices are on each end of the barrel to protect the

chromophore, located in the middle of the ⍺-helix, from quenching by bulk solvent (Fig. 2).

Figure 2. Crystal structure of GFP (PDB: 1EMB). The chromophore is shown in CPK representation.
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Conserved Residues

There are over 200 marine organisms that contain fluorescent proteins. Some amino

acids are highly conserved across all fluorescent protein structures (Fig. 3). Many of these

conserved residues are located at the ends of the β- barrel, specifically in the β- turns and the

lids. These residues include the 89th, 91st, 196th, 20th, 23rd, 27th, 53rd, 55th, 101st,102nd, 104th,

127th, 130th, 134th, and 136th residue positions (based on avGFP sequence). Some of these

listed residues are glycines, which makes sense for effective flexibility, but there are also larger

residues like phenylalanines at the 27th, 55th, and 130th residue positions. Previous proposals by

the Zimmer group suggest the conservation of these lid residues were due to a potentially

unknown protein-protein binding function.18

Figure 3. Sequence Logo (SeqLogo) of the most conserved residues in wild-type GFP structures.18 The
size of the letter represents the frequency of residues found in the listed residue positions (according to

avGFP sequence numbering).

One study published in 2016 that examined the local fitness landscape of avGFP by

investigating the effect single/multiple mutations have on fluorescence, found that there was a
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narrow fitness peak for the fluorescent protein. About 75% of the mutations had a negative

effect on fluorescence, but while most resulted in a small decrease in fluorescence; only about

one tenth of the single mutations resulted in a large decrease in fluorescence. Genotypes

containing multiple mutations were more likely to have weak fluorescence or no fluorescence.20

The mutations that had the most effect on its fluorescence were usually located near sites

coding for residues in close proximity to the chromophore.

There are some residues that are conserved in the central portion of all fluorescent

proteins. They are responsible for the chromophore formation. These include the 66th, 67th, 96th,

and 222nd residue positions. The conservation of the 66th residue is interesting because in all

wild-type fluorescent protein structures, a tyrosine is present in this position, but other aromatic

amino acids can take the same position with successful chromophore formation, but the protein

will emit a different color.19 For example, a F6618 or W6619 mutant will produce a cyan fluorescent

protein while a H66 mutation will form a blue fluorescent protein. Chromophore formation still

occurs with G66, L66, and S66 mutants, but they result in non-fluorescent proteins because of

the lack of the aromatic group.

The three glycines at the 31st, 33rd, and 35th residue positions are of interest because

they are the only highly conserved residues located in the β-strands of GFP that are not

involved in chromophore formation. The Matzke research group in Taiwan were studying GFP

loss of function mutations and found that a G35S mutation did result in weak fluorescence and

very weak protein accumulation.21 G31D and G33D mutants were also expressed and both

resulted in no fluorescence nor protein accumulation, suggesting that these residues may serve

a role in facilitating GFP folding and stability. In regards to this study, this would suggest that

mutations to the glycines of interest would be likely to result in either a non-fluorescent or low

fluorescent protein with low to no protein accumulation and that the mutations do not affect

chromophore formation.

7



Chromophore Formation

The formation of GFP and GFP-like chromophores is a spontaneous process which is a

result of protein folding. The folding of the protein causes the amide nitrogen of the 67th residue,

which is always a glycine, to come in close proximity to perform a nucleophilic attack on the

carbonyl carbon of the 65th residue, forming a five membered imidazolone ring. This is followed

by dehydration of the carbonyl oxygen of the 65th residue and oxidation of the α and β-carbon

bonds of the 66th residue, resulting in a conjugated ring system (Fig. 4, left).22,23 The absolute

conservation of the 67th residue is important to chromophore formation because only glycine has

the flexibility to form the kinked α-helix conformation needed for the nucleophilic attack to occur.

Any other amino acid in place of the 67th position would result in impairment of chromophore

synthesis.19

The presence of the 96th (always an arginine) and 222nd (typically a glutamic acid)

residue serve a catalytic role in the formation of the GFP chromophore. R96 plays the role of the

catalytic acid and E222 is the catalytic base (Fig 4, right).
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Figure 4. (Left) GFP chromophore formation mechanism. (Right) Spatial orientation of chromophore
forming residues within the M96R PDB2AWJ 𝛽-barrel. E222 (top left of barrel), the precyclized

chromophore tripeptide (middle), and R96 (bottom right) are shown in a ball-and-stick representation.
Parts of the α-helix and lids were removed for visual clarity.

The Barondeau group found that a R96M mutation resulted in successful chromophore

formation, however chromophore maturation took a significantly longer time due to the lack of

the positive charge character. The positive charge of the arginine side chain points into the β-

barrel at the carbonyl oxygen of the 66th residue position, pushing the 65th and 67th residues

closer together for cyclization to occur at a much higher rate.24
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Fluorescent Protein Folding

The crystal jellyfish typically live at temperatures lower than room temperature, which

likely explains why GFP never evolved to fold efficiently at higher temperatures.25 Since there

are plenty of experimental organisms that have internal environments warmer than 25℃, it is

desirable to have fluorescent proteins that can fold properly and efficiently at higher

temperatures. This prompted the production of multiple GFP mutants, an example being a

F99S/M153T/V163A triple mutant that increased the amount of fluorescent proteins that

matured properly at 37℃ and its ability to diffuse within the cell. However, it did not increase the

brightness of the protein compared to GFP matured at optimal conditions.

The way in which fluorescent proteins fold is critical to fluorescence. Folding of GFP

occurs by a set of disordered transition states, where the native state can be reached and

fluorescence is returned for a short amount of time, or the protein goes into a state of slow

equilibration.26 A study examining fluorescent protein folding through experimental and

multicanonical molecular dynamics simulations proposed a folding model that contains multiple

pathways; including multiple kinetic and equilibrium intermediates that can act as potential

energy traps, preventing the protein from adopting a native state (Fig. 5).27 In most of these

intermediates, the N-terminus β-strands, β(1-3), stay intact.
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Figure 5. Folding landscape model of GFP.27

Fluorescent proteins can adopt many different partially folded states, so understanding

how GFP unfolds is of equal importance to its folding. GFP unfolding starts with disruption of

chromophore fluorescence. This is followed with the unfolding of β11 then unfolding of  β(7-11).

During the unfolding and refolding process, intermediates do not fluoresce, which can be

attributed to internal rearrangements when the protein is at its native end-to-end length.

Nitrogen NMR experiments have been used to examine the dynamics of GFP on a ps to ns

timescale and shown the backbones for most of the GFP β-barrel are rigid. Conformational

dynamics studies showed that the 7th, 8th, and 10th β-strands have higher degrees of flexibility

than the rest of the protein, which is in agreement with molecular dynamics simulations on the

protein.28

Glycine in β-Sheets

Glycine is the most simple amino acid due to its side chain being a single hydrogen. This

allows glycine to possess a much higher degree of flexibility than any other amino acid.

Statistical analyses showed the distribution of amino acids around different sections of proteins
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are not equal. The first experiments that examined β-sheet stability involved single point

mutations in a peptide or small protein that were exposed to solvent with each of the

naturally-occurring amino acids to observe the effects on the β-sheet. It was found that aromatic

and β-branched residues stabilize the β-sheet the most while glycine greatly destabilizes the

β-sheet.29,30 However, even with the high destabilizing effect of glycines to  β-sheet structure,

they still do occur in β-sheets.

Surveys of these structures show that glycines found in β-sheets tend to be found in a

cross-stranded pair with an aromatic residue. In antiparallel strands, the backbones of the two

residues will have much more direct hydrogen bonding. This will cause the aromatic residue to

form a positive gauche rotamer which will lead to the protection of the backbone, increasing its

stability (Fig. 6).30

Figure 6. Antiparallel 𝛽-sheet backbone hydrogen bonding of cross-stranded residues 82 and 94 in
PDB1PLC.30 Note the aromatic of the phenylalanine bending to cover the space made by the lack of the

side chain in the glycine.

12



Glycine in Fluorescent Proteins

Upon inspection of the amino acid sequence in wild type GFP (PDB1EMB), it can be

seen that glycines mostly appear in areas where the protein bends; likely because of its

flexibility, it allows the protein to make tighter turns without increasing stress on the system (Fig.

7). But, only few glycines are found within the β-sheets around the protein, and those residues

are usually located near the end of the β-sheet. The only glycines that are seen in the middle of

the β-sheet are the GXGXG residues of the 2nd β-sheet that are under investigation in this study.

Figure 7. Amino acid sequence and residue location in PDB1EMB, courtesy of the RSCB

In “De Novo design of fluorescence activating β-barrel”, the difficulties and methods on

how to design β-barrels from scratch were discussed.31 This involved taking backbones that had

the most interstrand hydrogen bonding, connecting them with short loops and optimizing them
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to get the lowest energy sequences. The designed sequences were expressed in E. coli and it

was found that almost all of the designs were insoluble or oligomeric. Upon examination of this

result, it was found that significant amounts of backbone hydrogen bond interactions at the ends

of the barrels were distorted or broken. To combat this issue, different methods were examined

to make a uniform β-barrel backbone that did not have any loop structures and valines at every

residue position as a placeholder. Upon relaxation of the structure with heavy hydrogen bond

constraints, two different structural strains were observed: steric strain and residues adopting

unfavourable twists due to their chirality.31

In order to reduce these strains, some of the residues were replaced with glycines due to

their smaller size and achirality, which allows twists that would be unfavourable for other

residues, while maintaining the hydrogen bond pattern of the β-sheet. However, with the

relieved strains on the structure, introduction of the glycines formed irregular torsions in the

sheets.31

This Work

In this study, computational simulations and analysis were used in order to look at the

effects of mutations to G31, G33, and G35 on the GFP structure. These three glycines are of

interest since they are highly conserved residues in the β-strands of GFP and are not directly

involved in chromophore formation. They are also interesting because glycines in β-sheets are

rare, even more so three glycines in a GXGXG sequence. This study was done by taking the

crystal structure of precyclized GFP intermediate (PDB2AWJ) and making mutations to its

amino acid sequence so that it would be the same as wild-type GFP (PDB1EMB). After these

mutations were made, the previously described single point mutations were made and then the

resulting structures were put through molecular dynamics simulations under standard conditions

until it reached a stable state; this was done with all three described mutations along with a
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baseline reference structure that did not have any mutations of the 31st, 33rd, and 35th residue

positions.

