Document Type
Article
Publication Date
2-7-2019
Abstract
Many current models which “violate Lorentz symmetry” do so via a vector or tensor field which takes on a vacuum expectation value, thereby spontaneously breaking the underlying Lorentz symmetry of the Lagrangian. To obtain a tensor field with this behavior, one can posit a smooth potential for this field, in which case it would be expected to lie near the minimum of its potential. Alternately, one can enforce a nonzero tensor value via a Lagrange multiplier. The present work explores the relationship between these two types of theories in the case of vector models. In particular, the naïve expectation that a Lagrange multiplier “kills off” 1 degree of freedom via its constraint does not necessarily hold for vector models that already contain primary constraints. It is shown that a Lagrange multiplier can only reduce the degrees of freedom of a model if the field-space function defining the vacuum manifold commutes with the primary constraints.
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
1
Recommended Citation
Seifert, Michael D., "Constraints and Degrees of Freedom in Lorentz-violating Field Theories" (2019). Physics, Astronomy and Geophysics Faculty Publications. 4.
https://digitalcommons.conncoll.edu/physicsfacpub/4
Included in
Atomic, Molecular and Optical Physics Commons, Elementary Particles and Fields and String Theory Commons
The views expressed in this paper are solely those of the author.
Comments
Initially published in Physical Review D, February 2019, Vol. 99(4), pp. 045003-1-12
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
DOI: 10.1103
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.045003