The data from the molecular dynamics simulations were then analyzed by looking at a

variety of geometric parameters associated with autocatalytic chromophore formation and

β-barrel formation.
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EXPERIMENTAL METHODS

1. Software

The starting crystal structures were retrieved from the Research Collaboratory for Structural

Bioinformatics Protein Data Bank (RCSB PDB).32 Molecular visualizations were done using

Maestro33 and pyMOL34. Molecular Mechanics (MM) and conformational search calculations

were done through MacroModel.35 Molecular Dynamics (MD) simulations and simulation

analyses were done through Desmond36 on 32-core processor computers.  All MM and MD

calculations were done using the OPLS3 force field.37

2. Generation of Immature wtGFP and G3XA Mutant Structures

Residues in the PDB2AWJ structure were mutated in order to have a wtGFP

(PDB1EMB) residue sequence. Once the mutations to the intermediate were graphically made,

a 25,000 step Large Scale Low Mode conformational search35 was done to find the lowest

energy structure. A 10,000 step energy minimization was performed on the resulting structure.

To validate the mutated 2AWJ structure, the protein was overlapped with the chromophore

forming residues of PDB2AWJ and the matured chromophores and the 96th residue of both

PDB2AWK and PDB1EMB.

To superimpose the structures, all four of the structures were uploaded to Maestro. All

three PDB structures (1EMB, 2AWJ, and 2AWK) were completely aligned using the quick align

function.33 After aligning the structures, only residues 64-67 and 96, or if the chromophore is

matured, CRO66 and residue 96, were displayed.  With the superposition function, all

heteroatoms of Y66 and G67, the carbonyl carbon of the 65th residue, and the amino acid
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backbone of the 96th residue were superimposed.33 For superimpositions of the engineered

wtGFP structure and the two structures that contain mature chromophores, atoms that form the

five-membered imidazole ring come from both the 65th and 67th residue positions, so those

atoms had to be superpositioned appropriately.

The G3XA variants were generated by taking the engineered immature wtGFP structure

described above and computationally performing the desired single point mutations, then

performing a second round of conformational searches (25,000 step LMCS) and minimizations

in order to obtain the lowest energy conformation to be used for molecular dynamics

simulations.

3. wtGFP and G3XA Variant Simulations

Desmond38 is integrated with the Schrödinger molecular modeling programs, allowing for

the use of functions found in MacroModel to prepare the protein structures to be chemically

correct prior to running a molecular dynamics simulation.38 Model systems for all MD simulations

in this study were made with the SPC solvation model and orthorhombic box shape of size 10 Å

x 10 Å x 10 Å. For MD simulations, all simulations were performed with the NPT ensemble

class, at a temperature of 300 K, and a pressure of 1.01325 bar. For the engineered wtGFP,

G33A, and G35A structures, 100 ns MD simulations were performed. A 200 ns molecular

dynamics simulation was performed on the mutated G31A mutant.

4. Hydrophobic Pocket Simulations

Four GFP variants (G35/F71L, G35V/F71, G35/F71Y, G35V/F71L)  were engineered

following the same procedure as the G3XA mutants. Introduction of the mutations typically

resulted in atomic overlaps across residues, but this was mediated using the Desmond

Minimization function once the water box was assembled. All 4 of the mutants were subjected to

200 ns MD simulations under the previously described conditions. Another 200ns wtGFP

17



simulation was also conducted to serve as the baseline measurement for later analyses and

comparison.
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RESULTS & DISCUSSION

1. Engineered wtGFP Structure Validation

PDB2AWJ was used as a starting structure due to the fact that it is a GFP variant with

an R96M mutation and an immature chromophore. Although arginine and methionine are similar

in size, the methionine side chain lacks the positive charge character that R96 has, which plays

an important catalytic role in chromophore cyclization. This results in a significantly reduced

chromophore formation rate, forming a mature chromophore and fluorescing after three months,

instead of a few hours for wtGFP.24 The crystal structure of the R96M mutant with a mature

chromophore can be seen in the PDB2AWK structure.

The slowed maturation kinetics of the PDB2AWJ structure allowed for crystal structure

determination of a precyclized GFP intermediate.24 Therefore, graphically mutating the

sequence of PDB2AWJ to the wtGFP sequence results in a realistic estimation of an immature

wtGFP structure that could be used as a benchmark for comparison with other immature GFP

variants.

For the superimposition of the engineered wtGFP and the original 2AWJ structure, the

Root-Mean Squared Deviation (RMSD) value was 0.8625Å with the maximum difference being

1.7347 Å between the carbonyl oxygens of G67 (Fig. 8A). The superimposition of the

engineered wtGFP with 2AWK had an RMSD of 0.5911 Å with the largest difference being

1.5486 Å between the carbons in the tyrosine ring that are next to the carbon with the hydroxyl

group (Fig. 8B). The overlap of 2AWJ with 1EMB gave an RMSD value of 0.6729 Å with the

largest difference being 1.4808 Å between the carbonyl carbon of S65 (which in 1EMB is the
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carbon between the two nitrogens of the five membered ring in its chromophore structure) (Fig.

8C).

Figure 8. (A) Superimposition of a 25000 step large scale low mode (LSLM) conformational search on a
mutated precyclized GFP intermediate 2AWJ structure (yellow) and the default 2AWJ structure. Note the

L64F, T65S, and M96R mutations made on the mutated 2AWJ structure. (B) Superimposition of the
mutated 2AWJ structure (light blue) with the default 2AWK structure (green) containing the mature
chromophore. (C) Superimposition of the mutated 2AWJ structure (fuschia) and 1EMB (graphite).

Due to the fairly low deviation between the engineered precyclized wtGFP intermediate

and the actual R96M intermediate, the matured R96M structure, and mature wtGFP structure, it

was determined that the engineered structure would serve as a valid baseline for subsequent

comparison amongst the G3XA variants. This structure was assumed to undergo chromophore

formation kinetics like wtGFP (avGFP).

2. Structural Comparison to validate the MD Simulations

RMSD measurements were calculated by comparing the starting structure to all

subsequent structures to see whether the protein had reached an equilibrium throughout the

simulation. After the first 100 ns MD simulation on the G31A mutated structure, the RMSD

consistently increased throughout the simulation, reaching a peak of about 2.25 Å (Fig. 9A).

This suggests that over this time period, the protein was undergoing large conformational

changes. Since the protein would not be in a stable conformation over this time period, the last

frame of the simulation was taken and used to start another 50ns MD simulation, extending it to
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a total simulation time of 150 ns. For the first 25ns of this simulation, the RMSD stayed fairly

consistent, fluctuating between 1.0 Å and 1.2 Å. From 25 to about 37 ns, the RMSD values

consistently rises, then decreases until the 40 ns mark, where the RMSD value then began to

steadily fluctuate between 1.4 Å and 1.6 Å (Fig. 9B). The last frame of the first 50 ns

simulation was taken so that another 50 ns simulation would be performed (totaling 200 ns).

The first 20 ns of this simulation were fairly consistent, staying at an RSMD value of around

1.0Å. From the 20 ns to the 40ns mark, the RMSD value rises and then starts to fluctuate

between 1.3 Å and 1.6 Å for the last 10ns of the simulation (Fig. 9C). From the data given in

the RMSD calculations, the last 100 ns of the simulation were used to perform structural

analyses.

Figure 9. RMSD graphs of (A) the first 100 ns of MD simulation on the G31A mutated structure. (B) 50 ns
MD simulation (starting with the last frame of the first 100 ns MD simulation). (C) Second 50 ns MD

simulation (starting from the last frame of the first 50 ns MD simulation).

The G33A simulation quickly reached equilibrium by the 5 ns mark of the simulation, with

the RMSD value consistently fluctuating between 1.0 and 1.4 Å for the rest of the simulation

time (Fig. 10).
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Figure 10. RMSD graph of the 100 ns G33A MD simulation.

The G35A simulation began significant structural changes over the first 15 ns of the

simulation; equilibrium was reached after 20 ns, where the RMSD mostly fluctuates between 1.2

and 1.4 Å for the rest of the simulation (Fig. 11)
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Figure 11. RMSD graph of the 100 ns G35A MD simulation

In the hydrophobic pocket mutant calculations, all four simulations reached an

equilibrium within the simulation time. The G35/F71L simulation began with a significant

amounts of structural change, noted by the consistently increasing RMSD until equilibrium is

reached at the 38 ns mark, where the RMSD consistently fluctuates between 1.75 and 2.0 Å

(Fig. 12A). The G35V/F71 simulation initially starts with a rapid increase in RMSD, but after

about 12 ns, structural equilibrium is reached with fluctuation between 1.7 and 1.95 Å (Fig.

12B). In both the G35/F71Y (Fig. 12C) and G35V/F71L (Fig. 12D) simulations, the simulation

began with a large structural change, but then equilibrium is quickly reached after about 5 ns,

where the RMSD values fluctuate between 1.0-2.0 Å and 1.25-1.75 Å, respectively.
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Figure 12. RMSD graphs of (A) G35/F71L 200 ns MD simulation. (B) G35V/F71 200 ns MD simulation.
(C) G35/F71Y 200 ns MD simulation. (D) G35V/F71L 200 ns MD simulation.
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3. Simulation Measurements

The simulation event analysis panel was used to measure and compare the distances of

residues that have a role in chromophore formation, hydrogen bonding interactions in the

central α-helix, cross-stranded aromatic residue rotations over the GXGXG motif of the second

β-sheet, and water migration through the ꞵ-barrel of the engineered wtGFP intermediate and

the G31A mutant.

3.1. Tight Turn Distance

The first step of chromophore formation requires a nucleophilic attack on the carbonyl

carbon of the 65th residue position by the amide nitrogen of G67 (Fig. 13) . For this attack to be

more likely to occur, the two atoms must be in close proximity to each other.39

Figure 13. Chromophore formation mechanism. The precyclized chromophore structure with the
tight turn attack is circled on the top left.

Measurements of the distance between these two atoms were taken over the course of

the MD simulations (Fig. 14).
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Figure 14. Graphical representation of the tight turn distance measured over the course of the simulation
for the engineered immature benchmark wtGFP and all mutant MD simulations.

It was observed that the tight turn distance of each mutant was not significantly different from

that of the wtGFP simulation, suggesting that the mutations at these positions do not have a

significant structural effect on the tight turn.

3.2. α-Helical Interactions

Distortion of the α-helix is required to adopt the tight turn conformation when forming the

chromophore. This results in all fluorescent proteins having a noncanonical α-helix because an

α-helix with typical i and i+4 hydrogen bonding amongst the main chain would be so stable, that

it would be too energetically costly to break the intra-strand hydrogen bonding interactions

involving residues 65,66, and 67 that adopt the tight turn conformation before cyclizing (Fig.
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15).22 Having a noncanonical α-helix results in a higher energy structure, lowering the activation

energy required for cyclization to occur.

Figure 15. (Left) Main chain hydrogen bond interactions of the non-canonical α-helix in GFP compared to
hydrogen bonding interactions of a canonical α-helix.22 Note that the GFP chromophore is formed from
residues 65-67. (Right) Energy profiles of chromophore formation with a canonical α-helix (red) and for

the non-canonical helix of GFP (green).22

Measurements of main chain hydrogen bonds amongst residues in the central α-helix

were measured over the course of the simulation to see if any significant changes in hydrogen

bond interactions were observed upon making the glycine to alanine mutations. Table 1 below

shows a summary of the hydrogen bonding analyses.
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Table 1. Main chain interactions in the α-Helix for all mutant simulations

R1-R2 60-64 61-65 62-96 66-96 66-94 68-71 69-72 70-85

wtGFPimm

avg distance (Å) 4.739 3.546
5.411 (N+)
4.232 (N0)

8.872 (N+)
7.519 (N0) 4.036 3.283 4.318 4.047

std deviation 0.327 0.303
0.373 (N+)
0.362 (N0)

0.555 (N+)
0.531 (N0) 1.089 0.291 0.331 0.447

R1-R2 60-64 61-65 62-96 66-96 66-94 68-71 69-72 70-85

G31A (100-150 ns)

avg distance (Å) 3.638 2.911
4.062 (N+)
5.145 (N0)

3.103 (N+)
4.935 (N0) 2.895 3.082 3.347 3.563

std deviation 0.265 0.159
0.495 (N+)
0.483 (N0)

0.326 (N+)
0.472 (N0) 0.229 0.222 0.327 0.710

G31A (150-200 ns)

avg distance (Å) 4.034 2.936
4.686 (N+)
4.898 (N0)

3.010 (N+)
4.419 (N0) 3.053 3.090 3.366 5.407

std deviation 0.374 0.162
0.668 (N+)
0.442 (N0)

0.287 (N+)
0.531 (N0) 0.628 0.224 0.367 0.339

G33A

avg distance (Å) 4.143 3.897
4.085 (N+)
3.054 (N0)

7.898 (N+)
5.668 (N0) 6.222 3.400 3.212 3.300

std deviation 0.362 0.311
0.398 (N+)
0.321 (N0)

0.340 (N+)
0.363 (N0) 0.721 0.287 0.229 0.341

G35A

avg distance (Å) 4.179 3.000
4.259 (N+)
5.779 (N0)

6.697 (N+)
4.933(N0) 4.713 3.358 4.218 5.238

std deviation 0.315 0.213
0.398 (N+)
0.456 (N0)

0.507 (N+)
0.438 (N0) 1.047 0.307 1.180 1.098

G35V

avg distance (Å) 3.358 3.149
3.935(N+)
4.677(N0)

3.028(N+)
4.365(N0) 4.340 5.563 5.970 5.770

std deviation 0.360 0.294
0.467 (N+)
0.458(N0)

0.407(N+)
0.574 (N0) 1.356 0.779 2.276 2.614

G35V/F71L

avg distance (Å) 4.150 3.285
5.072(N1)
3.833(N0)

8.133(N+)
7.444(N0) 3.620 3.293 3.578 4.317

std deviation 0.291 0.266
0.590(N1)
0.404(N0)

0.621(N+)
0.614(N0) 1.016 0.319 0.856 0.586

F71L

avg distance (Å) 4.691 3.814
6.275(N1)
6.858(N0)

3.544(N+)
5.606(N0) 3.544 3.149 3.026 3.346
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std deviation 1.019 0.744
1.298(N1)
1.307(N0)

0.741(N+)
0.816(N0) 0.741 0.364 0.201 0.766

F71Y

avg distance (Å) 4.001 3.015
3.825(N1)
4.599(N0)

3.313(N+)
4.940 (N0) 2.864 3.224 3.666 3.956

std deviation 1.049 0.765
0.492(N1)
0.385(N0)

0.4917(N+)
0.633 (N0) 0.191 0.339 0.863 1.007

As with the tight turn distance measurements, some main chain interactions tended to fluctuate

more heavily than others, but no significant structural changes between the wild type and the

mutants were observed, suggesting that the mutations do not affect the non-canonical α-helical

hydrogen bonding pattern, which is required for chromophore formation.

3.3. Aromatic - Glycine Cross Strand Interactions

Measurements were made to examine the distance of the aromatic group of F71 to the

α-carbon of the 35th residue in each of the G31A, G33A, and G35A single-point mutant

structures (Fig. 16, Table 2). This measurement was examined due to the tendency of aromatic

residues being able to provide a stabilizing effect for glycine residues located in β-sheets by

performing rotations of the side chains, protecting the backbone from bulk solvent.30 The idea

was that due to the flexibility of the GFP α-helix, it might be possible for the aromatic group of

F71 to get in closer proximity to the backbone of the 35th residue and stabilize the backbone not

through a cross stranded β-sheet interaction, but through an α-helical/β-sheet interaction.
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Figure 16. 2-D Representation of GXGXG motif in the second β- sheet (left) of GFP with F71 of
the α-helix (right) to visualize hydrogen bond measurements over the course of the simulation. The

hydrogen bond distances that were measured are represented as dashed lines.

Table 2.  Distance of F71 Phenyl Ring to G35 α-Carbon for G3XA Simulations

Avg. F71- CαG35 Distance (Å) Std. Deviation

wtGFPimm 4.4796 0.4912

G31A (100-150) 5.0152 0.7044

G31A (150-200) 5.1193 0.7864

G33A 4.4332 0.4039

G35A 5.6834 0.4112

This increased distance between the residues could cause formation of water channels

directly toward the chromophore forming residues, which would cause significant decreases in

maturation kinetics.
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3.4. Water Migration through GFP β-Barrel

Prior research has shown that water migration through the β-barrel is an important

aspect in chromophore formation of fluorescent proteins due to the presence of highly

conserved water molecules in the crystal structure of GFP and fluorescent proteins. These

waters contribute to the intricate hydrogen bonding network around the chromophore and may

play other roles during chromophore formation. These waters interact with R96 and E222,

GFP’s highly conserved catalytic residues (Fig. 17). Water migration is also important for

fluorescent proteins to control the internal environment of the protein, especially because of the

very different environments the chromophore is in when it is precyclized opposed to when it is

matured.

Figure 17. Schematic representation of the hydrogen bond network around the GFP chromophore.
Hydrogen bonds that include water molecules are circled.4

A previous study by the Zimmer group proposed that the structure of TurboGFP

contained a water filled pore leading from the exterior of the structure to the chromophore that

increased chromophore formation speeds.40 This channel was lined by the 136th, 137th, 156th,
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197th, and 198th residues. The study investigated what effect water diffusion through the β-barrel

of GFP had on chromophore formation kinetics. This was done by performing 50 ns molecular

dynamics simulations of avGFP, TurboGFP, their precyclized intermediates, and a V197L

TurboGFP mutant; the idea being that the larger leucine residue would increase the steric bulk

around the water channel, reducing the amount of water and oxygen migrating into the β-barrel.

As expected, the mutated TurboGFP showed much slower maturation kinetics.  It also

showed that water diffusion through the barrel is much more common in precyclized structures

compared to that of the GFP structures with a mature chromophore.

In this study, water migration was recorded through all of the simulations to see where

and when water had either migrated in or out of the β-barrel of the mutant structures and

compared this with the engineered wtGFP. This was done by first determining which water

molecules were in the barrel in the first frame of each simulation. After determining which waters

were in the barrel, the simulation was then examined ten frames after the initial frame; if the

waters escaped the barrel by this frame, they were deemed to be outside of the barrel to begin

with. The accepted water molecules were then put into CPK representation and examined

throughout the whole simulation to see how the water moves around the β-barrel and see where

in the structure they escape from.

For the reverse process, the β-barrel was examined to see which waters were present at

the end of the simulation. These were then put into CPK representation to see where and when

these water molecules had migrated into the β-barrel. Tables 3-11 shows all the analyses of

water migration through the performed MD simulations.
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Table 3. Water Migration Analysis of the 100 ns wtGFPimm MD simulation

Atom # SPC # Description

75152ቸ 23841 Begins close to the nitrogen of the backbone in I188 and G189. Leaves
between frames 192-193, between the bend after the 9th β-sheet and the
turn in the α-helix. Between G191 and A87.

75182 23851 Begins near N146 (looks like H-Bonding between the nitrogens of its
backbone and side chain and H169 of the 8th β-sheet). Leaves from the
space between the helix before the 7th β-sheet and 8th β-sheet closer to
the side with N/C termini. Left between the 506th and 507th frames.

75104ቸ 23825 Near S72 (bend of helix).

75221ቸ 23864 Begins closest to S65 (Getzoff). For the first roughly 30 frames, the water
molecule is moving but after that, it stays close to S202 for the rest of the
simulation.

75956 24109 Begins closest to H148 of the 7th β-sheet and T203 (H-Bonding
preventing it from leaving, one of the other waters had to find a different
route out of the barrel). By 150 frames, the water moves around the
α-helix, passing the glycines of interest, and then starts hydrogen bonding
with Q183 and is in close proximity for the rest of the simulation.

75569 23980 Starts closest to another water and along with Q69 (Getzoff) near the
bottom of α-helix (near N/C termini). Doesn't stay in any one position for
too long, but it stays near the region where the chromophore forms.

75905ቸ 23822 Begins near T63 (Getzoff) in the α-helix. Stays in close proximity T63 and
T108 of the 5th β-sheet.

75503ቸ 23958 Begins close to Q69 and G67. After about 4 ns, the water molecule
moves closer to V163 and Q183 for about 50 ns. Then moves between
Q183 and T62 and stays there for about 10 ns then moves back to the
previous position (V163 and Q183) for the rest of the simulation.

75680ቸ 24017 Starts closest to T63 (Getzoff). Stays in very close proximity to or in the
same position relative to T63 for the duration of the simulation.

75098ቸ 23823 Begins closest to side chain oxygen of T62 and amide nitrogen of the
same residue. Stays close to the residue for the duration of the
simulation. This water is likely H-bonding between the side chains of R96
and T62 for the whole simulation

75275 23882 Starts closest to side chain nitrogen of R96, the carbonyl oxygens of Q94,
and the hydroxyl group of T108. Over the first 15 ns, this water moves
from its position in the beginning of the simulation towards T63. Stays
between 94 and 63 for about 20 ns. After this it starts to move closer to
the N/C Termini end of the protein by the end of simulation.
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75143 23838 Starts closest to K131 and L137 (opposite the N/C termini). The water
stays in the same position the whole simulation (most likely because of its
H-bonding to the backbone so there's less flexibility opposed to
H-bonding to a side chain.

Table 4. Waters Present at Frame 1 of the G31A MD simulation (100-150ns)

Atom # SPC # Description

4842 404 This water molecule started off neither completely in or out of the barrel
(near N146 and the 10th β-strand. It then moves closer towards the center
of the barrel and stays close to T62 for the rest of the simulation.

23449 8273 Starts between the 9th and 10th β-strands, leaves the β-barrel at frame 13
between S208 and M218.

18201 4857 Located close to the middle of the lid, leaves the β-barrel at frame 31.

4419 263 Located near the previously described water, but it was closer to S72,
leaves the β-barrel at frame 42 of the simulation.

4470 280 Located between the 1st and 2nd β-strand near G10 and A37, leaves at
frame 18.

Table 5. Waters Present at Frame 1001 of the G31A MD simulation (100-150ns)

Atom # SPC # Description

5958ቸ 776 This water entered the β-barrel between F100 and N135 at frame 984.

5307 559 Located in the middle of the lid between residues L137, K131, and D103.
Entered at frame 3.

32634 9668 Entered through between the 10th and 11th β-strands (near H169 and
Y145) at frame 664. Located near T62 at the end of the simulation.

10944 2438 Entered through the same gap that was previously described at frame
969. Moved close to the α-helix and was near N149 and V150 by the end
of the simulation.

29901ቸ 8757 It entered through the gap that is located between E5 and Q80 of the lid
at frame 981.

17775 4715 Entered the same gap as the previously described water at frame 995, it
is near A37 at the end of the simulation.

13461ቸ 3277 Entered the same gap as the previously described water at frame 999.
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27462ቸ 7944 Entered in the between lid residues E5, L194, and D82 at frame 841.

25653 7341 Entered through the gap formed by A37 and R73 at frame 818, stayed in
this position for 190 frames and then moved towards Q80.

16884 4418 Entered through the gap at G4 and S86 at frame 976, left and came back
through the gap lined by E5,T38, and K79 at frame 999. Final position
near Y75.

15468 3946 Entered through the top lid at frame 999.

18822ቸ 50664 Entered through the Q80 and E5 gap.

31326ቸ 9232 Entered through the lid in between D197 and D82 at frame 999.

Table 6. Waters Present at Frame 1 of the G31A MD simulation (150-200ns)

Atom # SPC # Description

11728 2702 Starts close to  the N-terminus (near G10 and A37). G10 is on a turn while
A37 is on a 310 helix. Leaves from this space between frames 93 and 94
(around 4.60 ns into the simulation).

28909ቸ 8429 Starts between K131 and ASN 135 (on turn before 7th β-sheet). Definite
H-bonding with the oxygen of the water and amino groups of each side
chain and possible H-bonding with amide nitrogen of the N135 backbone.

Table 7. Waters Present at Frame 1001 of the G31A MD simulation (150-200ns)

Atom # SPC # Description

21277ቸ 5885 Entered at frame 804 of the simulation, positioned close to K131.

7003 1127 Entered between D102 and G134 at frame 986 of the simulation.

19771 5383 Entered through the gap near L53 on the lid of the β-barrel (opposite of
the termini) at frame 53, between V55 and H217 by the end of the
simulation.

8464 1614 Entered between N146 and S205 at frame 470. Close to the same
position by the end of the simulation.

21265 5881 Entered between N146 and S205 at frame 480. Close to the same
position by the end of the simulation.

18586 4998 Entered between N146 and S205 at frame 101. Close to the same
position by the end of the simulation.
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29761 8713 Entered between N146 and S205 at frame 20. Between Y66 and L44 by
the end of the simulation.

17623 4667 Entered through a gap in the lid of the barrel (termini side) lined by D82,
N198, and G228 at frame 355. Near Y66 by the end of the simulation.

22585 6321 Entered through a gap formed by V163 and I152 at frame 578, near
H152 at the end of the simulation.

17176 4518 Entered between H181 and T38 (close to the 2nd β-sheet) at frame 679 ,
near C70 by the end of the simulation.

13981 3453 Entered between K85 and G4 at frame 928, near R73 at the end of the
simulation.

15667ቸ 4015 Entered through G4 and S86 at frame 10. Minimal movement for the rest
of the simulation.

24821 7073 Entered between E5 and K85 at frame 960. Near H81 by the end of the
simulation.

Table 8. Waters Present at Frame 1 of the G33A MD simulation

Atom # SPC # Description

57679 15027 The starting position for this water was between Y143 and H169, within
the first 20 frames of the simulations, it flowed out. It never re-entered the
barrel.

57238 17880 The starting position for this water was between Y143 and H169, within
the first 20 frames of the simulations, it flowed out. It never re-entered the
barrel.

57451 17951 The starting position for this water was between Y143 and H169, within
the first 20 frames of the simulations, it flowed out. It never re-entered the
barrel.

57682 18028 The starting position for this water was between Y143 and H169, within
the first 20 frames of the simulations, it flowed out. It never re-entered the
barrel.

57532 17978 Positioned near D149 and S205 in the first frames, moving towards the
ɑ-helix as the simulation progressed. It stayed near the ɑ-helix until frame
295, where it left through the gap between N146 and A206.

57151 17851 Positioned near the ɑ-helix and β-strands, between L60 and H181.
Roams around this area until frame 55, where it leaves through the gap
formed by Y145 and N170.
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57445ቸ 17949 Positioned near the α-helix between T62, T59 and I167. Then moves
towards the V61 & L60 of the ɑ-helix.

57625 18009 Positioned near the L201 and Y66, between the ɑ-helix and β-strand.
Moves closer to the  ɑ-helix near S65 and roams around the area
between G67 and C70, normally staying closer to S65. It then slowly
moves out of the protein through the gap between S147 and A206 in
frame 181. It does not enter the protein after this.

57154ቸ 17852 Positioned between T62 and V61. The water stayed near the V61 of the
ɑ-helix.

57277 17893 Positioned near the S65 of the ɑ-helix. It moved towards the Q69 and
C70. It was later pushed off and it moved towards the strands for a bit
after coming closer again to the ɑ-helix.

57559 17987 Positioned near G67 of the ɑ-helix. It moves closer to the ɑ-helix,
roaming the area of the chromophore forming residues. It started to head
out, moving towards the lids of the barrel.

57736 18046 Positioned near the T108 and E124. Water moves towards the Y66 and
roams around the chromophore forming residues.

57531ቸ 17911 Started near the R96, then moved a little towards the chromophore
forming region towards the G67.

57160ቸ 17884 Positioned near the E5, L85, and C70.

57187ቸ 17863 Positioned near the F84, D197.

Table 9. Waters present at frame 1001 of the G33A MD simulation

Atom # SPC # Description

14062 3488 Ended near the opening of S205 and other waters, but the others did not
completely enter the structure. Entered at frame 986 between the gap
S197 and S205. Where it moved towards the ɑ-helix.

26608 7670 Ended near ɑ-helix close to T62. Entered through the gap formed by
S147 and S205 at frame 977.

12805 3069 Ended near the ɑ-helix by P58. Entered in the 266 frame between the
gap friend by S205 and Y143, and it moved towards the L60, where it
stayed near it for the rest of the simulation.

22537 6513 Ended near the lid residues by N144. Entered at frame 226 between the
gap N144 and H169. It moved towards the general direction of E142,
where it stayed at.
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Table 10. Waters Present at Frame 1 of the G35A MD simulation

Atom # SPC # Description

55639 17318 • Begins nearest to Phe 8 on α-helix position of strand 1
• Leaves at frame 4 from termini capped end of barrel

55195 17170
• Begins closest to Phe 84 on the α-helix that runs through the center of
barrel
• Leaves at frame 403 (40.3ns) from the termini capped end of barrel

55222 17179
• Begins closest to Phe 83 on the α-helix that runs through the center of
barrel
• Leaves at frame 695 (69.5ns) from the termini capped end of barrel

55312ቸ 17209

• Begins closest to Phe 71 near α-helix that runs down the center of the
barrel
• Moves toward Gly 67 at frame 142 (14.2ns), but never leaves cavity
during the simulation

55660ቸ 17325

• Begins closest to Phe 71 near α-helix that runs down the center of the
barrel
• Moves toward Gly 67 at frame 142 (14.2ns), but never leaves cavity
during the simulation

55771ቸ 17362

• Begins closest to Gly 67 near α-helix that runs down the center of the
barrel
• Remains there over the course of the simulation, never leaving the
barrel

55186ቸ 17167

• Begins closest Leu 60 near α-helix that runs down the center of the
barrel
• Moves closer to Ala 179 at frame 792 (79.2ns) and stays there inside
barrel for the remainder of the simulation

55567 17294 • Begins closest to Ser 205 on Strand 9
• Leaves at frame 467 (46.7ns) through strands 9 and 10

55189 17168 • Begins closest Thr 62 near α-helix
• Leaves through strands 7 and 8 at frame 8

55486 17267 • Begins closest to His 169 near strands 7 and 8
• Leaves through strands 7 and 8 at frame 8

55234ቸ 17183

• Begins closest to Asn 135 on α-helix on the end of the barrel without
the termini
• Remains there over the course of the simulation, never leaving the
barrel

55273 17196 • Begins closest to Tyr 145 between strands 6 and 7
• Leaves through strands 6 and 7 at frame 2

55594ቸ 17303

• Begins simulation closest to Gln 69 on α-helix that runs down the
center of the barrel
• Remains there over the course of the simulation, never leaving the
barrel

55246 17187
• Begins closest to Asn 170 on strand 6 on the end of the barrel without
termini
• Leaves at frame 229 (22.9ns) between strands 7 and 8
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Table 11. Waters Present at Frame 1001 of the G35A MD simulation

Atom # SPC # Description

53521 16612

• At frame 1001, this water molecule is closest to K101 on the end of
the barrel without termini
• Water molecule enters GFP at frame 882 through the loops next to
K101

22708 6341

• At final frame, water molecule is closest to Ile 171 between strands 6
and 7
• Enters barrel at frame 767 through the end of the barrel without
termini

16060 4125

• At frame 1001, water molecule is closest to S147 between strands 5
and 6
• Enters cavity at frame 928 from end of GFP without termini through
strands 5 and 6

37009 11108

• At final frame 1001, water molecule is closest to F84 on α-helix that
runs through the center of barrel on the end without the termini
• Enters cavity at frame 335 next to the on α-helix that runs through the
center of barrel on the end with termini closest to R73

38710 11675
• At last frame, water molecule is closest to Y66 on the on α-helix that
runs through the center of barrel, right in the center
• Enters cavity at frame 237 through a gap between strands 6 and 7

19321 5212 • At final frame, water molecule is closest to D36 on the second strand
• Enters GFP at frame 951 through the top of GFP with termini

32431 9582
• At final frame, water molecule is closest to Lys 85 on α-helix that runs
through the center of barrel on the end with the termini
• Enters barrel at frame 874 through the termini capped end of GFP

23893 6736
• At frame 1001, water molecule is closest to Ile 188 at the termini
capped end of GFP
• Enters GFP at frame 888 through termini capped end

ቸ - Stays in the same position for the whole/rest of simulation.

It was observed that the β-barrel of the wtGFP simulation had less overall water migration than

that of the G31A simulation. However, the wtGFP structure did have more water molecules near

the chromophore region of the protein, making main chain interactions with residues that are

known in the literature to hydrogen bond with waters. Although more water migration was
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observed in the G31A simulation, most of the waters were seen entering the protein near the

lids of the protein rather than through the β-barrel near the chromophore, which would be

expected due to the many polar residues exposed to the bulk solvent.

The G33A and G35A simulations also were observed to have more water migration into

the β-barrel than the wtGFP simulation. The increased rate of water migration occurred in the

same manner as the G31A mutant, with most of the waters migrating into the β-barrel near the

lids of the protein. Unlike the G31A simulations, these structures were observed to have more of

the conserved waters around the chromophore, suggesting that the G31A mutation clogs the

space above the chromophore. This could prevent waters from flowing into the barrel to make

some of the main chain interactions with the α-helix, along with the waters that are needed for

the catalytic residues to form the chromophore.

3.5. MOLEonline water channel location

MOLEonline is a web-based interactive application used for calculating and

characterizing channels within biomacromolecular structures.41 This is done by (i) inputting a

PDB or mmCIF file and (ii) implementation of the MOLE 2.0 algorithm. The algorithm undertakes

a seven step process to perform the following actions:

- Computing the Delaunay Triangulation/Voronoi diagram

- Approximation of the molecular surface and identification of cavities

- Identification of possible start and end points of the channels

- Computing and filtering of channels.42

MOLEonline was used to qualitatively (Figs. 18,19) and quantitatively (Tables 12-16)

compare the location and dimensions of possible water channels in the β-barrels of  wtGFP and

the three G3XA variants and to investigate if (i) the predicted channels are in the same location

in which  the water molecules migrate through the β-barrel in the MD simulations and (ii) if there

is an association between the dimensions of the predicted channels and the number of water
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molecules moving in and out of the protein. For an even comparison, across each MD

simulation, the 1st, 501st, and 1001st frames of each simulation had their protein structure

extracted to a PDB file. These structures were then put through the MOLEonline server in order

to gauge what channels were being formed or closed over the course of the simulation.
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Figure 18. Visualization of predicted water channels in and through the β-barrels of wtGFPimm
and the G31A variant MD simulations. (a-c) Scaled dimensions and locations for the 1st, 501st, and

1001st frames of the engineered wtGFP 100ns MD simulation. (d-f) Dimensions and location of predicted
water channels for the 100-150 ns MD simulation of the G31A mutant. (g-i)  Dimensions and location of

predicted water channels for the last 150-200 ns MD simulation of the G31A mutant. The GXGXG
residues are labeled for positional reference.
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Figure 19. Visualization of predicted water channels in and through the β-barrels of wtGFPimm,
G33A, and G35A variant MD simulations. (a-c) Scaled dimensions and locations for the 1st, 501st, and
1001st frames of the engineered wtGFP 100ns MD simulation. (d-f) Dimensions and location of predicted

water channels for the MD simulation of the G33A mutant. (g-i)  Dimensions and location of predicted
water channels for the MD simulation of the G35A mutant. The GXGXG residues are labeled for

positional reference.
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Table 12. Predicted Channel Dimensions of the wtGFP MD simulation

Frame Name Length
(Å)

Bottleneck
(Å)

Lining Residues Description

1 T1C3 8.2 1.5 V22, H25, P54,
L137, V22

Located at the end opposite of
the C and N Termini of the
β-barrel. Near the 1st β-sheet
and the turn after the 6th
β-sheet. Has an almost
horseshoe-type shape.

1 T2C4 8.2 1 D36, A37, T38,
Y39, F8, T9,
G10, A37

Located near the C and N
termini (lined by the helices
near the 1st and second
β-sheets.

501 T1C2 17 1.1 V61, T62, S65,
Y66, N144, Y145,
T203,  S205,
L207, L220, V61,
T62,
Y145, S205,
A206, L207

Located near the α-helix,
exiting between the turn of the
7th β-sheet and the 10th

β-sheet.

501 T2C2 29 1 L18, V22, N23,
H25, F27, V29,
L53, P54, V55,
T57, L60, T63,
F64, I123, L125,
E132, L137, V22,
N23

Located near the α-helix, exits
between the turn of the 1st

β-strand and the turn after the
6th β-sheet.

501 T3C2 39.5 0.8 L60, V61, T62,
T63, F64, R96,
I98, Y106, I123,
L125, Y145,
N146, H148,
R168, H169,
N170,H181,
R168, H169,
P58, T59, L60
N144, Y145,
N146, K166

Located near the α-helix, exits
near the 7th β-sheet. It looks
as if it is connected T2C2, but
they’re going in opposite
directions.

501 T4C3 7.7 2 D129, K131,
D133, D102,
D103, D129,
G134

This tunnel is almost
completely outside of the
β-barrel. It is located opposite
of the C and Termini end of
the protein near the 4th and
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6th β-strands. It’s also very
compact unlike the other
tunnels described previously.

501 T5C4↥ 9.4 1.1 D36, L42, T43,
F71, E34, G35,
D36, K41, L42

Lined by residues on the 2nd
and 3rd β-sheet and F71 of
the α-helix. G35’s backbone
also lines this cavity.

501 T6C5 3.8 1.3 S147, N149,
T203, H148,
L201, S202,
T203

This tunnel is only lined by
β-sheet residues, it does not
go far enough into the barrel
to be attracted by the α-helix.
Exits between the 10th and
7th β- strands.

1001 T1C1 11 1.1 P58, L141, Y145,
N146, H169,
N170, E142,
N144, Y145,
N146, R168,
H169, N170

Only lined by α-helix residue
(P58). Almost kidney shaped.
Leaves between the turn of
the 6th β-sheet and the
residues before the 5th
β-sheet.

1001 T2C1 12.7 1 P58, H139, L141,
Y143, H169,
K209, L141,
E142 , N170

Seems to be connected to
tunnel T1C1. It is lined by
some of the same residues as
T1C1, but it moves out more
in the opposite direction,
allowing it to be lined with
residues that are near the turn
of the 10th and 11th residue
(i.e. K209).

1001 T3C1 26.9 1.1 V16, E17, L18,
F27, V29, F46,
L53, V55, L60,
T63, R96 , T108,
I123, L125, V16
E17, L18, V29,
S30, E124

This tunnel is wide enough
and twists within the β-barrel,
resulting in it being lined with
residues that are located on 6
different β-sheets, along with
the α-helix. Exits between the
1st and 2nd β-sheets, slightly
above G31.

1001 T4C2 24.3 1 Y66, Q69, S72,
Y74, F84, V150,
Y151, I152, I161,
V163, F165,
N185, H199,
L201, Y66

Closer to the C and N termini
of the barrel, very close to the
α-helix so more of those
residues line this tunnel. Exits
through 7th and 8th β-sheets.

46



1001 T5C3 9.9 1.2 E5, F8, T9, A37,
T38, K85, G4,
F8, T9, A37, T38

Smaller tunnel and it is almost
completely outside of the
barrel. It’s located almost right
next to the C Termini of the
protein.

1001 T6C3 10.7 1.2 E5, F8, A37, T38,
K85, G4, F8, T9,
A37, T38

There’s almost complete
overlap with this tunnel and
T5C3. They differ at the
directions that they point at
the outermost point of the
tunnels. This tunnel points
back up between the two
helices while T5C3 points to
the side near the C termini.

1001 T7C3 14.4 1.3 K3, E5, F8, K85,
S86, L194, G4,
E5, K79, Q80,
D82, S86

This tunnel looks connected to
both T6C3 and T5C3, but it
points in a separate direction.
This one actually does pass
by the C termini while the
other two just approach it.
This tunnel is also much wider
than the two that were
previously described.

1001 T8C3 15.6 1.2 E5, F8, A37, T38,
R73, K79, K85,
G4, F8, A37,
T38, Y74, D76

This tunnel also looks
connected to the three
previously described tunnels,
but this one points opposite
the direction of T5C3 for a
longer length which allows it
to be lined with residues like
Y74.

1001 T9C4 21.5 1.2 E90, K156, N159,
P187, P192,
V193, L195, S86,
A87, G189,
D190, G191,
P192, V193

This tunnel is located on the
bend after the 9th β-sheet.
The middle of it sits on the
helix and then each side the
tunnel goes out of the protein.
The side closest to the C
termini gets in fairly close
proximity to T7C3.
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Table 13. Predicted Channel Dimensions of 2AWJ G31A MD simulation (100-150 ns)

Frame Name Length
(Å)

Bottleneck
(Å)

Lining Residues Description

1 T6C9 8.9 1.1 V22, H25, F27,
P54, V55, L137,
V22, H25, P54

This tunnel is located on the
end of the barrel opposite of the
C and N termini. It is lined by
residues of the end and turn of
the first β-strand, the turn
between the sixth and seventh
β-strands, and residues that are
close in sequence to the α-helix
in the barrel.

1 T3C3 6.5 1.6 F83, A154,
P187,V193,
L195, K156,
K158, G160

This tunnel is located on the lid
of the β-barrel on the side of
K158 and G191. It is on the
turns of the seventh and eighth
β-sheet. The bottleneck bends
towards the residue 154.

1 T4C4 16 1 Y66, Q69, F84,
I152, M153, I161,
V163, Q183,
N185, L201,
Y151, I152,
M153, K162

The tunnel travels through the
residue in between residue I152
and V163. It is in between the
6th and 7th β-sheet and the
bottleneck bends towards L201.
It does not get sufficiently close
to the α-carbon.

1 T5C6 6.8 1.2 N144, Q204,
A206, L207,
Y145, S205,
A206, L207

The tunnel slightly enters the
β-barrel through the gap
between L207 and Y145. It is a
gap between the turn of the 6th
and 7th β-sheet and the 10th
β-sheet.

1 T2C2 11.3 1.6 K52, P56, W57,
P58, H139,
Y143, E172,
D216, L53, V55,
P56, W57, L141,
E142

The tunnel is in one of the lids
of the β-barrel on the side of
E142. It seems to enter the
protein slightly before leaving
yet again. It overlaps with the
tunnel T1C2
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1 T1C2 3.4 2.2 K52, W57, H139,
D216, L53, V55

The closest residue is L53, and
it overlaps with T2C2. It seems
not to enter the protein.

501 T3C2 20.7 1 F83, A87, Y92,
N159, P187,
V193, A87, G91,
K156, P187,
I188, G189,
D190, G191

The tunnel goes through the
V193 and I188. The bottleneck
is bending towards F84.

501 T2C2 13.2 1.1 F83, A87, E90,
Y92, P187, V193,
S86, A87, G91,
P187, I188,
G191, P192

It is perpendicular to the tunnel
T3C2 and travels in the same
manner as it.

501 T4C3 8.9 1.6 K3, E5, K79,
L194

This tunnel is located in the
center of the lid that contains
G4. It does not enter the
protein, it remains entirely
outside.

501 T1C1 11 1.1 V61, N144,
Y145, S205,
L207, L220,
Y145, N146,
S205, L207

This tunnel enters the protein
through a gap provided by
Y145 and A206. It bends
towards the α-helix slightly, but
does not get too close to it.

501 T5C4 10.2 1.1 P56, P58, H139,
Y143, H169,
K209, P56, T59,
L141, E142,
Y143

The widest part of the tunnel is
outside the protein on the lid
that contains E142. It enters in
between W57 and E142. P58 is
the residue that is closest to the
end of the tunnel.

1001 T1C3 10.9 1.1 Y66, H148,
N149, V150,
F165, R168,
S147, H148,
N149, K166

The tunnel is located between
residues V150 and F165.
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Table 14. Predicted Channel Dimensions of 2AWJ G31A MD simulation (150-200 ns)

Frame Name Length
(Å)

Bottleneck
(Å)

Lining Residues Description

1 T2C6 9.1 1 V12, P13, F114,
D117, L119, L7,
V11, P13, D117,
L119

The tunnel is located between the
D117 and V12. Thus is it between
the second β-sheet and the turn
of the 5th β- sheet.

1 T3C7 4 1.1 M78, H81, H199,
I229, N198, G228

The tunnel is located between
G228, N198 and H199. It is
between the 10th and the 11th
β-sheet

1 T1C5 8.1 1.5 F83, N159, P187,
V193, P196,
K158, V193,
L194

The tunnel is located between
L194, T186, which means that it
is close to the 9th β-strand and
the turn that connects both the
9th and the 10th β-strand.

501 T1C1 15.1 1 V22, H25, P54,
V55, Y106, F130,
E132, L137, V22,
N23, P54

This tunnel is located in between
the barrel lids in between N23
and L53. The bottleneck resides
within the protein, but as the
tunnel moves outward it is more
wide.

501 T3C4 5.5 1.2 P56, P58, T59,
Y143, H169, T59,
L141, E142,
Y143

The tunnel is located between
W57 and E142, meaning that it
does not reside in any of the
β-sheets, but in the turns that are
located in the lid. This tunnel is in
the same lid as the T1C1 of this
frame.

501 T2C1 44.1 0.9 V16, L18, V29,
F46, L60, T62,
T63, F64, S65,
Y66, I98, F100,
Y106, Y108,
I123, L125, Y145,
S147, H181,
T203, Q204,

The entry/exit is in between the
residues Q204 and N146, in
between the 10th and 7th
β-sheet. It loops around the
α-helix on the side of V162,
Y182, I98 , L125, L18, ending in
S30. It seems to have an equal
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S205, E222, S30,
T59, T62, E124,
N146, S147,
T203, Q204,
S205

distance between the α-helix and
the β-sheet.

1001 T2C3 9.6 1.1 P56, P58, T59,
H139, L141,
Y143, H169,
W57, T59, L141,
E142

The tunnel is located L141 and
P58. It is located in the lid and the
entry to the protein is located
near the α-helix, the widest part
of the tunnel is located near 141.

1001 T3C4 9.7 0.9 E32, K45, I47,
R215, H217, F46,
M218

The tunnel is outside the protein
and it does not enter anywhere.
The closest the tunnel is in the
protein is at F46 and M218.

1001 T1C1 11.5 1.2 V11, V12, D36,
A37, T38, E6, L7,
F8, T9, G10,
D36, A37, T38

It is located in the other lid,
opposite to the first tunnel
described for this frame. It is in
between G10 and A37. It goes
slightly in towards the bottleneck

Table 15. Predicted Channel Dimensions of 2AWJ G33A MD Simulation

Frame Name Length
(Å)

Bottleneck
(Å)

Lining Residues Description

1 T1C1 28.3 0.9 L42, V61, Y66,
Q69, S72, N144,
Y145, T203, S205,
A206, L207, L220,
E22, V224, S65,
Y145, L207

Comes in between strands
10 and 7 opposite the N/C
termini, then goes all the way
toward the chromophore
tripeptide and other parts of
the α-helix.

1 T2C3 17.1 1.3 A87, E90, N159,
P187, G189, D190,
G191, V193, S86,
G189, D190, G191

Mainly lined by loop regions
between β(9-10) and β(7-8)
on the same side as the N/C
termini. Somewhat
horseshoe shaped.

1 T3C3 18.8 1.2 A87, P89, E90,
N159, P187, G189,
D190, G191, V193,
S86, G189, G191

Overlaps significantly with
T2C3. Close  to the
N-terminus.
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1 T4C5 7.1 1.2 K3, E5, K79, D82,
L194, K79

Small tunnel lined by
residues of the N-terminus,
loop between β(9-10) and the
end of the α-helix.

1 T5C5 13.1 1.1 E5, A37, T38, R73,
Y74, P75, K79,
D82, K85, A37

Slight overlap with T4C5,
also located close to
N-terminus, closer to the end
of the α-helix, and interacts
with residues of the β-turn
between strands 2 and 3.

1 T6C6 6.5 1.3 R109, A110, E111,
R122, I123, E124,
E111, R122, E124

Lined by residues pointing
outward toward bulk solvent.
Ends at space between
strands 5 and 6, almost
aligned with the chromophore
tripeptide, but does not go
into the barrel to interact with
those residues.

1 T7C7 5.8 1.1 D102, D103, K131,
G134, N135, I136,
N177, K101, D102,
N135

Lined by residues of loops
between strands 4,5, and the
lid opposite the N/C termini.

1 T8C8 6.1 1.3 V93, E95, K158,
T186

Tunnel points toward the
space between β-strands 4
and 9, but does not actually
enter the β-barrel.

501 T1C2 7.1 1.8 E5, T9, A37, T38,
K79, Q80, E5, F8

Somewhat bean-shaped,
lined by residues close to the
N-terminus, the β-turn
between strands 2 and 3,
and residues in the loop
between the α-helix and
strand 4.

501 T2C2 8.4 1.8 E5, E6, T9, K79,
Q80

Some overlap with T1C2,
points further out into the
bulk solvent.

501 T3C3 7.4 1.8 D102, N135, I171,
S175, Q177, K101,
V176

Small tunnel lined by
residues on loops between
strands 4 and 5 and the lid
opposite the N/C termini.

501 T4C3 13.8 1.1 D102, D103, F130,
K131, K131, G134,
N135, Q177, D102,

Some overlap with T3C3,
points in the opposite
direction when exiting the
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D129 β-barrel.

501 T5C6 8.2 1 E90, P187, G189,
D190, G191, V193,
S86, G189, D190,
G191

Lined by residues on the loop
between strands 9/10 and
the loop between the α-helix
and strand 4.

501 T6C7 6.4 1.4 E111, K113, V120,
R122, E111

Points toward the space
between strands 5 and 6, but
does not enter the β-barrel.

501 T7C7 11.1 1.4 R109, A110, E111,
K113, V120, R122,
E124, E111, R122

Overlap with T6C7, goes in
the opposite direction on the
way out of the β-barrel.

501 T8C9 11.9 0.8 P58, Y143, N144,
Y145, H169, L207,
E142, Y143, N144,
Y145

Lined by residues at the top
of the α-helix (opposite N/C
termini). Exits the β-barrel
between strands 7 and 10.

501 T9C10 6.6 1.2 V93, E95, Q184,
N185, T186, E95,
Q184

V-shaped, points toward the
space between strands 4 and
9, but never enters the barrel.

501 T10C11 4 1.1 L15, E17, S30,
R122, V16

Points between strands 1
and 6, but does not enter the
β-barrel. Also interacts with
S30 of the strand 2 and is in
line with the chromophore
tripeptide.

501 T11C12 5.5 1.1 K107, K126, G127,
I128, K126

Points toward the space
between strands 5 and 6
opposite the N/C termini, but
does not enter the β-barrel.

1001 T1C3 7.1 1.5 N159, P187, D190,
V193, G189, G191

Located in the loop region of
strands 9 and 10 and strand
8 (N159), on the same side
as the N/C termini.

1001 T2C3 16.7 1.6 K3, A87, P89, E90,
P187, G189, D190,
G191, V193, S86,
M88, G191

Some overlap with T1C3,
goes in the opposite direction
of T1C3 out of the barrel.

1001 T3C4 9.4 1 V22, H25, P54,
E132, L137

Interacts with the β-turns of
β(1-2), β(6-7), and the loop
region of the α-helix
(between β3 and helix)
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1001 T4C10 5.6 1.5 F99, K101, L178,
A179, D180, F99

Tunnel points toward space
between strands 4 and 9
opposite N/C termini, but
does not enter the barrel.

1001 T5C12 4.2 1.9 V11, E34, K41, T43 Hovers over G35. Points right
into the space between
strands 2 and 3, but does not
enter the β-barrel.

Table 16. Predicted Channel Dimensions of 2AWJ G35A MD Simulation

Frame Name Length
(Å)

Bottleneck
(Å)

Lining Residues Description

1 T1C1 12.8 1.3 K3, E5, K79,
D82, K85, S86,
L194, G4, E5,
K79

Located right next to the
N-terminus and the loop
between the ɑ-helix and
β4. Most of the tunnel is
parallel with the bottom of
the barrel.

1 T2C1 13.6 1.3 E5, T9, A37, T38,
Y74, K79, D82,
K85, F8, A37,
Y74

Some overlap with T1C1,
and go out the opposite
side of the barrel. Both
T2C1 and T1C1 combined
to have a horseshoe
shape around the
N-terminus.

1 T3C2 16.5 1.2 P58, Y143, Y145,
N146, I167,
R168, H169,
N170, V176,
L207, N144,
R168, N170

This tunnel enters between
β7 and β8, and penetrates
the barrel directly to P58,
at the top of the helix.

1 T4C3 5.5 3.5 K52, H139,
K209, D216

Very large tunnel that
interacts with lids regions
of the side opposite to the
N/C termini.

1 T5C5 22.3 0.7 Y74, F83, F84,
I152, M153,
A154, I161,
L195, P196,
D197, N198,
H199, F83,

Long tunnel that enters
between β7 and β10 on
the side of the N/C termini.
Penetrates into the barrel,
interacting with the loop
after the helix.
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A154, P196,
D197, N198

1 T6C7 5.5 N/A T97, F99, Y182 Points towards space
between β4 and β9, but
does not come close to the
barrel at all.

1 T7C8 3.6 2.2 A87, P89, E90,
G189, G191,
P192, S86, P192

Located between the
B-termini of β9 and β10
and the loop of the helix
on the same side of the
N/C termini.

1 T8C9 15.8 0.6 L7, T9, G10,
A35, A37, F71,
D117, L7, T9,
G10, A35, A37

This tunnel goes right into
the hydrophobic pocket
that G35 us typically in.

1 T9C10 16.9 0.9 K101, D102,
D103, N135,
I136, L141, I171,
S175, Q177,
K101, V176

Interacts with β9, the β4
and β5 turn, and lids
opposite to the N/C
termini.

1 T10C11 8.4 0.9 K156, N159,
V193, L195,
V193

Located between the loops
of β7/β8 and β9/β10 on
the same side of the N/C
termini. Tunnel points
straight up into the barrel,
but the tunnel is very much
short.

1 T11C12 6 1.2 E111, K113,
R122, V120

Pointing at the space
between β5/β6 (supposed
to be strands but it is a
loop), on the same side as
N/C termini.

501 T1C1 8.7 1.9 E5, T38, Y74,
K79, K85, A37,
Y74

Located on the same side
as N/C termini, interacts
with residues on the β-turn
of β2/β3. The loop
following the α-helix, and
loop of the N-terminus.

501 T2C3 9.6 0.8 V22, H25, K52,
P54, V55, L137,
V22, L137

Located on the turn of
β1/β2, interacting with the
loop prior to α-helix
(opposite to N/C termini)
and the loop between
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β6/β7.

501 T3C4 3.5 1.8 E32, K45, I47,
E213

This tunnel is lined by
residues that point outward
towards bulk solvent, on
the 2nd and 3rd β-sheets
and loop between β10/β11
(opposite to N/C termini).

501 T4C5 7.4 1.2 Y39, R73, Q204,
F223, T225, Y39,
G40, V224

Funnel shaped tunnel that
points into the space
between β3/β11. The
same side as the N/C
termini, but does not go far
unto the β-tunnel.

501 T5C7 3.8 2.1 V11, E34, A35,
D36, K41, T43

This tunnel points right into
the space between β2/β3
where our G35A
simulation is, but it does
not go into the β-barrel.

1001 T1C1 10.9 1.8 F8, A37, T38,
R73, P75, K79,
K85, F8, A37,
Y74, D76

Located near the β-turn of
strands 2,3, and the loop
region, immediately
following the α-helix, and
some of the loop following
the N-terminus. Runs
somewhat parallel with the
bottom of the protein.

1001 T2C1 13 1.8 E5, E6, F8, T9,
A37, T38, R73,
K79, K85, F8,
A37

Overlaps with T1C1 (fairly
perpendicular to each
other), points more
towards the N-terminus on
the way out towards the
bulk solvent.

1001 T3C1 19.5 1 E5, T38, R73,
Y74, P75, K79,
D82, K85, A37,
Y74, D76, K79,
H81

In the same place T1C1
and T2C1, but there’s
more overlap with this
tunnel and T1C1.
Narrower size and longer,
having more interactions
with residues of the post-
α-helix loops regions.

1001 T4C2 10.2 1.3 E142, N144,
N146, R168,
N170, R168

Horseshoe shaped with
both ends pointing into the
space between β7 and β8
(and the loop that follows
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them), opposite to the N/C
termini.

1001 T5C2 13.3 1 P58, V61, Y143,
Y145, I167,
H169, L207,
S208, M218,
Y143, Y145,
Y146

Another horseshoe type
tunnel near T4C2, but this
tunnel is inside the barrel.
One end points out
towards the same space
that T4C2 points into, and
the other points out to the
space between β7 and
β10 opposite to the N/C
termini.

1001 T6C3 9.5 1.8 K3, A87, E90,
G191, V193, G4,
S86, P192

Located right next to the
N-terminus and the loop
residues between β9 and
β10.

1001 T7C3 10.1 1.4 A87, E90, P187,
G189, P190,
G191, V193,
G189, G191

Overlap with T6C3, go in
the same direction, These
tunnels are basically
stacked on top of each
other.

1001 T8C6 6.8 1.4 K52, L53, W57,
H139, Y143,
D216

This tunnel interacts with
residues near the top of
the α-helix (W57). Does
not go for enough to
interact with chromophore
tripeptide.

1001 T9C8 5 1.5 H25, F27, T50,
L53, P54, K26,
T50, K52

Interacts with β2, β3, and
the loop prior to α-helix
(opposite N/C termini).
Points right in the β-barrel
through the vertical axis.

1001 T10C12 3.4 2.2 E95, K158,
Q184, T186

Tunnel points into space
between β4/β9, right under
R96, but it does not go into
the β-barrel.

*Bold lining residues indicate interaction with the backbone of the named residue.

Quantitatively, it is clear that the G3XA mutants resulted in a decreased rate of water

migration into the β-barrel toward the chromophore, as many more predicted channels enter the
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chromophore region of the protein in the wtGFP simulation. The G3XA mutations may cause the

methyl group of the alanine side chain to participate in steric clashing with other residues that

point inward toward the β-barrel. This could lead to downstream disruptions of the hydrogen

bonding patterns amongst other secondary structures in the protein over the course of the

simulation, allowing for different channels to open and close. In all the G3XA simulations, many

of the predicted water channels enter near the lids of the protein, but since this is composed of

mainly loop structures that are highly exposed to bulk solvent, it would be expected that many

waters would be interacting with these residues.

Qualitative analysis of the predicted water channels over the course of the simulations

was done by observing the location of the water channels within the β-barrel over the simulation

time. It was also observed that more water channels appeared near the lids of the barrel, further

suggesting that these alanine mutations may cause significant amounts of space around the

chromophore to be taken up, preventing water molecules from migrating into this region. This

corresponds with the quantitative water migration results as most waters were described to not

be near the catalytic or chromophore-forming residues in the G3XA simulations.

3.6. β-Sheet Interactions

Expression of the three G3XA mutants in the wet lab by Professor Tanya Schneider led

to the finding that these mutants were all susceptible to misfolding and aggregation. This

observation led to the idea that instead of chromophore formation, G31, G33, and G35 could

play a significant role in the initial folding of the β-barrel. Since the N-terminus β-sheets stay

intact through most pre-folded intermediates, the hydrogen bond distances between sheets 1

and 2, as well as sheets 2 and 3 were examined for each mutant simulation to see if  remnants

of structural effect from these mutations could be observed in a fully folded β-barrel (Table 17).

Table 17. Hydrogen Bond Distances across β(1-3) in G3XA Simulations
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G31A
(100 -
150ns)

G31A
(100 -
150ns)

G31A
(150 -
200ns)

G31A
(150 -
200ns) G33A G33A G35A G35A wtGFP wtGFP

Avg (Å) SD Avg (Å) SD Avg (Å) SD Avg (Å) SD Avg (Å) SD

L41CO -
D36NH 2.6792 0.6415 2.4109 0.5911 2.1002 0.2483 2.2321 0.3019 2.0512 0.1868

E34CO -
T43NH 2.4111 0.6908 2.0165 0.2182 1.9685 0.1640 2.0538 0.1952 2.0023 0.1790

E34NH-
T43CO 2.6463 0.8218 2.1583 0.2757 2.0497 0.1856 2.0587 0.2256 2.0301 0.1747

L45NH -
E32CO 2.1728 0.4868 2.1469 0.3194 2.3117 0.3632 2.2523 0.3140 2.1230 0.2384

L45CO -
E32NH 2.3259 0.4949 2.3996 0.4111 2.5832 0.5980 2.4307 0.4495 2.3074 0.3244

I47NH -
S30CO 1.9489 0.1681 1.9343 0.1486 1.8778 0.1546 1.8828 0.1575 1.8994 0.1401

I14CO -
S30NH 2.0664 0.1808 2.0256 0.1701 2.0061 0.1503 2.0079 0.1573 2.0425 0.1596

A31CO
-V16NH 3.0753 0.9130 2.5835 0.6149 N/A N/A N/A N/A N/A N/A

A31NH
-V16CO 2.8252 0.6864 2.6654 0.5162 N/A N/A N/A N/A N/A N/A

H25NH
-V22CO 2.5303 0.6867 2.2230 0.2998 2.3450 0.3910 2.3459 0.3488 2.1522 0.2916

H25CO-
V22NH 2.1590 0.2357 2.0487 0.1909 2.1852 0.2372 2.1895 0.2481 2.1590 0.2183

V29NH -
L18CO 1.9173 0.1882 1.9281 0.1892 1.8879 0.1580 1.9444 0.1882 1.9780 0.2016

V29CO -
L18NH 2.3562 0.4192 2.4975 0.4567 2.0155 0.2013 2.0215 0.2461 2.0395 0.2201

G31NH-
V16CO N/A N/A N/A N/A 2.5747 0.6116 2.2521 0.3916 2.1886 0.3191

G31CO-
V16NH N/A N/A N/A N/A 2.6427 0.7767 2.1283 0.3049 2.1522 0.2916

I14CO-
A33NH N/A N/A N/A N/A 2.2903 0.5172 N/A N/A N/A N/A

I14NH -
A33CO N/A N/A N/A N/A 1.9426 0.1839 N/A N/A N/A N/A

F27CO 2.2968 0.2481 2.0170 0.1880 2.3748 0.2714 2.2989 0.2558 2.1289 0.2130
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-G20NH

F27NH -
G20CO 2.0615 0.2046 2.1699 0.2246 2.1260 0.2283 2.0915 0.2085 2.3746 0.2731

G35CO-

V12NH 1.9378 0.1911 1.9279 0.1878 2.0896 0.3482 N/A N/A 1.9454 0.1898

G35NH-

V12CO 2.1830 0.2489 2.1712 0.2697 2.2805 0.3447 N/A N/A 2.1107 0.2113

G35CO-

V12NH N/A N/A N/A N/A N/A N/A 1.9204 0.1679 N/A N/A

G35NH-

V12CO N/A N/A N/A N/A N/A N/A 2.1514 0.1981 N/A N/A

When compared to the wtGFP simulation, the N-terminus β-strands of the G3XA

mutants tended to have a larger amount of separation, indicated by the larger average distance

of the interstrand hydrogen bond distances, which would make sense to accommodate the

steric strain caused by the alanine side chain (Fig. 20).
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Figure 20. Visualization of the backbone hydrogen bonds (green dashed lines) of the N-terminus
β-strands that were measured over all mutant simulations. G31, G33, and G35 of the wtGFP N-terminus

strands are labeled for locational reference.

3.7. Hydrophobic Pocket Mutants

Upon examination of glycines 31, 33 and 35, it was observed that G35 is in the middle of

a fairly large hydrophobic pocket, possibly interacting with F71 through a H-π interaction to

maintain hydrophobic packing. To investigate this, four additional GFP variants were engineered

and MD simulations were performed:

- G35/F71L: to investigate how the GFP structure would be affected by allowing

space within the pocket.
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- G35V/F71: to investigate how the GFP structure would be affected by

significantly increasing the steric bulk in the pocket.

- G35/F71Y: to investigate how the GFP structure would be affected by introducing

charge character in the pocket.

- G35V/F71L: to see if simultaneously increasing the size of one residue while

decreasing the size of the other will cause maintenance of stability.

Table 18 summarizes the data results of examining the interactions of the N-terminus strands in

these four mutants.

Table 18. Hydrogen Bond Distances across β(1-3) in Hydrophobic Pocket Simulations

G35/F7
1L

G35/F7
1L

G35/F7
1Y

G35/F7
1Y

G35V/F
71

G35V/F
71

G35V/F
71L

G35V/F
71L wtGFP wtGFP

Avg (Å) SD Avg (Å) SD Avg (Å) SD Avg (Å) SD Avg (Å) SD

H25NH
-V22CO 2.3708 0.4711 4.2686 1.8843 2.1462 0.2240 2.3196 0.3408 2.1590 0.2916

H25CO-
V22NH 2.0995 0.2196 2.1546 0.2493 2.3045 0.3373 2.1432 0.2212 2.1590 0.2183

F27NH
-G20CO 2.0567 0.2031 2.0743 0.2145 2.1061 0.2199 2.0957 0.2317 2.3746 0.2731

F27CO-
G20NH 2.2558 0.2447 2.2935 0.2636 2.2911 0.2397 2.3205 0.2829 2.1289 0.2130

V29NH-
L18CO 1.9240 0.1804 1.8914 0.1650 1.9841 0.1926 1.9773 0.1983 1.9780 0.2016

V29CO
-L18NH 2.2748 0.3307 2.1845 0.3003 2.1206 0.2711 2.1588 0.3112 2.0395 0.2201

G31NH-
V16CO 2.2785 0.3919 2.5359 0.9936 2.0481 0.2419 5.2081 0.4742 2.1886 0.3191

G31CO-
V16NH 2.1016 0.3347 2.4322 0.7980 1.9987 0.2029 3.5411 0.5474 2.1522 0.2916

I47CO -
S30NH 1.9772 0.1596 2.0311 0.1730 2.0319 0.1636 2.0398 0.1707 2.0425 0.1596

I47NH -
S30CO 1.8992 0.1554 1.9443 0.1854 1.9278 0.1521 1.9215 0.1533 1.8994 0.1401
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L45CO
-E32NH 2.2052 0.3466 2.1875 0.3071 2.3183 0.4321 2.0648 0.2583 2.3074 0.3244

L45NH
-E32CO 2.0901 0.2832 2.0857 0.2658 2.3377 0.5862 3.0888 0.5518 2.1230 0.2384

E34NH
-T43CO 2.1241 0.2313 2.4578 0.7993 2.1788 0.4875 7.5276 0.9802 2.0301 0.1790

E34CO
-T43NH 1.9961 0.1829 2.6536 0.8737 2.2030 0.7329 5.5800 0.5803 2.0023 0.1790

G35NH-
V12CO 2.1886 0.2217 3.1598 0.8277 N/A N/A N/A N/A 2.1107 0.2113

G35CH-
V12NH 1.9271 0.1838 4.0419 1.8843 N/A N/A N/A N/A 1.9454 0.1898

V35NH-
V12CO N/A N/A N/A N/A 1.9669 0.1862 2.0892 0.2286 N/A N/A

V35CO-
V12NH N/A N/A N/A N/A 2.0694 0.2018 1.8852 0.1582 N/A N/A

No significant structural effects were observed in the G35/F71L and G35V/F71 mutant

simulations, further supporting the hyperstability of GFP. The G35/F71Y and G35V/F71L

simulations were observed to result in several significant deviations (> 1.0 Å avg. difference)

from the wtGFP simulation. For the G35/F71Y mutant, the effect can be explained by  the

increased size of the tyrosine residue, along with the unfavorable electrostatic interactions due

to the introduction of the para-hydroxy substituent in the tyrosine side chain. In the G35V/F71L

mutant, having the two alkyl side chains also caused steric strain, leading to distortions that

prevented the backbone of the residues 32-36, which are typically part of β2, from making the

necessary hydrogen bonds with strands 1 and 3.

When quantitatively comparing the G35/F71Y and G35V/F71L mutant simulations, it can

be seen that the G35V/F71L simulation had a higher amount of structural change in terms of the

number of affected backbone interactions and the magnitude of the differences to the wtGFP

simulation. The distortion in the G35/F71Y mutant was likely to have been partially mitigated by

the small size of the glycine side chain, allowing for some movement within the pocket without
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completely compromising structural integrity. In the case of the double mutant, the increased

distortion is likely caused by there being many more rotational degrees of freedom in these

larger alkyl side chains. This allows for these residues to adopt many more rotamers, which then

results in more steric clashes that can only be accommodated by either weakening or

completely breaking some of the interstrand hydrogen bonds.
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CONCLUSION

Analysis of the fluorescent proteins (FPs) structures deposited in the PDB revealed that

residues that are conserved across all variants fall into three categories: (i) residues involved in

chromophore formation, (ii) residues on/around the lids of the β-barrel, and (iii) centrally located

residues with no known function.

Most conserved residues are located on the ends of the barrel in the β-turns between

the β-strands. Use of structural analyses, molecular dynamics simulations, and the Anisotropic

Network Model led to finding that the conserved residues in the lids undergo less translation

than other lid residues, and that some of these residues could potentially play a role as hinges

or folding nuclei for fluorescent proteins.43

Glycines 31, 33, and 35 are all located on the second β-strand of the FP β-barrel. They

are highly conserved amongst the FPs isolated from naturally occurring organisms and amongst

the FPs found in the PDB. G33 is 100% conserved across all FP variants while G31 and G35

are 87% and 95% conserved, respectively.18

This trio of glycines does not have a direct role in the formation of the chromophore and

they do not line the pore that contributes to chromophore formation. G31, G33 and G35 are

behind the non-canonical α-helix where the chromophore is formed. Since each glycine is

positioned after every other residue, all three side chains point into the core of the protein. This

suggested that having larger side chains could possibly crowd the interior and either hinder or

completely prevent chromophore formation (Fig. 21).
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Figure 21. Cross section of avGFP. G31, G33 and G35 are located on β2, adjacent to the imidazolone
ring of the chromophore.

The high conservation of the GXGXG motif found in all fluorescent proteins was

investigated by performing 100-200 ns molecular dynamics (MD) simulations on immature

G31A, G33A, and G35A single point mutant structures. The hydrophobic pocket that G35 is

contained in was also investigated by performing 200 ns MD simulations on G35/F71L,

G35/F71Y, G35V/F71, and G35V/F71L mutant structures.

Simulation analyses resulted in the following findings:

(1) In order for the amide nitrogen of G67 to attack the carbonyl carbon of S65, they have to

be in close proximity to each other. In order to achieve this, immature GFP must adopt

the tight-turn conformation. Consequently, glycine is conserved at position 67 in nearly

all FPs (only one FP has an alanine at position 67) due to its high flexibility. The tight turn

restricts the conformational space and keeps the residues in place for the initial

cyclization step of the chromophore formation mechanism.

Although the conserved glycine triad is far from the chromophore forming region, the

methyl side chains of the alanine mutants could reduce the size of the cavity located
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behind the space where the imidazolone ring is formed (see Fig. 21), affecting the tight

turn conformation. This led us to monitor the tight turn distance over the course of the

MD simulations. The tight turn distance of the alanine mutants were not significantly

longer or prone to fluctuation than that of the immature wild type structure.

(2) The crystal structures of immature GFP mutants have shown that the GFP protein matrix

creates a dramatic bend at the chromophore region of the central α-helix. This kink

prevents interactions that are common in a canonical α-helix from occurring. It was

presumed that this is essential to chromophore formation since those hydrogen bonds

would have to be broken during chromophore maturation. Enforcing a tight-turn

conformation in the chromophore tripeptide sequence causes disruption of the canonical

α-helical main chain interactions and formation of a kink in the α-helix.

Measurements of distortion in the non-canonical α-helix were taken over the course of

each simulation. No significant structural changes were observed in the G3XA mutant

simulations.

(3) Glycine residues located in β-strands are typically cross-stranded to aromatic residues

that provide a stabilizing effect by stacking the phenyl ring over the glycine backbone,

protecting it from bulk solvent. Due to the proximity of G35 and F71, it was presumed

that this stabilization effect would occur through an α-helix/β-strand interaction. The

G3XA mutations tended to result in more separation between F71 and G35, possibly

resulting in the formation of water channels leading directly to the chromophore.

(4) Water migration and water channel prediction analyses showed that the G3XA mutations

likely clogged the space around the chromophore, preventing waters from migrating into

that area. These mutants were observed to have increased water migration around the
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lids of the protein, which was expected due to the high interaction of the lid residues with

bulk solvent.

(5) The hydrophobic pocket simulations showed that there is likely a H-π interaction

between the side chains of G35 and F71 in order to maintain hydrophobic packing in the

pocket while also reducing the amount of clashing in order to maintain the hydrogen

bonding across the N-terminus β-strands.

Based on the previous observations, we are fairly confident that glycines 31, 33, and 35

do not influence formation of the chromophore. Due to the literature and mutational studies

conducted by Prof. Schneider, which showed that the G3XA mutants are susceptible to

misfolding and aggregation, we suspect that the flexibility inherent to the GXGXG motif is crucial

in the folding of the FP β-barrel.

Our simulations have shown that mutations of any and all of the glycine triad result in

diminished hydrogen bonding interactions amongst the N-terminus sheets. Therefore, the

folding and closure of the FP β-barrel will be hindered, if not completely halted.

Preliminary results of the currently run partial structure simulations show that these

residues may behave in a zipper-like fashion, which is reasonable in the sense that it would

require a high amount of flexibility and smaller side chains in order to easily close the β-barrel.

These simulations could then have the potential for us to gain a much deeper understanding in

the mysterious nature of these three very unusual residues, and fluorescent proteins as a

whole.
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